
® MOTOROLA Selfticonduc'fors

Supplied by: ADVANCED SEMICONDUCTOR DEVICES (PTY) LTD. ~
P.O. BOX 2944. JOHANNESBURG 2000 .A
TELEPHONE: 802-4107 LI

MCU/MPII
APPLICATIONS NlANUAL

This manual contains a compilation of application notes which will help engineers
in their system designs. They cover a broad range of Motorola 8/16 bits micro-
components.

Specific data on Motorola products can be obtained from 3ny Motorola Distributor
or Sales office as can full data on all MCU/MPU products in the Microprocessor
manual.

This information has been carefully checked and is believed to be entirely reli3ble. However, no responsibility
is assumed for inaccuracies. Motorola reserves the right to make changes to any products herein to improve
reliability, function or design. Motorola does not assume any liability arising out of the application or use of any
product or circuit described herein. No license is conveyed under patent Tights ill any form. When this document
contains information on a new product, specifications herein are subject to change without notice .

qu 1 iu \....C·

Box 39 262
·amley.
~ 1.

. @ MOTOROLA INC.,
: .," All rights reserved"

Device Operation and System Implementation of the Asyn-
chronous Communications Interface Adapter (MC6850)

Analog-to-Digital Conversion Techniques with the M6800
Microprocessor System

A Floppy Disk Controller Using the MC68Ei2 SSDA and
other M6800 Microprocessor Family Parts

MEK6800D2 Microcomputer Kit System Expansion Tech-
niques

A Simple High Speed Bipolar Microproces~;or Illustrates
System Design and Microprogram TechniquE's

M6800 Systems Utilizing the MC6875 Clock Generator/
Driver

An M6800 Clock System that Handles DMA and Memory
Refresh Cycle Stealing

Application Prototype Board (APB) for MC6801 /MC6803/
MC68701 MCUs

Using Input/Output Modules in Industrial Control Appli-
cations

Special Considerations in Using the MC6801 Interrupt
Capabilities

Interfacing M6800 Peripheral Devices to the MC68000
Asynchronously

INDEX (cont.)

Asynchronous Communications for the MC68000 Using
the MC6850

Prioritized Individually Vectored Interrupts for Multiple
Peripheral Systems with the MC68000

Hardware Considerations for Direct Memory Access Using
the MC6809 Microprocessor Unit and MC6844 DMA
Controller

CBUG05 Debug Monitor Program for MC 146805E2 Micro-
processor Unit

Using the MC68000 and the MC6845 for a Color, Gra-
phics System

Using Low-Cost 1 MHz Peripherals- in a 2 MHz System
with the MC68B09 and the MC68B09E

A Data Communications System Using an MC6809 MPU,
MC68652 MPCC, and/or the MC68661 EPCI

Multi-Processor Controller Using the MC6809E and the
MC68120

Motorola MC6845 CRTC Simplifies Video Display Con-
trollers

LOW-SPEED MODEM SYSTEM DESIGN
USING THE MC6860

Prepared by:
Jon M. Delaune
Computer Applications

This application note describ~s modem
systems for full duplex originate only.
automatic answer·answer only and an·
swer/originate with automatic: answer.
Described are the peripheral circuits such
as limiters and bandpass filters that sur·
round the MC6860 to make it a 100
Series compatible modem systen.

LOW-SPEED MODEM SYSTEM DESIGN
USING THE MC6860

GENERAL
Low-speed modem designers will find that the MC6860

MOS LSI Modem with its built-in modulator, demodulator,
and supervisory control will allow the design of a high
performance, low cost 100 Series type modem. The
designer, by selecting from different filter configurations'
and some surrounding support circuitry, may design either
an originate only, answer only, or automatic answer/origi-
nate modem system.

It is the purpose of this note to cover in some detail
these surrounding building blocks that comprise the total
system. To familiarize the reader with the MC6860 chip
operation, a general overview will be included with a more
detailed description to be obtained from the MC6860
data sheet.

BASIC MC6860 CIRCUIT OPERATION
As illustrated in Figure I, the MC6860 Modem contains

a digital modulator, demodulator, and a supervisory control
section to handle line disciplines for full duplex originate,
auto-answer, and auto-disconnect operations.

Modulator
The modulator section converts serial digital data into

analog frequencies for output to the telephone network.
The analog output from the modem is a digital synthesized
sinewave having one of four possible frequencies as listed
in Figure 2. The modulation scheme used is frequency
shift keying (FSK), where a logic "0" (space) is the lower
frequency and a logic" I " (mark) is the upper or higher

Auto
Answer/

Disconnect
Logic

NOTE 1-

ESD = Enable Space Disconnect

ELS = Enable Long Space Disconnect

ESS = Enable Short Space Disconnect

Self Test 16 22

ESO ELS

Output Originate Answer

Mark 1270 Hz 2225 Hz

Space 1070 Hz 2025 Hz

frequency of either the originate or answer frequency pairs.
The analog signal output level from the modulator is
typically 350 millivolts (rms) into a load of 100 k ohms;
therefore, for the MC6860 to interface into a 600 ohm
line system such as the telephone network with the
necessary signal magnitude, an external transmit buffer
will be required.

Demodulator
The demodulator section receives either the lower or

upper (answer or originate modem) frequency tone pairs,
and by a technique of digital half-cycle detection deter-
mines the presence of a mark or a space frequency and
will output at the Receive Data pin either a digital logic
"I" or -'0" to the terminal or computer eqUipment. The
incoming analog signal from the line should be bandlimited
(filtered) and limited (amplified/clipped) prior to the
demodulator carrier input to remove interfering signals
and system noise. The limited input signal presented to
the demodulator input should be at 50% duty cycle (±4%)
over the full input signal dynamic range and be at a TTL
compatible input level in order to maiatain low bit-error-
rate performance.

Supervisory Control
The supervisory control section of the MC6860 contains

the necessary logic to provide initial inter-modem hand-
shaking as well as op~rational protocol, such as automatic
answ~r" originate onl/, initiate disconnect, and automatic
disconnect. A graphical illustration of these control oper-
ations provided by tILe MC6860 is shown in Figures 3,4,
5, and 6. Signals pro'ided by the MC6860 for interfacing
between a data terminal and either a CBS or a CBT
telephone network data coupler are shown at the top
right of Figure I. Switch Hook (5R), Ring Indicator (RD,
and Answer Phone (I\n Ph) signals will interface directly
with a CBT data coupler, or with a CBS data coupler when
RS-232 interface circuits are used. Both of these data
coupler interface methods will be illustrated in later
system implementation examples.

Additional control signals that are· provided for data
terminal control are: Data Terminal Ready (JJTR), crear:
to-Send (CTS), Receive Break (Rx Brk), Transmit Break
(TXBrK), and Break Release (Bil<R). The Mode output is
a control function that is system oriented for the sur-
rounding filter block. This output can be used to control
switchable filters to provide a full automatic answer/
originate modem system. A logic low level at the Mode
output pin indicates the demodulatbr is in the answer
mode of operation and will demodulate 1070 Hz and
1270 Hz incoming signals. When the Mode output is in a
high state, the frequencies demodulated will be. 2025 Hz
and 2225 Hz. A design example using switchable filters
will be illustrated in '- later section.

---i 51 ms r--
Ring Indicator CBSl Mln I~-------------------'------------
~Indjcator ~ n ~l, n r4j---------------------------------

CST U U U U U
I

Mode {~~~::rte ~ Answer (Low)

Data~inal On (Low) 1 _

Ready
Answer Phone ~I---------------------------------~I--------- ----------~1-·2025 Hz or 2225 Hz

IVVVVV ~

_______r----- 4_5_0_m_s~~~~~~~~~t1~O~. ~o ~~~-1070 Hz or 1270 H~~

Receive Carrier . V V V V V

T--h-r.-sh-o-'-d-D-.-'.-ct (H i9t')

C-'.-.r--,-o--S-e-n-d Off (H igh)
1------450 ms I On (Low)

I
Tr~::it {~;~~e Clamped at Mark f- ~unclamped W3

IR~:~:e{~:~~e------------------r.- 150 ms -+150 ms_~
---------Clamped ~----------t- - Unclamped

at Mark

Data Terminal

Ready

Answer Phone -----------------------~

~tinuous Space - 1070 ~

-1070 Hz or 1270 HZ-r---0.3 s ESSor 1.5 s ELS r-. r-.I

I

I
~~g~
__________ unciamped 1

Data Terminal

Ready

Mode { ~~~:::rte

SH Can Be Released

.r~",%/;/ffd00"'AM'd:<:;~2W'&7~fl%?:/&~A?@

Clamped at Mark ----------------------------_. ~
On· (Low) Unclamped

---1 r-- 34 ms Pulse Initiates Space Disconnect
11•... _

_ '070 Hz 0' 1270 Hz ---j--l070 Hz ~

1--3'---.---==1

A self test feature is included in the MC6860 for testing
the modulator/demodulator sections. When a low logic
level is applied to the serrreSt (sn input pin, the demodu-
lator is switched to detect tpe modulator transmitted
frequency pair. Channel establishment obtained during
initial handshaking is not lost, with only the Mode output
changing state during initiation of self test as shown in
Figure 7. This test feature allows the modulator, demodu-
lator, and interval timer circuitry to be checked for proper
operation during diagnostic system test.

ST SH AI Mode

H L H H

H H L L

L L H L

L H L H

MODEM FILTER DESIGN
Filter networks are among the most important surround-

ing element blocks in a modem system. ·As shown in Fig-
ure 8, a filter block is used in the receive carrier signal
path and another filter block is used in the transmit
carrier signal path. The transmit carrier filter may not be
required in answer only modem designs but is required
for originate mode operation.

The receive filtel must provide sufficient adjacent
channel rejection to provide good bit-error performance.
During answer only operation, the filter must pass the
receive frequencies of 1070 and 1270 Hz, but reject the
adjacent channel local transmit frequencies of 2025 and
2225 Hz.

Typically, the receive carrier bandpass filter should
provide greater than 35 dB attenuation to the adjacent
channel. During full duplex originate operation, the local
transmit signal prodLces second harmonic energy within
the receive filter ban jpass (2 x 1070 Hz = 2140 Hz). To
reduce this frequeiH:y component in the receive filter
passband, a transmit carrier filter must be included. This
transmit filter may be either a low pass, a high pass, or a
bandpass filter dependent upon the designed mode of
operation of the mOllem: originate only, answer only, or
auto answer/originate.

The filter design example presented is a bandpass con-
figuration which could be used in either the transmit or
receive signal paths 'vith only component value changes.
The transmit filter must have a pass frequency of 2025-
2225 Hz when the modem is used as an answer only
modem (receiving fl equencies of 1070-1270 Hz). The
opposite configura tie n is true when the modem is in the
originate only mode of operation (transmit frequencies
of 1070-1270 Hz and ·eceive frequencies of 2025-2225 Hz).

A design example is presen ted, with design tables and
equations to solve fer the modem system bandpass filter

MC6850
Asynchronous

CommunicatIons
Interface
Adapater Term.

Control
Logic

Auto
Answer!
Discon.

Logic

component values. A 6-pole answer filter is develope·d in
detail in this application note, whereas a 6-pole originate
filter has values tabulated only. Also tabulated are com-
ponent values for 8-pole, 50-dB receive filters and 4-pole,
25-dB transmit filters.

A filter design may take one of many forms. The in·
cluded design examples use a 0.5 dB ripple Chebyshev
approximation. The filter element configuration used is a
multiple feedback bandpass as shown in Figure 9. As indi-
cated in Figure 10, the Chebyshev filter will provide a high
degree of attenuation in the stop band, but with less
phase linearity than a Butterworth or Bessel filter. Linear
phase or group delay in the passband is an important design
consideration for modem filter design. Error performance
and demodulator phase/bias distortion of the modem
system is affected by unequal delay of data frequencies
within the filter passband. Therefore, it is important to
provide filters that not only provide sharp stopband atten-
uation, but also provide some degree of phase linearity in

Chebyshev

Butterworth

Bessel

the passband. By designing the Chebyshev filter to have a
wider bandwidth than required for FSK (frequency shift
keyed) data recovery, the designer can maximize phase
linearity within the required passband.

Determining the minimum filter bandwidth comes by
investigating the received signal characteristics. Data com-
munication theory states that data transmitted by FSK
can be recovered by detecting the data carrier and the
first sidebands. At a data rate of 300 bits per second and
a data format of alternate mark and space, the first side-
bands occur ±150 Hz from the carrier which is located
halfway between the mark and space frequencies. There·
fore, the minimum bandwidth for the receive bandpass
filter is 300 Hz. Typically, frequencies within this 300 Hz
bandwidth should undergo no greater than 0.8 millisecond
change in group delay. Group delay is defined by:

t -~ I
d - 6F 3600/cycle

6<1> = change in phase in degrees
6F = change in frequency in Hz

To maintain less than 0.8 millisecond group delay at a
data rate of 300 bits per second requires an overall filter
bandpass of 400 Hz. This results in the low frequency
pair (answer) filter passband being between 970 Hz and
1370 Hz (6-pole, 0.5 dB ripple Chebyshev).

Filter Design Steps
The modem bandpass filter examples will be designed

using the following procedural steps:

(I) Determine the required prototype low pass filter
shape factor from the passband width and stop'
band attenuation.

(2) Enter Table I with the shape factor, passband

Amax Amin

12

40

"140

130 10

120

20 110 9

100
8

90
10

80
dB 70

60 6
1.0 50

40

0.1 30·

20 4

0.01 10
3

0.005

0.001
2

0.0005

0.0001

0.00005 0
1

ripple (Amax), and stopband attenuation (Amin),
to determine the order of the prototype lowpass
filter.

(3) From Table:;, determine the location of the pro-
totype low pass filter poles opposite the deter-
mined filter order.

(4) From the low pass fil ter poles, determine their
natural frequtncy (w) and damping factor (~).

(5) Transform th,~ low pass filter section parameters
to cascaded ~econd order bandpass filter design
section Q and center frequency values.

(6) Determine the active element operational ampli-
fier gain by s3lving for center frequency loss and
system filter passband gain (AVO)·

(7) Use each section Q, frequency, and gain to solve
for the bandpass filter passive component values.

