V-Armature winding:

The armature windings are usually form wound. These are first wound in the form of a flat rectangular coils and are then pulled into their proper shape in a coil puller. Various conductors of the coils are insulated from each other. The conductors are placed in the armature slots and are closed by a tough insulating material. The coil ends are connected to the commutator segments.

VI-Commutator:

It is made of copper segments that are assembled into a cylinder. The function of the commutator is to facilitate the collection of current from the armature conductors. The commutator segments are insulated from each other by thin layers of mica. Each commutator segments is connected to the armature conductors by means of a copper lug. Its main function is convert A.C. into D.C.

VII-Carbon brushes:

These are made of carbon and are in the shape of a rectangular block. Their function is to collect current from commutator. They make contact with the commutator segments and convey current to the external circuit. The brushes are housed in a holder. A flexible copper pigtail mounted at the top of the brush conveys current from the brushes to the holder. If the current is too great to be collected by one brush, several brushes are used and mounted on a brush spindle.

VIII-Bearings:

For light duties, ball bearings are used; though for heavy duties, roller bearings are frequently used. These are packed in hard oil for quieter operation and for reduced bearing wear, sleeve bearings are used which are lubricated.

IX-Interpoles:

The best method of overcoming commutation difficulties is by the use of interpoles. These are small auxiliary poles placed between the main poles and having windings arranged in series with those of the armature. Their polarity is the same as the next main pole in the direction of rotation.

X-Feet and Terminal box:

They are welded to the frame or yoke.