Step (I) - Filter Shape Factor
Figure iI shows a design example for a typical 6-pole

answer modem receiv" filter design. From this data, it is
possible to calculate Ihe filter shape factor (ns) for the
prototype filter.

2225 -115
1370 - 970

.11 = ~~ = 528
s 400

TABLE 2 - Pole Locations and Quadratic Factors
1,2 + a" + aD) for Chebyshev 0.5 dB Ripple Filter

0.5 dB Ripple

Order Pules ao a,
2 -0.71281 ± j 1.00404 1.51620 1.42562

3 -0.31323 ± j 1.02193 1.14245 0.62646
-0.62646

4 -0.17535 ± j 1.01625 1.06352 0.35071
-0.42334 ± j 0.42095 0.35641 0.84668

5 -0.11196 ± j 1.01156 1.03578 0.22393
-0.29312 ± j 0.62518 0.47677 0.58625
-0.36232

6 -0.07765 ± 1.00846 1.02302 0.15530
-0.21214 ± 0.73824 0.59001 0.42429
-0.28979 ± 0.27022 0.15700 0.57959

7 -0.05700 ± 1.00641 1.01611 0.11401

-0.15972 ± 0.80708 0.67688 0.31944
-0.23080 ± 0.44789 0.25388 0.46160
-0.25617

8 -0.04362 ± 1.00500 1.01193 0.08724
-0.12422 ± 0.85200 0.74133 0.24844
-0.18591 ± 0.56929 0.35865 0.37182
-0.21929 ± 0.19991 0.08805 0.43859

9 -0.03445 ± 1.00400 1.00921 0.06891
-0.09920 0.88291 0.78936 0.19841
-0.15199 0.65532 0.45254 0.30397
-0.18644 0.34869 0.15634 0.37288
-0.19841

10 -0.02790 1.00327 1.00734 0.05580
-0.08097 0.90507 0.82570 0.16193
-0.12611 0.71826 0.53181 0.25222
-0.15891 0.46115 0.23791 0.31781
-0.17615 0.15890 0.05628 0.35230

where:

F 1 = lower passband frequency in Hz
F2 = upper passband frequency in Hz
F 3 = lower stopband frequency in Hz
F4 = upper stopband frequency in Hz

F I and F2 are ripple bandwidth frequencies,
i.e., gain down 0.5 dB.

Steps (2) and (3) - Filter Order and Pole Location

The sec<,md step of the filter design process was to deter-
mine the complexity of the filter. To determine this com-
plexity, the following information is required:

I. The passband ripple, Amax.
2. The minimum stopband attenuation, Amin.
3. The ratio of the ripple bandwidth and the first fre-

quency of minimum attenuation, shape factor S1s.

With Amax = 0.5 dB, Amin = -35 dB, and S1s = 5.28
enter the nomograph in Table 1 to determine the filter
complexity or order.

The nomograph is used by locating the passband ripple
Amax and the minimum stopband attenuation Amin and
drawing a line from Amax through Amin to the left-hand
side of the graph. From this point, a horizontal line is
drawn to an intersection of the vertical line value of S1s.
The minimum complexity or order, n, will be the n curve
that passes through or above this intersection. In our ex-
ample, the order n equals 3. This implies that the low pass
prototype filter will have 3 poles and, consequently, the
final bandpass filter will have 3 pole-pairs.

Table 2 gives the pole locations and quadratic factors
for a third order 0.5 dB passband ripple Chebyshev low
pass filter.

The values obtained from Table 2 are:

-0.31323 ± j 1.02193 Complex conjugate pole
-0.62646 + jO Real pole
ao = 1.14245 Characteristic of non s term
al = 0.62646 Characteristic of s term
where the s term equation = (s2 + a \ s + ao)

Step (4) - Lowpass Prototype Filter Natural Fre-
quencies and Damping Factors

Using the following relationships, solve for the natural
frequencies (w) and damping factors (n:

-0.31323

I
r-- ""~'
I

P2)IE- _ _ _ -j 1.02'93

Wl2 = (1.02193)2+(-0.31323)2

wJ = 1.069

also, WI b = 0.31323

~I = °i3~~~3

h = 0.293

W22 = (0)2 + (-062646)2

w2 = 0.62646

also, w2 ~2 = 062646
~2 = I

Step (5) - Filter Section Q and Center Frequency

The complex conjugate pole of the low pass prototype
is transformed into a pair of complex conjugate bandpass
poles, whereas the real pole of the low pass prototype is
transformed into a complex conjugate pair of bandpass
poles.

P2 p1,
p2, X

X X
X

P, p22

~
p32

X
X P3 P'2 X

p3, X
LOWPASS BANDPASS

The bandpass filter will take on a form of three 2-pole
bandpass filter sections in cascade. When bandpass sections
are cascaded, each section center frequency and Q must be
determined from the low pass damping factors (~) and
natural frequencies (w).

Given:

WI
FI

Then:

FO
QO

Qo

= 1.069, ~I = 0293
= 970 Hz, F2 = 1370 Hz

= v'FJF2 = 1152.78 Hz (geometric center) (4)

- FO _ 1152.78 Hz (Filter Q) (5)
- F2 ~ F] - 400

= 2.8819

Yielding:

QI = 9.345

Section 2 is a reflected image about FO of section I for
a 3 section cascaded filter (odd order). Recall that a third
order low pass when transformed to a bandpass results in
two pairs of complex poles (sections I and 2) from the
low pass complex pole and one pair of complex poles
(section 3) from the low pass real pole.

QI = Q2 = 9.345

For section 3:

Q _ Qo
3 - ~2w 2

2.882
(I) (0.627) = 4596

M = ~1~~ Q 1 + J~1~~ Q Ij 2 -I

M - (0.293) (1.069) (9.345)
- 2.882 +

AO.293) (1.069) (9.345)] 2 -I
2.882

M = 1.1932.
F 1 = (1.1932) (1152.78) = 1375.52 Hz

Step (6) - Center Frequency Loss and Filter Passband
Gain
The gain produced 'by the active elements in the band-

pass filter should onrcome loss due to the stagger tuned
filter sections. Each section of a cascade bandpass filter,
except the section c,~ntered about wo' has a loss as repre-
sented by Equation 12. The o'verall filter center angular
frequency wo (Equal ion 13), section Q, and section center
angular frequency W1 (Equation 14) are required to deter-
mine each section's :enter frequency loss, Once the indi-
vidual losses are determined, they are summed to arrive
at the total cascaded filter loss AVO (jwO).

This value is used in determining filter section gain such
that the designed bandpass filter meets design gain goals.
The receive filter block must amplify the minimum input
line signal to a minimum reqUired limiter input signal.

wO=2tr.jFJF2

Wn = 2trFn

The following will illustrate the use of Equation 12 to
solve for the center frequency loss of the modem answer
filter example.

DUPLEXER

~

-6dB
600

VAx L:~ -12 dBm to -48 dBm

~ VTx l : -12 dBm @ 2225 HzD11
_ + +6dB 600

10k'/ r-< [}FI'...1.. LINE

-= -=-

.----18 dB @ 2225 Hz

VRx F := -25 dBmmin@ 1070 -1270 Hz

(Minimum Limiter Input)

WO = 2rr.j(970) (1370) = 72431 x 103 rad(s (15)

WI = 2rr (1375.52) = 8.6426 x 103 rad(s (16)

QI = 9.345

[

(8.6426 x 103) (7.243 x 103) ~
9.345

I dB loss = 20 log ---;========================
. J~8.642 x 103) 2 -(7.243 x 103) 2J 2 + t8642 x 10~)3~7/43 x 103~ 2

lAva 1 UWO) I dB loss = 20 log (0.2886)

lAval Uwo) I dB loss = -10.794 dB

Figure 12 illustrates the design goals that are used to
determine the receive filter passband gain for the answer
only modem system. The answer filter provides 35 dB of
attenuation to 2225 Hz relative to the filter passband.
This results in -34 dBm of unwanted signal level being
present at the limiter input. To maintain a probability of
error (Pe) .;;; I x 10-5, a signal-to-noise ratio at the limiter
input must be greater than + 12.12 dB. The theoretical
probability of error (Pe) curve for non-coherent FSK is
determined by:

WO = 7.243 x 103 rad(s

w2 = 2rr(966.1) = 6.07 x 103 rad(s

Q2 = 9.345

IAV02 UWO) I dB loss = 20 log (02886)
IAV02 UwO) I dB loss = -10.794 dB

wO = 7.243 x 103 rad(s
w3 = 7.243 x 103 rad(s
Q3 = 4.596

IAV03 UwO) I dB loss = 20 log (I)
IAV03 UWO) I dB loss = 0 dB, due to Wn = wo

where Vs = signal level
Vn = noise level
BWn = noise bandwidth (400 Hz)
BWs = signal bandwidth (300 Hz)

lAva Uwo) I dB loss = (-10.79 dB) +
(-10.79 dB) + (0 dB) (18)

In calculating the voltage gain required by the ·recelve
active filter block, the following constraints should be
considered:

(a) The signal to noise performance requir'ed by the
modem system.

(b) The receive limiter minimum input level while
providing less than ±4% deviation from a 50%
output duty cycle.

(c) The worst case receive input line levels.

The total filter center frequency loss is equal to the
sum of all sectional losses.

(d) At the maximum input line levels, the designed
filter gain should not saturate any active stage of
the filter.

_ +10
CD~
c+5.0.~

"6 0
>

<l
-5.0

The use of the MLM311 as a receive signal limiter
provides 40 dB of signal gain while maintaining a limited
output level having less than ±2% deviation from a 50%
duty cycle with a -25 dBm applied input level (VRx F)·

The telephone line receive level for the answer only
example ranges between -12 dBm and -48 dBm. An active
duplexer provides 6 dB of signal gain to these line levels
resulting in filter input levels (VRx D) between -6 dBm
and -42 dBm.

From the above information, the active filter must
provide the following passband gain.

Ava =IVRxDminj-IVRxFmaxl (20)
Ava = 42 dB -25 dB = 17 dB passband gain

The amount of operational amplifier gain used in the
filter design is based on both the passband gain require-
ments and the filter center frequency loss.

AVOtotal = IAva (passband)1 +
lAva (center frequency 10ss)1 (21)

AVOtotal = 17 dB + 21.58 dB = +38.58 dB
This requires that each of the three filter sections pro-

vide a gain of:

Step (7) - Filter Component Values
Now that each section gain, center frequency, and

design Q is known, the actual filter component values can
be calculated (reference Figure 9). .

Section I:

FI = 1375.51 Hz
WI = 8.6426 x 103 rad/s
QI=9.345
AVOI =4.41 (gain of section)

C3 = C4 = 0.01 pF (using equal value capacitors)

R5 (uncorrected) = 2QI_ = 2 (9.35)
wlC 2rr(13755)(1 x 10-8)

0-
o

1.0 e
" R5 _216.4k

RI (uncorrected) = 2 AVOI - 2(4.4fj

R2 (uncorrected) = R I R5
4QI2RI-R5

(24.5 k)(216.4 k)
4(9.35)2(24.5 k)-216.4 k

These three resistor values, if used to initially imple-
ment the first bandpass section, would not produce exact
design goals. Filter response will shift due to non-ideal
operational amplifier parameters such as dc gain (AVOL),
gain bandwidth product (GBW), and input impedance (Zin).

To offset any shirt in filter response, new values for
selection Q, gain and frequency should be calculated taking
into account the operational amplifier parameters. These
corrected values will be used to obtain new values for
R5, RI, and R2, resulting in a filter response very near
design goals.

Corrected values f'Jr Wn, Qn, and Ava are calculated
using the following NIC1458 operational a~plifier param-
eters.

AVOL = I x 105 volts/volt
.GBW = I x 105 Hz, 6.283 x 106 rad/s
zin = 1 x 105 ohms

WCI = W_._l__

I -Ql (G~~)
wC I = 8.755 x 103 rad/s, 13934 Hz

Q QI
CI l-QI -2QI+(~_I\

_AVOL Zin 'j
Plugging in valu~s we obtain:

WI J
GBWJ

QCl = 9.27

A - AVa!
VOCI - [2QI (R5)l-QI --+-

AVOL zin

AVOCj=4.43

Using these corrected values of section center frequency,
Q, and section gain, solve for the corrected values of
RI, R2, and Rs:

2QCI
RS=--

wCIC

R - 2 (9.27)
S - (8.7SS x 103) (1 x 10-8)

R - RS
1- 2AyOC

R - 2.117 x 10S
1 - 2 (4.43)

RIRSR2=-----
. 4QC 12R I - RS

R _ (2.389xI04)(2.117xIOS)
2- 4(9.27) 2(2.389 x 104)-2.117x 10S

R2 = 6322 Q

F2 = 966.1 Hz
w2 = 6.07 x 103 rad/s
Q2 = 9.34S
AY02=4.43
C3 = C4 = I x 10-8 F

Solving as in Section I using Equations 23 through 31,
we obtain:

wC2 = 612SS x 103 rad/s, 974.9 Hz
QC2 = 9.30
AyOC2 = 4.43
RS = 303.7S kQ
Rl = 34.28 kQ
R2 = 900S Q

Section 3:
F3 = 11S2.73 Hz
w3 = 7.243 x 103 rad/s
Q3 = 4S96
AY03 = 4.41
C3 =C4= I x 10-8 F

Solving as in section I and 2, we obtain:
wC3 = 7.281 x 103 rad/s, IIS8.87 Hz
QC3 = 4.58
AyOC3 = 4.41
RS = 12S.72 kQ
RI = 14.24 kQ
R2 = 1676.9 Q

The complete answer filter is shown in Figure 13a with
the filter response and envelope delay curves shown in
Figure 13b. If the filter is not optimum after construction,
it may be fine tuned by the following method.

In tuning filters, one of the most useful parameters is
the sensitivity of the filter to element variations. Sensitivity
is defined as a measure of the dependence of a network
upon the change of some parameter of the network. The
sensitivities of importance to the multiple-feedback band-
pass filter must relate RI, R2, and RS to their effect upon
wo and Q. These sensitivities are:

swo =-1/2(ratio,no units) (32)
RS -

SWO -I
. (33)

RI 2(wO)2 RIRSC3C4

SWO -1 (34)
R2 2(wO)2 R2RS C3C4

S~I
RI. -1/2 (3S)

2(RI + R2)

S~2 R2 -1/2 (36)
2(Rl + R2)

S~S
= + 1/2 (37)

In practice, RI ;l> R2 such that

S Q--O
RI

S
Q---l/2
R2

These sensitivities imply that to change section Q, R2
should be adjusted. If R2 were increased, for example
20%, section Q will decrease 10%. Notice that the sensi-
tivity of Q to changes in R2 and RS is equal arid opposite
in magnitude. This implies that if R2 and RS are changed
by rhe same percentage, but in opposite directions, section
Q will not change. Also, as RS is adjusted, it changes the
section center frequency by a ratio of -1/2.

Filter Tuning Procedure
Section Center Frequency:
(a) Increase/decrease, RS for a corresponding de-

crease/increase in section center frequency wo.
(b) Increase/decrease R2 by the same percentage of

increase/decrease applied to RS in step (a) to
maintain constant sectionQ.

Section Q:
(a) Increase/decrease R2 for a corresponding de-

crease/increase in section Q.

ORIGINATE FILTER DESIGN
Basically, the originate receiving fil ter design procedures

are identical to the answer filter example. The one major
difference is that the filter center frequency is shifted
to accept 202S - 222S Hz Signals. One might also note
that the second harmonics of the local transmit signals in
the originate mode (l070 - 1270 Hz) fall within and just

values for the 6-pole originate receive filter are:
Section I:

FI = 2425.81 Hz
QI = 16.56
AYOI=4.48
C3 = C4 = 1 x 1O-8F
RI = 24.26 kn
R2 = 199.76 n
R5=217.258kn

Section2:
F2=1985.62Hz
Q2 = 16.67
AY02=4.48
C3 = C4 = 1 x 10-8 F
RI = 29.85 k
R2 = 242.36 n
R5 = 267.23 kn

0.74 ms Envelope

De,al D;stort;on

~
3.0-

~..
2.00

0.,
o

1.0<5

OJ

"~+5.0
.~

"6 0
>

<{-5.0

-15
1600 1700 1800 1900 2000210022002300240025002600

f, Frequency (Hz)

Section 3:

F3 = 2154.01 Hz
Q3 = 8.32
AY03=4.43
C3 = C4 = 1 x 1O-8F
RI = 13.88 kn
R2 = 458.85 n
R5 = 122.913 kn

Section 1 2 3 4

R, In) 31.42 Ie 39.54 k 14.71 k 16.1 k

R2 (fl) 146.8 181.15 396.29 432.32
R51fl.) 288.64 k 363.27 k 132.15 k 144.66 k

The complete 6-pole receive originate filter is shown
in Figure 14a, with the response and envelope delay curves
shown in Figure 14b.

Section 1 2 3 4

R, In) 31.08 " 46.34 k 14.51 k 17.1 k

R, In) 468.48 690.57 1397.94 1643.88

R5li1) 283.33 k 422.31 k 131.38 k 154.8 k

8-POLE, -50 dB RECEIYE AND 4-POLE, -25 dB
TRANSMIT FILTER DESIGN

A complete full duplex modem system will most likely
require operation with input signals down to -50 dBm at
the line input. This requires a receive filter network having
at least 8 poles to provide the necessary attenuation to
adjacent duplex channel interference and a local transmit
filter having 4 poles to provide 45 dB. local transmit signal
harmonic rejection. The construction of an 8-pole or 4-pole
filter takes on the same cascaded form as the illustrated

Section 1 2
R, (fl) 15.73 k 20.5

A2 (fl) 1218.55 1586

R5 (fl) 130.47 k 170 .•

TRANSMIT ORIGINATE

~
.55

17 k

Section 1 2

R, In) 16.17 k 18.78 k

R2 (fl) 366.95 423.79

R51n) 133.25 k 154.81 k

AUTOMATIC ANSWER/ORIGINATE MODEM SYSTEM
The filter design for a fully automatic answer/originate

modem system must have switch able bandpass character-
istics. By tabulating the previous component values for
both the answer and originate filters, one can draw some
conclusions on how to best switch the filter from one range
to the other. The following example uses the previous
derived values for the 6-pole receive filter. Figure 16 indi-
cates that sWitching in different values of R2 for all three
sections and a different value for RS in the second section
would provide the required switch able answer/originate
filter. By adjusting the non-switched resistors to the average
value between the answer and originate filter values, the
more accurate the first switchable filter prototype will be.
A semiconductor switch is used to switch values of R2, and
operates in shunt to ground. The best choice for the shunt
switch is to use a low on-resistance bipolar device such as
the 2N3904. For switching RS of section 2, a high off
resistance device is required due to the high series resistance
in the feedback path of the operational amplifier. An
MFE200S N-channel junction FET was selected to do this
job. Figure l7a illustrates the fully automatic answer/
originate switchable filter system. Also shown are the
transmit buffer, duplexer, threshold detector,limiter, and
mode control level translator sections. The level translator,
which provides the correct on/off voltage levels to the
bipolar FET switches, receives its answer/originate com-
mand from the MC6860 modem mode control output pin.

The measured response and envelope delay for the switch-
able 6-pole receive filter design is shown in Figure 17b.

Figure 18 illustrates the complete modem system with
the RS-232 interface to the CBS data coupler, and the
direct interface to a CBT data coupler. Automatic dis-
connect option inputs are handled by PC board mounted
switches. The complete automatic modem,less the power
supply, may be easily constructed on a single 4 x 5 printed
circuit board.

CONCLUSION
A low-speed modem design has been presented using

the MC6860 LSI MaS digital Modem integrated circuit.
Included has been a system design example using filter
design tables and equations to develop a complete modem
system. Also included have been component values for
filter designs which may be used to develop full duplex
modem systems.

The availability of this LSI modem circuit along with
the presented filter designs should provide a very useful
building block for the OEM modem and terminal designers
by providing him precise digital modulation, demodulation,
and supervisory control. The modem designer will find
that a design approach using the MC6860 modem will
also provide an impressive system size reduction as well as
a better price-performance choice for his present and
future low speed modem designs.

Average
Answer Originate 0' Answer Originate

Resistor 1070·1270 Hz 2025·2225 Hz 6. Value Switched Switched

R" 23.89 • 24.26 • 24.08 • 24.1 • 24.1 •
R21 632.2 199.76 6432.4 632 200
R51 211.7 k 2'7.26' 214.48 • 2'4.6' 214.5 •

R'2 34.28 • 29.85 • 32.07 • 32.1 • 32.1 •
R22 900.5 242.36 " 658.2 900 242
R52 303.75 • 267.23 • t::. 36.5 k 304. . 267.

R'3 14.24 k 13.88 • '4.06 • 14.06 • 14.06 •
R23 1676.9 458.85 1218.05 '677 459
R53 125.72 • 122.91 k 124.32 k 124.3 k 124.3 k

TD

2 k

-=-

::;(0
I1.0

Rx Car
1 k

2 k
-=-

~

"~ lo20 ORIGINATE

i10 >-,.u ..
iD Cl

2.0 g.~
c e·m <.:>

<.:> -6 i>
<l:

-30

-40

500 1000 1500 2000 2500 3000
f, Frequency (Hz)

FIGURE 17b - Switchable Filter Response

30 k 2.2 k

2N3904

All Capacitors are in ,uFo
C3n. C4n = 0.01 ,uF ± 1%.

Resistors A 11 thru R53 are t 1%.

R11 : 24.1 kn R12 = 32.1 kn
R21A: 200 n R22A - 242 n
R21B : 432 n R22B • 65B n
R51 - 214.5 kn R52A - 267 kn

R52B • 37 kn
R13 =14.06kn
R23A· 459 n
R23B = 121B n
R53 = 124.3 kn

Break
Release

Transmit
Break

Transmit
Data

Data
Terminal

Ready

+5 V

q:
See Fig. 17.

10 Transmit
Carrier

hreshold
Detect

15
Mode

17 Receive
Carrier

Line

MC6860

Digital 11 No
Carrier Connection

1
1
1
I
I
I
I
I
I IL ..J

r------,
I MC1488 I

: : 3

Receive
Data

Clear-to-
Send

ESO

ELS
19

Ai
Ring

Rx
Test Inidcator

Rate VSS Clock

16

-= Self -= -=
Test

f:;: - - - - - - - - - --l
I
I
I

+12 vi
I

12)- I
IAn Ph

+5 V I
I
I
I
ISH

IAT
I1--------------1
I Una -= I
I r--------,
I : MC1488 :

I: :I: :
I L ..J

I r--------,
I : MC1489 :

I: :
IAn Ph : :

ISH:
I :
I Ai L.. ..J

L ~_J

C8S
Data

Coupler

DEVICE OPERATION AND SYSTEM 1'~PLEMENTATION
OF THE ASYNCHRONOUS COMMUNICATIONS

INTERFACE ADAPTER (MC6850)

Prepared by
. Karl Fronheiser

Computer Appli~ations Engineering

This application note provides ACIA
operational information beyond that in-
cluded in the data sheet, specifically,
information on power-on -eset/master
reset operation and status reuister opera-
tion. System implementation examples
and their associated software are also
illustrated and discussed. Ole of these
examples is a data communi(ation appli-
cation using the MC6860 Modem.

DEVICE OPERATION AND SYSTEM IMPLEMENTATION OF THE
ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER (MC6850)

INTRODUCTION
Microcomputer systems must be provided with an

efficient means of communicating with peripheral equip-
ment such as modems, teletypes, CRT terminals, and
keyboard/printers. The microcomputer manipulates paral-
lel data byte information at high speeds relative to the
slow speed asynchronous data format required for com-
municating with peripherals. Therefore, an efficient inter-
face adapter to convert the processor parallel data byte
information into a serial asynchronous data format and
vice-versa is a highly desirable system function. This
relieves the microprocessor of this time-consuming task.
A device providing the above data formatting/interface
function is the MC6850 Asynchronous Communications
Interface Adapter (AClA). One side of the ACIA is directly
compatible with Motorola's MC6800 (MPU) micropro-
cessor bus while the other side is compatible with peri-
pherals that use an asynchronous data format.

The asynchronous data format characteristics are used
by the ACIA to establish bit and character synchronization
in the absence of a clock that has been pre-synchronized
to the data. An asynchronous data format consists of a
serial bit stream with the data bits preceded by a start bit
and followed by one or more stop bits. The ACIA con-
verts a character which was serially received from peripheral
equipment to a parallel byte with the start, stop, and
parity bits deleted from the character. Also, the parallel
bytes from the microprocessor are converted to a serial
form with start, stop, and optional parity bits appended to
the character. Performing these functions in hardware
outside of the processor enables the microprocessor to
more efficiently communicate with peripheral equipment
by using a minimum of software overhead.

The ACIA consists of control, status, transmit data
and receive data registers; data bus buffers; transmit and
receive shift registers; and peripheral control as shown in
the block diagram of Figure I. Since basic operational
information on the ACIA is contained in the ACIA data
sheet, this application note will provide additional infor-
mation to supplement the data sheet with a minimum of
repetitive information. The first section of this note pro-
vides a description of the operation of the transmitter and
receiver portions of the ACIA with reference to appropriate
timing diagrams. The second section covers the aspects of
the power-on and master reset functions for initialization
of the ACIA. The third section covers a detailed description
of the ACIA status register bits. The fourth section covers

a system implementation of the ACIA as a data communi-
cations link in a microcomputer based system. The last
section provides examples of the software requirements for
initializing the ACIA, and the transmit/receive subroutines
for the transmission of data. Additional application infor-
mation on Motorola's MPU family is available in the
"M6800 Microprocessor Applications Manual."

TRANSMITTER/RECEIVER OPERATION
This section covers the internal transmitter/receiver

operation of the ACIA as well as the timing relationship
between characters being transmitted or received and
their associated status register bits. It should be noted
that prior to the transmission and/or reception of data,
the ACIA must be initialized as described in the "Power-
on Reset/Master Reset" section.

Data is transferred to/from the four internal registers
of the ACIA ·on the trailing transition (negative edge) of
the signal on the enable input (E). For example, a write
data command (RS = I, R/W = 0) transfers data into the
transmit data register on the trailing transition of the enable
input signal. In a typical MPU based system, the enable
input signal is generated from the ANDing of the Valid
Memory Address (VMA) and 1>2.

Transmitter
In a typical transmitting sequence, a character is written

into the Transmit Data Register (TOR) if a status read
operation indicated the TOR was Empty (TORE). The
write data command (trailing edge of the enable pulse)
causes the TORE status bit to go "low" indicating a
transmitter data register full condition. During an idling
(absence of data transmission) condition, the transfer of
data from the TOR to the transmit shift register will take
place within one data bit time. This results in a delay (due
to internal operation of the ACIA) in the transmission of
the character from the Transmit Data Output with respect
to the write data command of one to two data bit times
as shown in Figure 2. The trailing edge of the internal
transfer signal returns the TORE status bit to a "high"
level indicating a Transmitter Data Register empty con-
dition. The transmitter shift register serializes the data and
transmits the data bits, starting with data bit DO, preceded
by a start bit and followed by one or two stop bits. Also,
internal parity (odd or even) can be optionally added by
the ACIA and will occur between the last data bit and
the first stop bit.

0022

01.21

0220

0319 Data
Bus

041B Buffers

0517

0616

0'715

Transmit
Data

Register

ReadlWrite 13

Chip Select 0 8
Chip Select 1 10

Chip Select 2 9
Register Select 11

Interrupt L-
Logic ~ 7 Interrupt Request (IRQ)

---- 23 Data Carrier Detect(OCD)

Receive
Data

Register

Receive
Shift

Register

Jlfl----------~----_----/

I I ST
I---- I d H n9 ----J
--fl -fL-

~ ~-~
-Sl n _

The start, data, and stop bits are shifted out of the
transmit shift register on the negative transition of the
external transmit clock which is coincident with the
negative transition of the internal clock. Selection of the
external clock frequency is based on the data transmission
rate and clock division ratio of the ACIA. For example, a
data transmission rate of 300 bits/s requires an external
clock frequency of 300 Hz in the .;-1 mode and 4800 Hz
in the .;-16 mode (16 times the dat~ rate). There is no
requirement on the duty cycle of the transmitter clock
except with respect to the minimum clock pulse width
specification listed on the data sheet.

After the first character has been loaded in to the TOR,
the status register can be read again to check for a Trans-
mit Data Register empty condition and the current
peripheral status. If the transmit data register is empty,
another character can be written into the TOR even
though the first character is still being shifted out of the
shift register, due to double buffering being used within
the AClA. Referring to Figure 2, the second character is
transferred to the transmit shift register during the last
stop bit time of the first character resulting in a contigious
transmission of characters (isochronous transmission). If
the second character is not written into the TOR prior to
the last stop bit time of the character being transmitted,
the transmitter will return to an idling condition at the
end of that character time.

During the transmission operation, word 'length and
stop bit select may be changed any time except during
the .internal transfer time without affecting the character
being transmitted. The even/odd parity select will imme-
diately affect the character presently being transmitted.

Also, changes in word length and parity select will effect
the reception of data by the receiver.

Since the control register containing the above functions
is common to both the transmitter and receiver sections,
these functions for the transmitter must be changed when
the receiver is not receiving data, i.e., idling. This control
register consideration must also be adhered to for trans-
mission between a local transmitter and a remote receiver.

Receiver
In many asynchronous data communications systems,

the data is transmitted in a random manner without any
additional synchronization signal. Therefore, the start and
stop elements of the asynchronous characters are used to
establish both bit and character synchronization. The
receiver generates an internal clock that is synchronized
to the data from an external clock source (Rx Clock).
As with the transmitter portion, the selection of the
external clock frequency is based on the received data
transmission rate and clock division ratio of the ACIA.
For example, a data transmission rate of 300 ,bits/s requires
an external clock frequency of 4800 Hz (16 times the
data rate) in the .;-16 mode, and 19,200 Hz (64 times the
data rate) in the .;-64mode. (The .;-1 mode requires external
synchronization and is explained separately in a following
paragraph.)

Bit synchronization in the .;-16 and .;-64 modes is ini-
tiated by the leading mark-to-space transition of the start
bit. The start bit on the receiver data input is sampled
during the positive transitions of the external clock as
shown in Figure 3. If the input remains at a "low" level
for a total of 9 separate samplings in the .;-16 mode or

I
Rx Data I ~~ r_

F;nalsamPleJ

External and
Internal Clock
(50% Duty Cycle)

Rx Data I~ ~ ___'I
L-

Shifted-l

External and
I nternal Clock
(No Duty Cycle)

I
samPle--.J

Clock
I--M;n~

~ PW L
Sample Shifted

33 samplings in the .;.64 mode, which is equivalent to more
than 50% of a bit time, the bit is assumed to be a valid
start bit. This start bit is shifted into the shift register on
the negative edge of the internal clock. Once ,a valid start
bit has been detected, bit and character synchronization
are obtained and the remaining bits are shifted into the
shift register at their approximate midpoints,

If the receiver input returns to a mark state during the
start bit sampling period, this false start bit is ignored and
the receiver resumes looking for the mark-to-space tran-
sition of a valid start bit; this technique is referred to as
false start bit deletion. The ACIA monitors the start bit
on an incremental sampling basis rather than on a con-
tinuous sampling basis. This technique is a desirable
feature for operation within a noisy environment and
stems from the fact that a noise pulse occurring anywhere
in a continuous sampling technique would initialize the
monitoring logic; whereas in an incremental sampling tech-
nique, the noise pulse must occur during the sample
to initialize the monitoring logic. The receiver will repeat
this process for syncp,ronization of each character in
the message.

Divide·by-I mode selection will not provide internal
bit synchronization within the receiver. Therefore, the
external receive clock must be synchronized to the data
under the following considerations. The sampling of the
start bit occurs on the positive edge of the external clock
and the start bit is shifted into the shift register on the
negative edge of the external clock, as shown in Figure 4.
For higher reliability of sampling, the positive transition
of the external clock (sampling point) should occur at the
approximate midpoint of the bit interval. There is no
requirement on the duty cycle of the external receive
clock except that the clock must meet the minimum

pulse width requiremmt as noted on the ACIA data sheet.
After the start Ii: t has been detected, the remaining

portion of the chamcter being received is checked for
parity, framing, and o'rerrun errors. The complete reception
of the character produces a "high" on the Receiver Data
Register Full (RDRF) status bit, indicating that the receiver
data register is full (Figure 5). The received character is
transferred to the Receive Data Register (RDR) with the
start, stop, and pari':y bits stripped from the character.
At the same time, an:r receive data errors (parity, overrun,
framing) are availabk in the status register in accordance
with the status regisrer definitions. The RDR is oriented
such that the first data bit received is available on the DO
output. The receiver is double buffered so that one
character may be re~,d from the data register as another
character is being received in the shift register. During the
reception of data cha racters, the absence of the first stop
bit of the character will not result in the receiver losing
character synchroni23tion but will indicate a framing
error. The above receive process is repeated for each
character in the total message.

POWER-ON RESET/MASTER RESET
The ACIA contains an internal power-on reset circuit

to detect the power line turn-on transition and to hold the
ACIA in a reset stal e until initialization is complete to
prevent any erroneolS output transitions from occurring.
In addition to initializing the transmitter and receiver
sections, the power-,)n reset circuit holds the CR5 and
CR6 bits of the con trol register at a logic 0 and logic I,
respectively. When CR5 = 0 and CR6 = I as defined by
the ACIA data sheet, the Request-to-Send (RTS) output
is held "high" and :1n interrupt from the transmitter is
disabled. The power-,)n reset logic is sensitive to the shape

____ ~,~ __ ___.lL_

L-_~

_____ ~n'-- --lL-
L----.r-

POWER-ON RESET MASTER RESET MASTER RESET
(Release Power-On Reset) (General I

b7 b6 b5 b4 b3 b2 bl bO b7 b6 b5 b4 b3 b2 b 1 bO b7 b6 b5 b4 b3 b2 bl bO
Status Register 0 0 0 0 X X 0 0 0 0 0 0 X X 0 0 0 0 0 0 X X 0 0
IRQ Output 1 1 1
RTS Output 1 '" 1 X

Transmit Break Capability Inhibit ,/ Inhibit Optional

Internal: RIE 0
'"

X X

TIE 0 0 X

Held P ,- n R - ' Define n roJ Re ister

of the VDD power supply turn-on transition_ To insure
correct operation of the reset function, the power turn-on
transition must have a positive slope throughout its
transition. The conditions of the status register and other
outputs during a power-on reset or software master reset
are shown in Table 1.

The internal ACIA power-on reset logic must be released
prior to the transmission of data by performing a software
master reset function via the control register. Con trol
Register bits CRO and CRI are used to program a master
reset condition while the remaining control register bits
provide other functions in accordance with the ACIA data
sheet. The internal power-on reset logic will inhibit any
change in bits CR5 and CR6 of the control register. There-
fore, the control word that generates the master reset
function clearing the internal power-on reset will not
change the RTS output or the Internal Transmit Interrupt
Enable (TIE), as reflected in Table 1. Also, the state of
the Receiver Interrupt Enable (RIE) bit of the control
register has no external effect because the receiver is
initialized by the master reset function.

After master reset of the ACIA, the programmable
control register can be set for a number of options such
as variable clock divider ratios, "ariable word length, one
or two stop bits, parity (even, odd, or none). Also, bits
CR5 and CR6 of the control register are no longer inhibited
and can now be programmed for several options as defined
on the ACIA data sheet.

During the initialization of the ACIA, the master reset
function can be optionally used to establish a communi-
cations link without generating an interrupt from the
transmitter or receiver sections. For example, the first
control word, XXXXXXII-LSB (X = don't care) resets
the power-on reset logic. To maintain a reset condition,
the second control word, XOIXXXI I-LSB holds the trans-
mitter and receiver in a reset state and produces a "low"
on the RTS output. The RTS output may be used to enable
a local modem. The local modem, upon detection of a
remote modem's carrier, will generate a "low" on the
Clear-to-Send (crs) input of the ACIA. Since the CTS bit
of the status register reflects the pre~ent status of the
CiS input, the establishment of the communications link
can be verified by reading the status register of the ACIA.
For a more detailed description of this system application,
refer to the system implementation section.

STATUS REGISTER
ACIA status information is available to the MPU through

the bus interface by means of the ACIA Status Register.
Status information comes from three sources: the receiving
section, the transmitting section, and the peripheral
status inputs.

Receiver Status
Receive Data Register Full (RDRF), Bit 0 - A logic

"high" level on the RDRF bit indicates that data has been
transferred to the Receive Data Register and that the
received data can be read from the ACIA. Reading the
Receive Data Register causes the RDRF status bit to go
"low", as shown in Figure 5. A "low" on the Data Carrier
Detect (DCD) input enables the RDRF status bit to be
generated from a Receive Data Register full condition. A
"high" on the J)CIj input or a master reset condition will
force the RDRF status bit to a "low" state until the
I:5CD input returns to a "low" state. This is independent
of the state of the status register J)CIj bit. .

Transmitter Status
Transmit Data Register Empty (TORE), Bit I - The

write data command (see Figure 2) causes the TORE status
bit to go "low", indicating a data register full condition.
An internal transfer signal transfers the data froni the
Transmit Data Register to the Transmit Shift Register and
causes the TORE bit to go "high", indicating a Transmit
Data Register Empty condition as shown in Figure 2. The
TORE bit contains the present status of the Transmit
Data Register when the Clear-to-Send (CTS) input is in
a "low" state.

Peripheral Status
Data Carrier Detect (DCD), Bit 2 - A "high" level on

the J)CIj input, indicating a loss of carrier causes: (I) the
DCD status bit to go "high"; (2) the RDRF bit to be inhib-
ited ("low"); and (3) immediate initialization of the
receiver. When the Receive Interrupt Enable (RIE) is set,
a loss of carrier will cause: (I) an in terrupt to occur (IRQ
output goes "low"), and (2) the IRQ status register bit
to go "high". The characteristics of the I:5CD status bit
and the associated IRQ status bit are as follows, with
reference to the six segments in Figure 6, where each

f--(j)~@=,-t--@------j--@--r--® .r--®-1
Master Reset ~ ~ I I 1 I

I I I 1
, 1 I I

DCDInput SiL --lL- I ---fl.- ~ I ----f L I ~
I I I I I I I I

__ 'I. I t I I I I
DCDSt.tusBltSf"L --lL-'SL ~I--f LI~

I I I I I I I I I I
I r I I , I I I I

TROSt.tusBit-IL- I SL ~: --I:~ I ~
I I I I I: I I I I I
I I I I I ri I I I I
I I I I I --.J L I I I I

I I I : I I I: :

I I~ J I I-lLJl: :51
: :: :: I I

: ! -.JL ----.lL:.--Jul-: ~

segment represents a specific condition. (Note: The IRQ
output is the inverse logic level of the IRQ status bit.)
Segment (I) - A master reset of the ACIA resets the
interrupt status bit (IRQ) generated by a loss of carrier.
Segment (2) - If the OCD input goes "high" during a
master reset condition, the [)CD status bit will reflect
the state of the OCD input. Segment (3) - After an
interrupt has occurred frcJm a loss of carrier, the IRQ and
OCD status bits (provided the '[)CI) input has returned to
a "low" level) are reset by first reading the Status Register
and then reading the Data Register. Segment (4) - If the
OCD input remains "high" after a read status and a read
data, the IRQ bit will be cleared but the OCD status bit
remains "high" and will follow the state of the om input.
Segment (5) -If a read status occurs when the DClJinput
is "low" followed by a loss of carrier (OCD input goes
"high") prior to the read data command, this read data
command will not reset either the TI<Q or om status bits.
The next read status followed by a read data will reset the
ffiQ status bit. Segment (6) - A transition of the OCD
input during a read status or read data command is not

1234567811

~
j

I

recognized until the '.railing edge of the read command.
The OCD input to the ACIA must be tied "low" if it is
not used.

Clear-to-Send (m,), Bit 3 - The CTS status bit con-
tinuously reflects the state of the CTS input. A "high"
on the CTS' input will inhibit the TDRE status bit and
associated interrupt status bit (ffiQ). The 'CTS'input has no
effect on a character being transmitted from the shift
register or the character in the Transmit Data Register
(the transmitter is not initialized). Also, the CTS bit is not
affected by a master reset. The CTS input to the ACIA
must be tied "low" if It is not used.

Framing Error (FE), Bit 4 - A framing error indicates
the absence of the first stop bit of a character resulting
from a loss of character synchronization, faulty trans-
mission, or a "break" (all spaces) condition. If one of the
above conditions is present, the internal receiver transfer
signal will cause the FE bit to go "high". The next internal
transfer signal will ca Jse the FE status bit to be updated
for the error status of the next character, as shown in
Figure 7. A "high" c,n the DCD input or a master reset

1234567811112345678

'I Il
i
I

Transfer ~n~: .Jl....! _

i I~: _
I~ -

will disable and reset the FE status bit.
Overrun Error (OYRN), Bit 5 - A "high" state on the

OVRN status bit indicates that a number of characters
were received but not read from the Receive Data Register,
resulting in the loss of a character/or characters. The OVRN
status bit is set when the last character prior to the overrun
condition has been read. The read data command forces
the RDRF and OVRN status bits to go "high" if an
overrun condition exists. The next read data command
causes the RDRF and OVRN status bits to return to a
"low" level. During an overrun condition, the last character
in the Receive Data Register that was not read subsequent
to the overrun condition is retained since the internal
transfer signal is disabled. Figure 8 illustrates the timing

read cycle because no automatic status reset will occur.
The response of the system to a status word will depend
upon the status bit read. Should a status change not be
registered, it can be read during the next read status cycle.

SYSTEM IMPLEMENTATION
In a microcomputer based system, an address map of

the system identifies the block of memory allocated for
the system program, stack storage location, interrupt
locations, peripheral addresses, etc. The ACIA requires
two addresses in the MPU system for addressing its four
registers: control, status, transmit, and recieve. To select a
register within the ACIA requires the appropriate logic
levels on the chip select inputs (CSO, CSI, CS2), register

~__ f
________ ~n~ __ ~n _

RD#l RD#l

------------~ ~
i i

events during an overrun error condition. A "high" state
on the OCU input or a master reset disables and resets
the OVRN status bit.

Parity Error (PE), Bit 6 - If the parity check function
is enabled, the internal transfer signal causes the PE status
bit to go "high" if a parity error condition exists. The
pariiy error status bit is updated by the next internal
transfer signal, as shown in Figure 7. A "high" state on
the ocr> input or a master reset disables and resets the
PE status bit.

Interrupt Request (fRQ), Bit 7 - A "high" level on
the IlUY status bit may be generated from three sources:
transmitter, receiver, and loss of carrier. (a) Transmitter-
if the transmitter interrupt enable (TIE) is active, the
state of the TDRE status bit is reflected by the IRQ" status
bit (refer to TDRE, Bit I); (b) Receiver - if the internal
receiver interrupt enable (RIE) is active, the state of the
RDRF status bit is reflected by the IRQ status bit (refer
to RDRF, Bit 0); (c) Data Carrier Loss - a loss of

. carrier (logic "high" level) on the rx::;ry input generates
an interrupt on the TlUJ status bit if RIE is active (refer
to OCIY, Bit 2).

The above status information is accumulated in a ran-
dom asynchronous manner. Because of the asynchronous
nature for updating status, it is possible that the status
word will change before, during, or after the reading of the
status register. This presents no problem during a status.

select input (RS), and read/write control input (R/W).
The R/W output line prOVided by the MPU (MC6800) is
used to control writing to and reading from p~ripheral
interface devices or memory. In addition, the R/W control
selects one of the read or write registers in the ACIA. A
combination- of the chip selects and register select inputs
can be used to minimize the amount of address decoding
logic required for each peripheral. For example, the four
Boolean combinations of address lines A I4 and A 15 select
blocks of memory locations as shown in Figure 9. Assigning
these blocks specific functions such as RAM, ROM, and
peripheral devices forms a memory map of the system. In
this example, the peripheral devices are assigned tq addres-
ses between 8000 and BFFF (hexadecimal notation).
Assigning address bit AI5 to CSO and address bit AI4 to
CS2 selects a peripheral device when A 15 = "1" and
A 14 = "0". Since the ACIA requires two addresses, the use
of address bit AO for the RS input assigns two consecutive
addresses for selection of the ACIA's four internal registers .
Connecting the CS 1 input to one of the other address lines
allows the selection of 13 different peripherals without any
additional decoding logic.

The peripheral side of the ACIA provides a means by
which a microcomputer can efficiently control a peripheral
device requiring an asynchronous serial data format. This
format is generally used in (but not confined to) low and
medium transmission rate systems - 1800 bps and below.

Peripheral 8000 - BFFF 1 0 X X X X X X X X ;< X X X X X
RAM 4000 - 7FFF 0 1 X X X X X X X X ;< X X X X X
RAM 0000 - 3FFF 0 0 X X X X X X X X ;< X X X X X

-ACIA#l
----- -- err - -Il 0 0 RS-8400 - 8401 CSO 0 0 0 CSl 0 0 0 0 0 0

ACIA#2 8020 - 8021 CSO CS2 0 0 0 0 0 0 0 0 0,1 0 0 0 0 RS

x = 1 or 0
CSO'; 1
CS2; 0
CS1 ; 1

RS = 1 or 0

---I
I

+12 V I

h~1 I .
Ir:

+12 V I
I
I
I
I

IL 4N33 I_____ -.J

A teletype is an example system which has a transmission
rate of 110 bps or 10 char/so An interface device is required
between a teletype and an ACIA to convert the TTL
compatible levels of the ACIA to the 20 mA current loop
of the teletype. A non-complemented data teletype inter-
face requires an optical coupler (4N33) with the addition
of logic inverters, as shown in Figure 10. Other teletype

~5V-
I
I
I
I
I
I
I
I
I +5 V

I
I
I

The ACIA provides, means to control a modem for the
transmission of data te, and from a remote terminal, such
as a teletype, over the telephone lines. The modem function
can be implemented with a low speed modem, MC6860,
as shown in Figure 12. The MC6860 modem uses a
frequency shift keying (FSK) technique for the trans-
mission of data up to a maximum data rate of 600 bps. A

options such as RS-232 can be easily interfaced to the
ACIA with RS-232 interface devices (MCI488, MCI489),
as shown in Figure II.

RS·232
Compatible

TTY

typical system consists of a local modem and a similar
modem at the remote terminal. The local modem con-
verts the digital data f'om the ACIA to analog form for
transmission over the telephone lines. Likewise, analog
data received from the remote modem is converted back
to digital form by the local modem for use by the micro-
computer system via the ACIA. Refer to application notes,
AN-731 ,AN-747 and th~ MC6860 data sheet for a detailed
description of the modem and 'its operation.

Since the MC6860 does not provide automatic dialing,
the telephone channel must be established by manual means
or through the use of external automatic dialing equip-
ment. The procedure fn ac€omplishing the handshaking

CSO.
CS1.
CS2 RS R/W iRQ CTS DCD

between the local modem and remote modem after the
telephone channel has been established is as follows.
Under program control, the local modem is enabled via
the Request-to-Send (!ITS) output of the AClA which is
connected to the Data Terminal Ready (DTR) input of the
modem. Since the remote modem has answered the phone
due to a ring detection, it has transmitted back a hand-
shaking carrier frequency to the local modem. Upon the
detection of the remote modem carrier frequency, the local
modem enables its Clear-to-Send (rTS) output. The CTS
output of the modem is tied directly to the CTS input
of the AClA and the state of this input is available as a
status bit. Therefore, under program control, the com-
pletion of the handshaking between the local and remote
modem can be verified by reading the status register.
After modem handshaking is completed, data can be trans-
mitted and received over the telephone lines under program
control of the microcomputer system. Since a low speed
modem such as the MC6860 provides only a <:;'fS'output,
the m and 0C1J inputs of the ACIA in this example
were tied together such that a communica tions link dis-
connect could be detectable in either the transmitting or
receiving subroutines. The software section of this note
provides additional information on the handling of the
CTS and OCU status bits.

Medium speed modem systems may independently
utilize both the rTS and [)CD inputs. In a four wire system,
the rTS input indicates the status of a transmit-only pair
of wires and the OCITinput indicates the status of a receive-

only pair of wires. Also, in a four wire system, the loss of
channel establishment on one pair of wires does not pre-
vent the unidirectional transmission of data on the other
pair of wires.

In either a low speed or a medium speed modem system,
the RiS' output of the AClA should not be taken "high"
until the last character is completely received by the
remote system. However, the ACIA does not. provide a
word complete output indicating that the last character
loaded has been completely transmitted out so that the
modem may be disabled. The word complete function can
be generated by loading a "dummy" character into the
ACIA and then reading the status register for a transmit
data register empty condition indicating that the "dummy"
character has been transferred to the shift register. This
provides an indication that half the stop bit of the last
data character has been completely transmitted. Taking
the R'rS "high" does provide a means for disabling the
local modem, but care should be taken to ensure that the
last character has been read by the remote system prior
to disabling the modems.

As the microcomputer system is expanded with more
peripheral devices requiring more processing time, it be-
comes increasingly difficult to service each peripheral in
the time available. One method to increase the efficiency
of the system is to use an interrupt driven system. In an
interrupt driven system, each interface adapter of the MPU
family has an interrupt output (fRQ) that is wire-ORed to
the other interface adapters to generate a common inter-
rupt to the MPU. An interrupt from any of the interface
adapters causes the MPU to jump to an interrupt address
after it has finished processing its present instruction. The
contents of the interrupt address contains the address of
the subroutine to service the interrupt. The MPU then
executes the interrupt routine, which samples the status
register of each interface adapter. The ACIA provides an
fRQ status bit thllt is located in the 07 position of the

status register (sign position for numbers) such that
only one MPU instruction, BMI (Branch if minus), is
required to determine if the transmitter or receiver portion
of that particular ACIA was generating the interrupt.
Once it is determined that an ACIA is generating the
interrupt, the TORE and RORF status bits can be checked
within their individual subroutines to determine the specific
reason for interrupt. The control register can be program-
med to inhibit an interrupt from either the transmitter
or receiver portions depending on the intended use of
the ACIA.

An MCI4411 CMOS Bit Rate Generator (BRG), which
has 16 standard communication clock rates available, pro-
vides a clock source for the ACIA. The receiver and trans-
mitter sections of the ACIA have separate clock inputs to
provide independent transmission rates, if desired.

SOFTWARE
Since the internal registers of the ACIA and other

MPU interface adapters look like memory locations to
the MPU, there is no need for special instructions in the
MPU instruction set when using interface adapters. The
MPU instructions most commonly used for writing infor-
mation into the ACIA and reading information out of
the ACIA are the store (STA) and load (LOA) instructions,
respectively. A store instruction causes the read/write
(R/W) output of the MPU to go "low" while a load
instruction causes the R/W output to go "high". Assigning
consecutive addresses with address bus bit AO tied to the
ACIA Register Select input (RS) along with the R/W input
allows access of one of the four ACIA internal registers in
accordance with Table II. For example, an STA instruction

ADDRESS· STA LDA
LOCATION INSTRUCTION INSTRUCTION

(Hexadecimal Notation) (R/W= 0) (R/W = 1)

8400 Control Register Status Register

RS = AO = 0

8401 Transmit Register Receive Register

RS = AO = 1

to address 8400 (hexadecimal notation) performs a write
to the ACIA control register whereas an LOA instruction
to the same address performs a read of the ACIA
status register.

Software Initialization Routine
The ACIA must be initialized prior to transmitting and

receiving data. Ouring a power-on transition, an internal
power-on chip reset (latch) holds the IRU output "high"
to prevent the ACIA from interrupting the MPU or trans-
mitting erroneous information(Ref. Table I). The power-on
reset function is released by master resetting the ACIA.
A master reset is accomplished by storing a word with
bits BO and BI equal to "one" into the Control Register.
After master resetting, the control register is programmed
to set the counter divide ratio, word length, parity, inter-

rupt control, etc., which completes the initialization of
the ACIA.

Transmit and Receive Software Routines
After completion of initialization, the ACIA can then

be used for transmit :ing and receiving data. Oue to the
length of data mes;ages, the transmission of data is
normally handled in subroutines to reduce the duplication
of instructions. Typical examples for transmit and receive
subroutines, flow di 19rams, and source statements are
shown in Figures 13 and 14, respectively.

Referring to the transmit subroutine, the contents of
the ACIA status register are loaded into the accumulator
of the MPU. Under program control, a character is stored
into the ACIA for transmission if the transmitter data
register is empty. Control is then returned from the sub-
routine back to the main program by an RTS instruction.
If the transJ;l1itter data register is not empty (TORE = 0)
indicating the transmit data register is full or that the m
input is "high", inhibiting the TORE status, the m
status information which was previously loaded into the
accumulator should he checked for its condition. This
step is not required when the rn input is permanently
held "low". In a sysHm using a modem, a "high" on the
m input indicates that the modem data carrier is not
present or was lost, requiring the re-establishment of the
communications channel. A "low" on the m status
register bit indicates t~e TOR is full and allows the status
register to be re-read in a loop manner until the TOR
becomes empty. When a TOR empty indication occurs, the
character stored in tte TOR and control is returned to
the main program.

Referring to the receive subroutine, there is a similarity
of its flow diagram to the transmit routine. The first step
in the receive routine is to load the contents of the status
register into the accumulator of the MPU. If the receive
data register is not full (RORF = 0), it indicates that the
register is empty or hat the receiver is inhibited by the
OCD input being "hi~h". Therefore, the OCT) status bit
which was previously loaded into the accumulator should
be checked under program control for its condition (this
step is not required when the OCD input is permanently
held "low"). In a medium speed modem system, a "high"
on the OCD input dnring character reception indicates
that the receive carrie' was lost and the communications
channel would have to be re-established. The IJCIj status
bit is reset back to a "low" state when: (I) the ITCD
input has returned "low"; (2) by a master reset; or (3) by
reading the Receive Data Register after haVing read the
status register. If the jjCD status bit is "low", the status
is re-read in a loop manner until the receive data register
is full. When a logic' I" is read from the RORF status
bit position (BO), indicating that a character was received,
the status regarding the framing, overrun, and parity errors
of the received character is available. A received character
status error could pIOvide for re-transmission of the
message, or implement error correction techniques. If
there are no errors in Ihe character received, the Receive
Oata Register is read and control is returned from the

NEXT LOA A STACON

ASR A

ASR A

Bes TX Data
ASR A

ASR A

BCC NEXT

BR ERROR 1

TX Data STA B TXRX

RTS

Shift CTS Bit to C-Bit Position

Check CTS

Carrier Loss-Branch to Error Routine

Store Character in ACIA

Return from Subroutine

su.broutine to the main program via an RTS instruction.
In an interrupt driven system, the ACIA can be pro-

grammed to generate an interrupt from the transmitter or
receiver sections independently. For example, an interrupt
from only the transmitter section can be achieved by
enabling the transmitter interrupt enable (CR5 = I,
CR6 = 0), and disabling the receiver interrupt enable
(CR 7 = 0). This results in an interrupt being generated
when the Transmit Data Register is empty (TORE = 1).
Therefore, the condition of the Transmit Data Register
Empty bit is known and there is no need to examine the
condition of this bit as shown in the transmit data sub-
routine in Figure 13.

As demonstrated in the program examples, only the
STA and LOA instructions are required to access one of the
four internal registers within the ACIA. However, there
are other instructions such as the CMP (compare) instruc-
tion that can be used with the ACIA. Since the registers in
the ACIA are either write-only or read-only registers, the
MPU instructions that perform an automatic rewrite should
not be used with the ACIA; this would result in the
selection of two registers from one instruction. The MPU
instructions that should not be used during ACIA operation
are: ASL, ASR, COM, DEC, INC, LSR, NEG, ORA, ROR,
and ROL.

NEXT 1 LOA A STACON

ASR A

BCS FRAM

ASR A

ASR A

BCC NEXT 1

BR ERROR 2

FRAM ASR A

ASR A

BCC OVRN

BR ERROR 3

OVRN ASR A

BCC PAR

BR ERROR 4

PAR ASR A

Bee R Data
BR ERROR 5

R DATA LOA B TXRX

RTS

Load Status
Shift RDAF Bit to C-Bit Position

Check RDAF Bit

Shift OeD Bit to C·Bit Position

Check OeD Bit

Carrier Loss - Branch to Error ROU.tine

Shift FE Bit to C-Bit Position

Check FE Bit

Framing Error - Branch to Error Routine

Shift OVRN Bit to C-Bit Position

Check OVRN Bit

Overrun Error-Branch to Error Routine

Shift PE Bit to C-Bit Position

Check PE Bit

Parity Error-Branch to Error Routine

Load B Register with Data

Return From Subroutine

CONCLUSION
The ACIA provides a cost effective approach for adding

asynchronous data communications links to computer,'
minicomputer, and microcomputer systems. The memory-
like registers of the AClA enable a processor to transmit
and receive data via the ACIA without the need of special
I/O instructions. The ACIA also provides modem I/O con·
trol for the transmission of data to remote sites over the
telephone network. Included has been a detailed discussion
on the ACIA status register along with software program ex-
amples, such that the ACIA user can effectively and effi-
ciently apply this part in his data communications system.

AN-757

ANALOG-TO-DIGITAL CONVE:RSION
TECHNIQUES WITH THE M6800

MICROPROCESSOR SYSTEM

Prepared by:
Don Aldridge
Applications Engineering

This application note describ~s several
analog·to·digital conversion systel1s imple·
mented with the M6800 micro Jrocessor
and external linear and digital IC's.
Systems consisting of an 8· and 10·bit
successive approximation approach, as
well as dual ramp techniques of 3Y.· and
4Y.·digit BCD and 12·bit binary, are
shown with flow diagrams, source pro·
grams and hardware schematics. System
tradeoffs of the various sche l1eS and
programs for binary·to·BCD and BCD·to·
7 segment code are discussed.

Analog- To-Digital
Conversion Techniques
with the M6800
Microprocessor System
INTRODUCTION

The MPU (microprocessing unit) is rapidly replacing
both digital and analog circuitry in the industrial control
environment. It provides a convenient and efficient
method of handling data; controlling valves, motors and
relays; and in general, supervising a complete processing
machine. However, much of the information required by
the MPU for the various computations necessary in the
processing system may be available as analog input signals
instead of digitally formatted data. These analog signals
may be from a pressure transducer, thermistor or other
type of sensor. Therefore, for analog data an A/D (analog-
to-digital) converter must be added to the MPU system.

Although there are various methods of A/D conversion,
each system can usually be divided into two sections - an
analog subsystem containing the various analog functions.
for the AID and a digital subsystem containing the digital
functions. To add an A/D to the MPU, both of the sec-
tions may be added externally to the microprocessor in
the form of a PC card, hybrid module or monolithic chip.
However, only the analog subsystem of the AID need be
added to the microprocessor, since by adding a few
instructions to the software, the MPU can perform the
function of the digital section of the A/D converter in
addition to its other tasks. Therefore, a system design
that already contains an MPU and requires analog infor-
mation needs only one or two additional inexpensive
analog components to provide the A/D. The micropro-
cessor software can control the analog section of the A/D,
determine the digital value of the analog input from the
analog section, and perform various calculations with the
resulting data. In addition, the MPU can control several
analog A/D sections in a timeshare mode, thus multi-
plexing the analog information at a digital level.

Using the MPU to perform the tasks of the digital sec-
tion provides a lower cost approach to the A/D function
than adding a complete A/D external to the MPU. The
information presented in this note describes this tech-
nique as applied to both successive approximation (SA)
A/D and dual ramp A/D. With the addition of a DAC
(digital-to-analog converter), a couple of operational
amplifiers, and the appropriate MPU software, an 8- or
IO-bit successive approximation AID is available. Ex-
pansion to greater accuracies is possible by modifying the

software and adding the appropriate D/A converter. The
technique of successive approximation A/D proVides
medium speed with accuracies compatible with many
systems. The second technique adds an MCI405 dual
ramp analog subsystem to the MPU system and, if desired,
a digital display to produce a 12-15 bit binary or a 3~- or
4~-digit BCD A/D conversion with 7-segment display
readout. This AID technique has a relatively slow conver-
sion rate but produces a converter of very high accuracy.
In addition to the longer conversion time, the MPU must
be totally devoted to the A/D function during the conver-
sion period. However, if maximum speed is not required
this technique of A/D allows an inexpensive and practical
method of handling analog information.

Figure I shows the relative merits of each AID conver-
sion technique. Listed in this table are conversion time,
accuracy and whether interrupts to the MPU are allowed
during the conversion cycle.

This note describes each method listed in Figure I and
provides the MPU software and external system hard-
ware schematics along with an explanation of the basic
A/D technique and system peculiarities. In addition, the
MPU interface connections for the external A/D hardware
schemes are shown. These schemes are a complete 8-bit
successive approximation and a 3~-digit dual ramp A/D
system, both of which externally perform the conver-
sion and transfer the digital data into the MPU system
through a PIA.

For additional information on the MC6800 MPU sys-
tem or A/D systems, the appropriate data sheets or
other available literature should be consulted.

MPU
The Motorola microprocessor system devices used are

the MC6800 MPU, MCM6810 RAM,MCM6830 ROM and
MC6820 PIA (peripheral interface adapter). The following
is a brief description of the basic MPU system as it per-
tains to the A/D systems presented later in this appli-
cation note.

The Motorola MPU system uses a 16-bit address bus
and an 8-bit data bus. The 16-bit address bus provides
65,536 possible memory locations which may be either
storage devices (RAM, ROM, etc.) or interface devices
(pIA, etc.). The basic MPU contains two 8-bit accumu-
lators, one 16-bit index register, a 16-bit program counter,
a 16-bit stack pointer, and an 8-bit condition code regis-
ter. The condition code register indicates carry, half
carry, interrupt, zero, minus, and 2's complement over-
flow. Figure 2 shows a functional block of the
MC6800MPU.

The MPU uses 72 instructions with six addressing
modes which provide 197 different operations in the
MPU. A summary of each instruction and function with
the appropriate addressing mode is shown in Appendix A
of this note.

Successive Approximation Dual Ramp

B-Bit 10-Bi' B-Bit 12-Bi' 3~-Digit 4%-Digi' 3Y.r·Digit
Characteristic Software Software Hardware Software Software Software Hardware

MC1405
8-8i,DAC 10-8i' DAC 8-8it DAC MC14435

External Hardware OpAmp OpAmp SAR' MC1405 MC1405 MC1405 MC14558
Comparator Comparator OpAmp (for 7·segment

Comparator display)

183,,,
Conversion Rate 700~s 1.25 ms 60~s 165ms BOrns BOOms (min) for

Constant Constant for MPU. (max) (maxI (maxI MPU. plus
plus AID Variable Variable Variable AID

Conversion Conversion
Time Time

Interrupt Capability Allowed Allowed Allowed Not Not Not Allowed
Allowed Allowed Allowed

Number of Memory Locations Required 106 145 42 84 296 328 58
(Including PIA Configurationl

Serial Output Available Ves Ves Ves No No No No

The RAMs used in the system are static and contain
128 8-bit words for scratch pad memory while the ROM is
mask programmable and contains 1024 8-bit words. The
ROM and RAM, along with the remainder of the MPU
system components, operate from a single +5 volt power
supply; the address bus, data bus and PIAs are TTL
compatible.

The MPU system requires a 2¢ non-overlapping clock
with a lower frequency limit of 100 kHz and an upper
limit of I MHz.

Vss (Ground) 7 0 Reset

Halt I ACCA I Three-State Control

Phue 1 Clock 7 0 Not Used

Interrupt Request I ACcsl Phase 2 Clock

Valid Memory Address
'5 0

Data Sus ,Enable

Non-Maskable Interrupt I IX I Not Used

Bus Available ReadlWrite
'5 0

VCC (+5 Volt Power) I I DO
PC

AO 0'

A'
15 0

02

A2 I 5P I 03 Data

A3 7 0 04 Lines

A4 0 05

Address A5 DO
Lines AO 07

A7 A'5

AS A,4 Address

A9 A'3 Lines

A'O At2

Al1 VSS (Ground)

The PIA is the interface device used between the ad-
dress and data buses and the analog sections of the A/D.
Each PIA contains two essentially identical 8-bit inter-
face ports_ These ports (A side, B side) each contain three
internal registers tha t include the data register which is
the interface from t,e data bus to the A/D, the data
direction register w:,ich programs each of the eigllt
lines of the data regi:;ter as either an input or an output,
and the control regisler which, in addition to other func-
tions, switches the data bus between the data register and
the data direction register. Each port to the PIA contains
two addition pins, CAI and CA2, for interrupt capa-
bility and extra I/O I:nes. The functions of these lines are
programmable with the remaining bits in the control
register. Figure 3 ~hows a functional block of the
MC6820 PIA.

Each PIA requires four address locations in memory.
Two addresses access either of the two (A or B sides)
data/data direction 'egisters while the remaining two
addresses access either of the two control registers.
These addresses are d'~coded by the chip select and regis-
ter select lines of the PIA which are connected to the
MPU address bus. Selt:ction between the data register and
data direction register is made by programming a "I" or
"0" in the third least significant bit of each con trol regis-
ter , A logic "0" acce,ses the data direction register while
a logic" I" accesses th~ data register.

By programming "O"s in the data direction register
each corresponding line performs as an input, while
"I "s in the data din:ction register make corresponding
lines act as outputs. The eigllt lines may be intermixed
between inputs and ,)utputs by programming different
combinations of "I"~ and "O"s into the data direction
register. At the beginning of the program the I/O configu-
ration is programmed into the data direction register, after
which the control rel~ster is programmed to select the
data register for I/O o~eration.

80eta
Line,from
Peripheral

8 Data
Linas From
Peripheral

Peripheral
Data
Aegister A

Peripheral
Data
Register B

Vss (Ground)

VCC
(+5 Volt Power)

8 Data
Lines
to MPU

Chip
Select
From MPU
Address
Lines

The printouts shown for each A/D program are the
source instructions for the cross assembler from the
Motorola timeshare. Since the MPU contains a 16-bit
address bus and an 8-bit data bus, the hexadecimal num-
ber system provides a convenient representation of these
numbers. Although the assembler output is in hexadeci-
mal, the source input may be either binary, octal, decimal
or hexadecimal. A dollar sign ($) preceding a number in
the source instructions indicates hexadecimal, a percent
sign (%) indicates binary and an at sign (@) indicates octal.
No prefix indicates the decimal number system.

Only the beginning addresses of the program and labels
are shown in the source programs. These beginning ad-
dresses may be changed prior to assembling the total
system program or the programs may be relocated after
assembly with little or no modification.

SUCCESSIVE APPROXIMATION TECHNIQUES

General
One of the more popular methods of A/D conversion is

that of successive approximation. This technique uses a
DAC (digital-to-analog converter) in a feedback loop to
generate a known analog signal to which the unknown
analog input is compared. In addition to medium speed
conversion rates, it has the advantages of proViding not
only a parallel digital output after the conversion is com-
pleted but also the serial output during the conversion.

Figure 4 shows the block diagram and waveform of the
SA-A/D. The DAC inputs are controlled by the successive
approximation register (SAR) which is, as presented here,
the microprocessor. The DAC output is compared to the
analog input (Vin) by the analog comparator and its
output controls the SAR. At the start of a conversion

the MSB of the DAC is turned on by the SAR, producing
an output from the DAC equal to half of the full scale
value. This output is compared to the analog input and if
the DAC output is greater than the input unknown, the
SAR turns the MSB off. However, if the DAC output is
less than the input unknown, the MSB remains on. Fol-
lowing the trial of the MSB the next most significant bit
is turned on and again the comparison is made between
the DAC output and the input unknown. The same cri-
teriaexists as before and this bit is either left on or
turned off. This procedure of testing each bit continues
for the total number of DAC inputs (bits) in the system.

After the comparison of each bit the digital output is
available immediately thus providing both the - serial
output as well as the parallel output at the end of the
conversion. The serial output provides the MSB first,
followed by the remaining bits in order. The total con-
version time for the SA-A/D is the time required to turn
on a bit, compare the DAC output with the input un-
known and, if required, turn the bit off, multiplied by
the total number of bits in the A/D system. The conver-
sion time is hence constant and unaffected by the analog
input value.

One SA-AID shown in this note uses an 8-bit DAC
(MCI408) to produce an 8-bit A/D; a second version uses
a lO-bit DAC (MC3410)* to produce a IO-bit A/D.
Both of these are used in conjunction with the· MPU as
an SAR. In addition, the MCI408 is shown with the
MCI4549 CMOS SAR as a convert-on-command system
under control of the MPU. All of these A/Ds produce a
binary output. However, by adding the appropriate soft-
ware a BCD output or 7-segment-display outputs are
available. Also by using a BCD-weighted DAC, the BCD
output can be produced directly.

'2

~ '0
0
>.
";.. c
II: 0

CD

"i '" ;;;:l;
0 ~ .
u a 0

~ ~ .
~ & ;;, 0 g
'" u u '"

The flow chart for the 8-bit MPU A/D system is shown
in Figure 5; Figures 6 and 7 show the software and the
hardware external to the microprocessor. The DAC
used is the MC1408L-8 which has active high inputs and a
current sink output. An uncompensated MLM301A
operational amplifier is used as a comparator while an
externally compensated MLM301A or internally com-
pensated MC I74 I operational amplifier is used as a buffer
amplifier for the input voltage. The output voltage com·
pliance of the DAC is ±0.5 volt; if the current required by
the D/A does not match that produced from the output
of the buffer amplifier through RI and R2, then the DAC
output will saturate at 0.5 volt above or below ground,
thus toggling the comparator. The system is calibrated by
adjusting RI for I volt full scale, and zero calibration is
set by adjusting R3.

FIGURE 5 - a-Bit Successive Approximation
AID Flow Diagram

The first MPU instruction for the 8-bit AID is in line
45 of Figure 6. After assembly, this instruction will be
placed in memory location $OAOO as defined in the
assembler directive of line 42. The assembled code for
this program is relocatable in memory as long as the PIA
addresse's and storag'l addresses' are unchanged. The
program as shown requires 106 memory bytes. Source
program lines 45 through 53 configure the PIAs for the
proper input/output configuration. PIA1BD is used for
various control func-:ions between the MPU system
and the external hardware. The exact configuration of this
PIA is shown in lines ;~8 through 33 of Figure 6. PIAIAD
provides the 8-bit out:,ut needed for the DAC. Lines 51
through 53 set bit 3 0:' the PIA control register to access
the data register for the actual A/D program.

Lines 55 and 56 set the conversion fInished flag, which
consists of a LED on the hardware schematic, after
which the program enters a loop in lines 63·65 which
causes the MPU to wait until the cycle input line goes
high. (This feature could be eliminated if the program was
a subroutine of a larger control program.) In this case,
when a conversion was to be made the control program
would go to the AID subroutine and return with the
digital results. Lines 68 and 69 clear the PIA·A which is
connected to the DAC inputs and an internal memory
location. This memory location is used as a pointer to
keep track of which bit of the DAC is currently being
tested. Next the conversion fInished line is reset indicating
a conversion is in process and the carry bit of the condi·
tion code register is set. The memory location POINTR is
then rotated right in line 79, moving the carry bit of the
condition code register into the MSB of that memory
location. Line 80 is a conditional branch that determines
if all 8 bits of the DAC have been tested. After nine
rotations of POINTR the carry bit will again be set
indicating all 8 bits have been compared. .

Program lines 81 through 83 load the previous DAC
value into an accumulator and the next DAC bit is turned
on for the comparator test. An 8 }lS delay produced by

the NOP instruction of lines 87 through 90 allows the
DAC and comparator to settle to a fmal value before the
comparator test of lines 91 and 92. At this point if the
comparator was high the Yes loop is executed, which
generates a simulated clock pulse and a serial output
"I". If the comparator was low, lines 95 through 101 are
executed, resetting the bit under test and generating a
simulated clock pulse and a serial output of "0". The
three NOP instructions of the Yes loop equalize the
execution time between the high and low comparator
loops. After completion of either the high or low com·
parator loop, the A accumulator which contains the new
digital number is stored in PIAIAD and in a RAM memo
ory location labeled ANS. Then the next bit of the DAC
is tested in the same manner and this procedure is contino
ued until all eight DAC inputs have been tested. When this
has occurred the program returns to line 55 where the
conversion fmished flag is "set" and the MPU awaits the
next cycle input from PIAIBD.

The total conversion time is 700 }lS for the 8·bit con·
verter assuming a I MHz MPU clock frequency. The simu·
lated clock pulse is 7 }lS wide and can be used to indicate
when to sample the serial output.

1.000 NAM DWA12
2.000 OPT MEM
:3.000 +
4.000 +++++++++++++++++++++++++++.++++++++~+++++++ ••+++ •• +•• +.+ ••••
5.000 + •
6.000 + 8 BIT SUCCESSIVE APPROXIMATION A/D •
7.000 + •8.000 +++••++••••+.+•••• +++.++ ••••••• +••••••••••••••••••••••• +•••••
9.000 +

10.000 +
11.000 OPG 0
12.000 ANS R~1E:1
13.000 POINTR RMB 1
14.000 .•
15.000 •
16.000 •
17.000 ORG $4004
18.000 PIA1AD RMB 1
19.000 PIA1AC RMB 1
20.000 PIA1BD RMB 1
21.000 PIA1BC RMB 1
22.000
23.000
24.000
25.000
26.000
27.000
28.000
29.000
30.000
:31.000
32.000
3:3.000
34.000
:35.000

FINAL ANSWER MEMORY LOCATION
TEMP MEMORY LOCATION

A S:IDE,
A SIDE,
E:SIDE,
B :S:IDE,

DATA REGISTER
CONTROL REGISTER
DATA REG I:S:TE1"
CONTROL REGISTER

+

•
+
•
+

•_••••• ++++++.++ •••PIA1ED PIN CONNECTIONS ••••••••••••••••••
.+++••++••+.+++++++ ••••••• +••++•••••••••• +.++++.+.+ ••••• +.
+ PE7 + PB6 + PE5. PB4. PB3. PB2. PBl • PEO +
.+.+++++.+ ••+.++ ••••••••• +.+.++.++++.+++ •••• +++•••+•••+•••
• COMP + NC + SC • CF • SO • NC • CYCLE + ~C +
+.+••+••+••+.+••++.++.+.++ ••+++•••••••••••••• +•••+••••••••
+ +
+

PIAlAD USED FOR DIGITRL OUTPUT TO D~C
PIAlED USED FOR A/D CONTROL

36.000
:37.000
:3;:3•000
39.000
40.000
41.000
42.000
4:3.000
44.000
45.000
46.000
47.000
4:3.000
49.000
50.000
51.000
52.000
5:3.000
54.000 •
55.000 RSTART LDA A 9$10
56.000 STA A PIA1BD
57.000 •
5::::.000•
5'0).000•
60.000 •
61.001) •
62.000 •
63.000 CYCLE LDA A PIA1BD
64.000 AND A 9$02
65.000 BEQ CYCLE
66.000 •
67.000 •
6:3.000 CLP PIA1AD
69.000 CLR POINTR
70.000 •
71.000 •
72.000 •
73.000 CLP PIA1BD
74.000 ::EC
75.000 •
76.000 •
77.000 •
7:::.000•
79.000 CONVRT ROR POINTR
80.000 BC: RSTART
:::1.000 LDA A PIA1AD
82.000 ADD A POINT~
83.000 STA A PIA1AD
:34.000 •
:35.000 +
86.000 •
::::7.000
::::::::.000
::::9.000
0)0.000
91.000
'0)2.000
93.000 •
94.000 •
95.000 LDA ~ PIH1AD
96.000 SUB A POINTR

••••••
OF:G

••
CLF.:
CLR
LDA A
S:TA A
LIlA A
STA A
LIJA A
:';TA A
STA A

COMP-COMPARATDR ,SC-S IMULATED CLOCK, SO-:SEI~IAL OUTPUT
CF-CONVERSION FINISHED, NC-NO CONNECTION

PIA1AC
PIA1BC

~:$7C
PItHBD
~:i;OFF
PIA1AD
~:$04
PIA1AC
PIAnC

tmp
t·mp
NOP
NOP
LDA
Bt'1 I

A F'IA1BD
'y'E"::S:

l.DA B ~$20
STR B PIA1BDeLl<: B
STA :B PIA1BD.
BRA END

•

B ~~$28
II PIAtBD
B ~:$08
B PIAtBD

Vr.t(-) Range

A 1 A2 AJ A4 AS A6 A 7 AS -

A' l500 n (Full Scate Calibration)

A2

-
A3

+5 V D----J\IV\r--O -1 5 V

'0 k
Offset Adjustment

+5 V "1
.~ ~

u c
0 , u:u
"

~ ~ c..t , 0~ 0 ~ i~ ••- .~ E
0in '" u U

PB5 PB3 pa7

166.000 •
167.000
168.000
169.000
17.0.000
171. 000
172.000
17:3.000
174.000
175.000
176.000
177.000
178;000
17'3.000
180.000
181.000
182.000
18:~:.000
184.000
185.000
186.000
1::::7.000
188.000
1::;:9.000
1'30.000
191.000
192.000
1'33.000
194.000
1'35.000
196.000
197.000
19::;'.000
19'3.000
200.000
201.000
202.000
203.000
204.000
205.000
206.000
207.000
20::::.000
209.000
210.000
211.000
212.000
213.000
214.000
215.000
216.000
217.000
218.000
21':".000
220.000
221.000
222.000
22:~:.000
224.000
225.000

LDA A HNDTHD
TAB
ANII A ;~$OF
:;UB A ;~$05
Bl'lI CT
ADD B ;~$03

CT TEA
AND A ;~$OF0
SUB A ;~$50
BMI £IT
ADD B ;~$30

DT STA B Ht~DTHD
•

LDA A TENTSII
TAB
SUB A ;;'1; 05
BMI ET
AIID B ;;$03

ET STA B TEI'iTSD
••

A'SL
F.:OL
F.:OL
F:OL
"'OL
DE:":
BNE BEGIN

•
B"'A :E:CII

OVPNG1 BF.:A OVPNGE
BF.:A BCD

•
POLF.:Y1 BF.:A POLARY
••••
BCD LDA A UNTTEN

A~m A ;;$OF
'5TA A INDE:":+1
Lm; nmE:":
LDA A 0.:,·,:
'STA A PIA2AD
LDA A U~nTEN
L:S~PA
U;F: A
LSP A
L:S~F.:A
::;TA A nmE:":+1
LD"·:: I t-mD':
LDA A 0.>:
.:;TA A PIA2BD
LDA rl Hr~DTHD
9ND A ;;$OF
:S~TAA I NDE:":+1
Lm; I t·mE:'"
LIlA A 0.:>(
'S:TA A PIA::All

LSBTEI'1
t'j::;E:TEM
UtHTEN
HNIITHD
TEtHSD

BPA~1CH PATCH••••••••••••••••••••• BCD TO 7 SEGMENT •
• . CDNVEF.:TER •••••••••••••••••••••

226.000
227.000
228.000
229.000
230.000
231.000
232.000
23:3.000
234.000
235.000
236.000
237.000
238.000
23".000
240.000
241.000
242.000
243.000
244.000
245.000
246.000
247.000
248.000
24".000
250.000
251.000
252.000
253.000
254.000
255.000
256.000
257.000
258.000
25".000
260.000
261.000
262.000
263.000
264.000
265.000
266.000
267.000
268.000

LDA A HNDTHD
LSR A
LSR A
LSR A
LSR A
STA A ItWEX+1
LDX INDEX
LDA A 0,:-:
STA .A PI A:3E:D
LDA A TENTSII
SUB A ~~$01
BLT END
LDA A :~$80
ADD A PI A3BII
STA A PI A3BII

END --IMP CYCLE1

•
OVRNGE LDA A =$OD

ST8 A PIA1BD
LDA A ~~$F3
S:TA A PIA2AD
STA A PIA2BD
STA A PIA3AII
:S"TA A PIA3BD
j~1P CYCLE

••
POLARY (DX =50100
BR DE~;

BtiE BR
LDA A PIA1BC
COl'l A
AND A ~~$08
ADII A ~~$:::4
STA A PIAlBC
.Jl'lP PES TAP

•••DRG $OCOO
FeE 57E,$30,$6D,$79,$33,$SB,$5F,$70,$7F.S73
Et'lD
t1mi

External Dual Ramp System
The final dual ramp AID system to be discussed uses

the MCI405 with an MCI4435 CMOS dual ramp digital
subsystem to provide a complete AID converter external
to the MPU system. This system provides an inexpensive
AID that is easily interfaced to an MPU system through
a PIA and requires a minimum number of additional
software instructions for control. Also, the micropro-
cessor is available for performing other tasks during the
AID conversion.

When the MPU requires analog information, the data
is brought into the MPU system through a PIA and placed

in memory for further use. The flow of this information
is under control of the' MPU system via an interrupt
program. Figures 20 and 21 show the external devices
with the MPU and the software instructions required to
start the conversion and transfer the data from the AID.
Like the external successive approximation method de-
scribed previously, this dual ramp technique reduces the
number of MPU instructions required and increases the
throughput of the overall MPU system. However, the
increase in exterrnal hardware may offset these advan-
tages. Also, additional external hardware is required for
autopolarity and a 7-segment display_

113.000
114.000
115.000
116.000
117.000
118.000
119.000
120.000
121.000
122.000
12:3.000
124.000
125.000
126.000
127.000
128.000
129.000
1-30.000
131.000
132.000
1:33.000
134.000
1:35.000
136.000
137.000
138.000

PONTR2
PIA2BD
ANS2
~;$20
PIA1BD

SUB
STA
STA
LDA
STA
CLR
STA
BRA

•••..•..ES LDA A ~;$05
IIELA'T'DEe A

E:NE DELAy'
LDA B ~~$28
:S:TAB PIA1BD
LDA B :~$08
S:TA B PIA1BII
j-mp
NOP

•

A
A
A
B
B
B
B PIA1ED
END

END E:I':A CONVRT

•••
t'1mi

.HIGH COMPARATOR LOOP.
TIME EQUALIZATION

'0

MC3410

Gnd

- A3
+5V~-15V

10 k
Offset Adjustment

'5 V

Y ~
0
u ,
"

Q-i . ,
0

al al
. - ~ .~~~ ~ u .;; Vl

PBl PA7.. • PAO I pal PBS PB3 FB7
PBO I_________ -1 _

The thira successive approximation program, shown in
Figures 10 and II, uses an MCI408 DAC with the
MCI4549 CMOS SAR for a convert-on-command AID
system. This system is controlled by the MPU through the
CAI and CA2 PIA pins to start a conversion and store the
results of this conversion in memory when the conversion
is finished. The 8-bit data word from the A/D is brought
in to the MPU system through PIAIAD. The advantages
of this A/D system are that a minimum number of soft-
ware instructions are required, a higher speed conversion
is possible, and the MPU may be performing other tasks
during the conversion. The disadvantage is a higher parts
count and increased cost.

The program for this A/D, shown in Figure II, is
written as a subroutine of a larger program. This larger
program is simulated with the instructions of lines 28

through 31. The subroutine starts in line 34, unmasking
the interrupt input on CAI and setting CA2 high. (For
additional information on use of the CAI and CA2lines,
see the MC6820 data sheet.) CA2 initiates the conversion.
Line 35 is a dummy read statement necessary to clear the
data register of the interrupt bit associated with the CA I
input line. Then a wait for interrupt instruction stores the
stack in anticipation of the A/D conversion being com-
pleted. When the conversion is finished the CA I line is
toggled by the EOC output of the MCI4549 and the
program goes to line 43 where CA I is masked and CA2 is
set low, thus stopping any further conversion sequences
by the A/D. The digital results are loaded into the A accu-
mulator through PIA-A and stored in memory location
TEMP. Then the MPU returns from the interrupt and
finally returns from the subroutine.

The entire sequence requires 60 /.lS plus the conversion
time of the A/D.

CIl ;'":;;
PAl • .. PAO 00 01 02 03 04 05 Q6 Q7

CA2 SC 0

MPU/PIA MC14549
System

EOC Sout
Serial

CA'
Output

C

10.000 TEMP RMB 1
11.000 •
12.000 •
13.000 ORG $4004
14.000 PIAIAD RMB 1
15.000 PIAIAC RMB 1
16.000 •
17.000 •
18.000 •
19.000 •
20.000 ORG
21.000 CLR
22.000 CLR
23.000 LDA
24.000 STA
25.000 LD:;>
26.000 •
27.000 •
28.000
29.000
30.000
::31.000
32.000
33.000
34.000
35.000
36.000
37.000
38.000
39.000 •
40.000 •
41.000
42.000
43.000
44.000
45.000
46.000
47.000
4:3.000
49.000
50.000
51.000 rlOtl

$0:300
PIAIAC
PIA1AD
A ~~$3C
A PIA1AC
~~$0020

NOP
.JSR CONVRT

END NOP
BRA END

••CON·.•.•RT
LDA B
STA t=t
I..JAI
RTS

DATA REGISTER
CONTRDL REGISTER

LDA A ~~$3F
PIA1AD
PIAIAC

CONVERSION SUBROUTINE
CAi UNMASKEU,PDS EDGE--CA2 HIGH

••INTRPT
HAR
LIlA A
STF1 A
RTI

•••

LDA A ~~$36
PIAIAC
PIA1AII
TEMP

INTERRUPT PROGRAM
CAi MASKED-CA2 LOW

General
Another commonly used method for A/D conversion is

the dual ramp or dual slope technique. This approach has
a longer conversion time than that of the successive ap-
proximation method. The conversion time period is also
variable and input voltage dependent. However, this
method yields an AID converter of high accuracy and
low cost.

As the name implies the dual ramp method consists of
two ramp periods for each conversion cycle. Figure 12
shows the basic waveforms for the dual ramp A/D. The

ratio in time of the ramp lengths provides a value repre-
senting the difference between a reference and an un-
known voltage. During time period n. the input un-
known is integrated for a fixed time period (fixed number
of clock cycles). The integrator voltage increases from the
reference level to a vo.ltage which is proportional to the
input voltage. At the end of this time period a reference
voltage is applied to the input of the integrator causing
the integrator output voltage to decrease until the refer-
ence level is again reached. The number of clock cycles
that are required to bring the integrator output voltage
back to the reference level is proportional to the input
unknown voltage.

The dual ramp converters discussed here use the
MC1405 analog subsystem in conjunction with the
M6800 MPU system. The MC1405 provides the integra-
tor, comparator and reference voltage required for the
analog functions of the dual ramp A/D. The analog device
also adds an offset current to the integrator input during
the ramp up time period to stabilize small voltage read-
ings. The digital section of the A/D must subtract an equiv-
alent number of counts to produce a zero reading display
output for a zero input. The interface between the analog
and digital subsystems consists of two control lines.
These are the comparator output from the analog part,
which indicates whether the ramp is above or below the
reference level, and a ramp control output from the
digital part to switch the integrator input between the
input unknown voltage and the reference voltage. The
control of these lines, offset subtraction, and calcu-
lations with the resulting data must be handled by the
digital subsystem, which in this case is the MPU.

'For additional information on the dual ramp technique
for A/D, consult the data sheet for the MC1405.

Comparator -.I

12-Bit Dual Ramp Program

This version of the dual ramp A/D generates a 12-bit
binary output from a 1 volt full scale analog input. Fig-
ures 13, 14 and 15 show the flow chart, MPU software
and external hardware. The interface of the PI As used for
this A/D is shown both on the schematic and in lines 16
through 22 of the source program. Lines 25 and 26 indi-
cate the two memory locations where the final 12-bit
binary result is stored. These locations are $0000 and
$0001. The four most significant bits are in location
$0000 while the remaining eight bits are in $000 I.

Referring to the software of Figure 14, the first in-
structions (lines 37 through 42) initialize the PIA for its
input/output configuration. Source program lines 46
through 49 set the ramp control line of the MC 1405
and check the comparator output from the MC1405 to
insure that the integrator output is below the reference
level at the start of a conversion. Next the "conversion
finished" flag is set indicating a conversion ready status.
Then the MPU enters a loop (lines 55 through 57) waiting
for a cycle input (PB 1) from the PIA. When this condi-
tion occurs the conversion finished flag is reset while the

ramp control line (PB2) goes low, thus starting a con·
version cycle. In addition, the index register has been
loaded with $2000 which will be decremented to provide
the ramp up timing period. When the ramp crosses the
threshold level the compa~ator (PB7) change from low to
high causes the MPU to enter the timing cycle of lines
67 through 69. The index register is continuously decre-
mented until reaching zero, at which point the ramp con-
trolline (PB2) to the MC1405 is set high (line 74) and the
index register is incremented (line 75). This loop contin-
ues until the integrator output again reaches the threshold
level. Line 76 of the ramp down cycle is a dummy state-
ment included to equalize the timing between the ramp
up and ramp down time periods. The proper timing ratio
(2: 1 in this example) must be maintained for correct
A/D operation.

After the termination of the ramp down time period
the content of the index register is stored in memory
locations $0000 and $000 I (line 82). Next the offset
counts are subtracted (51210) from this result by sub-
tracting $01 from memory location $0000. The result is

then stored back into the same memory location. Lines 86
and 87 check the contents of memory location TEST for
a number greater than 409510. If this condition occurs,
the overrange, conversion fInished, and ramp control
bits are set high. Otherwise the MPU branches back to line
50 where only the conversion fInished and ramp control
bits are set high. The program then checks the status of
the cycle input waiting for the next conversion.

When assembled, the fIrst instruction will be located
at $OAOO with 8410 memory locations required. The
full scale conversion time is 165 ms assuming a 1 MHz
clock in the MPU system.

As with all MC 1405 designs, the integration capacitor
must be large enough to insure that the integrator does
not saturate during the ramp up time period. The value of
this capacitor depends upon the power supply voltage
applied to the MC1405 and the ramp up time period.
The MC1405 data sheet contains the equations for calcu-
lation of this capacitor. The MC 1405 is capable of oper-
ating on a single +5 volt power supply; however, a +15
volt supply voltage is recommended to decrease the inte-
grator capacitor size. When using 15 volts the comparator
output must be clamped at 5 volts to prevent damaging
the PIA inputs.

1.000 NAM DWAI0
2.000 OI:'TMEM
3.000 •
4.000 •
5.000 •
6.000 •
7.000 •
8.000 ••
9.000 • •

10.000 • 12 BIT BINARY DUAL RAMP A/D USINS THE MC1405 •
11.000 • WITH THE MC6800 SERIES MPU SYSTEM •
12.000 • •
13.000 ••
14.000 •
15.000 •
16.000 •
17.000 •
18.000 •
19.('00•
20.000 •
21.000 •
22.000 •
23.000 •
24.000 •
25.000 01':':; $0
26.000 TEST RMB 2
27.000 •
28.000 aPG $4004
29.000 PIA1AD RMB 1
30.000 PIAIAC RMB 1
31.000 PIAIBD RME 1
32.000 PIAIBC RME 1
3:3.000 •
34.000 ORG $O~OO
35.000 •
36.000 •
.37.000 CLR
3;:'.000 CLF.'
:39.000 LDA
40.000 STA
41.000 _DA
42.000 .:;T8

PIAIAC
PIAlBC
A ~~'t7C
A PIAlBD
A ~~'£04
A PIA1EC

RAMP CONTROL (OUTPUT)
C..•.·CLE (It'iPUT)
OVERRANGE (OUTPUT)
CONVERSION FINISHED
COMPARATOR (INPUT)

PB2
PEl
PE3

(OUTPUT)PE4
PE:7

B SIDE~DATA REGISTER
E SIDE~CONTROL REGISTER

SET PIA TO HAVE 3 INPUTS RND 5 OUTPUTS
SET BIT 3 OF PIA CDNTQ.OL REGISTER

•••
LIlA A ~~$04
STA A PIAIBD RAMP CONTROL HIGH

START LDA A PIAIBD COMPARATOR TEST - ItEtJRESRAMP IS LOll!
BMI START TO START CONVERSION

RSTAR'I"LDFtA ~~$14
STA A PIAIBD CONVERSION READY • RAMP CONTROL HIGH

••• ••CYCLE TEST••
CYCLE LDA A PIA1bD

AND A ~~$02
BEQ CYCLE
LDX 0$2000 INITIALIZATION FOR RAMP UP TIMING

•CLR PIAIED P.ESET OVERRANGE AND CONVERSION FINISHED
• AND SET RC LOW
COMP LDA A PIAIED

BPL COMP'
•••RAMPUP LDA B 0$04

DEX
BNE RAMPUP

••••RAMPDN STA B PIAIBD RC HIGH
INX
CPX GOoOo DUMMY STATEMENT FOR TIME DELRY
LDA M PIA1BD COMPARATOR T~ST
BMI ~AMPDN

••••STX TEST
LDA A TEST 312 COUNT SUBTRACTION
SUB A ~~$02
STA A TEST
SUB A ~~$10 DVERRAN':5ETE:H
Be'S R:HART
LDA A ci1e SET CONVER:ION FINIS~ED.DVERRANGE
STA A PIAIBD AND S~T pAMP CONTROL HIGH
BRA CYCLE
MaN

3Y,-Digit Dual Ramp Program

The flow chart, source program and hardware for a
3~-digit system are shown in Figures 16, 17, and 18
respectively. Referring to Figure 17, the basic conversion
routine of lines 96 through 135 in this program is similar
to that of the previously discussed 12-bit binary system.
The initialization of the index register in line 108 has been
changed to increase the ramp up time period. The basic
conversion results in a binary number as did the 12-bit
version previously discussed. This binary result is con-
verted by the software routine in lines 144 through 180
to produce 3~-digit BCD output. This routine converts
up to a 16-bit binary number to the equivalent BCD val~e.
Also the BCD result is converted to a 7-segment display
code for use in a LED or LCD readout system. Another
feature of the 3~-digit A/D program shown here is a
polarity detection scheme. This allows the AID to handle
both positive and negative input voltages.

The external hardware for the 3~-digit A/D requires
two full PIAs; one of the four ports is used for interface
to the MC1405, cycle input, overrange flag, etc. An I/O
configuration similar to that of the 12-bit binary A/D is
used. The remaining three ports of the PIAs are used for
the 3~·digit display, as shown in Figure 18b.

The conversion initially produces a binary result
which is stored in memory locations MSB and MSB+ I.
This result has 10010 offset counts subtracted, and then a
polarity check is made. If the polarity that is currently
being applied to the input of the MC1405 is positive, the

binary number is converted to a BCD number. The tech-
nique used for binary-to-BCD conversion is described in
Appendix B. The BCD results are stored in memory
locations UNTIEN and HNDTHD. Each of these memory
locations contains two BCD words. Following the conver-
sion, an overrange test is made in lines 183 through 186
which checks for a maximum of a BCD" I" in the upper
four bits of memory location HNDTHD. If an overrange
condition occurs, the program branches to lines 227
through 234 where a 199910 is placed in the display and
the overrange flag in PIAl BD is "set".

After the overrange' test the BCD code is converted to
a 7-segment code and stored in the memory location for
each PIA port. Segments A through G use PIA outputs 0
through 6 while the half digit output uses PIA2BD output
PB7. The conversion technique for BCD-to-7 segment
utilizes a look-up table in line 251 with the indexed mode
of addressing to access the table. Each of the three full
BCD digits is converted to the 7-segment code by first
separating the lower BCD and upper BCD word and using
the BCD code as the least significant byte of a two byte
address for the look-up table. This address is then loaded
into the index register and used to locate the correspond-
ing 7-segment code. In the case of the upper BCD digit of
each BCD, the memory must be shifted left four times for
correct addressing of the look-up table. Finally, the half
digit output is added to PIA2BD in lines 197 through 226.

Should the MC1405 have the incorrect polarity on its
input, a polarity reversing relay is operated by toggling the

CA2 output of PIAIBC control register. Then the conver·
sion is restarted, this time with a positive input polarity.
The polarity detection instruction is found in line 131.
If after the offset count subtraction in lines 129 and 130
the condition code carry bit is "set", the MCI405 has a
negative input voltage. This occurs when the negative ifl·
put subtracts from instead of adding to the offset current
in the MCI405 and does not allow the ramp down time
period to reach at least a value of 10010 counts. If the
carry bit has been "set" then the program branches to

line 236 where the CA2 line is toggled. Also due to the
difference in a positive polarity conversion and a negative
polarity conversion a short delay loop has been added in
lines 238 and 239 to improve accuracy at very small
input voltages.

The entire 3~·digit AID requires 296 memory loca·
tions but can be reduced if the BCD·to· 7 segment de·
coding is performed external to the MPU system. With a
I MHz MPU clock frequency this program has a full -
scale conversion time of 60 ms.

1.000 NAM DWA25
2.000 OPT I'IE/'I
3.000 •
4.000 •
5.000 •
6.000 •
7.000 •
:3.000 •
'3'.000•

10.000 •
11.000 •
12.000 •
13.000 •
14.(100.
15.000 •
lO::·.001J•
17.000 •
1:3.000 •
1'3'.0('0.
20.000 •
21.000 •
22.000 •
23.000 •
24.000 •
2!:•• 1:'00 •
26.000 •
27.000 •
2:::.000•
2'3'.000•
30.000 •
31.000 •
32.000 •
33.0(11)•
':::4.000•
3!:•• 000 •
36.000 •
::r7.000.
33.000 •
';:'9.000.
40.00(' •
41.000 •
42.000 •
4::::.000•
44.000 •
45.000 ORG $0000
46.000 MSB RMB 1
47.000 LSB RMB 1
48.000 INDEX RMf 2
49.000 MSBTEM RMB 1
50.000 LSBTEM RMB 1
51.000 •
52.000 •
53.000 •
54.000 ORG $0010
55.000 UNTTEN RMB
56.000 HNDTHD RMB
5?OOO •
!:,:3 • 0 (I (I •

59.000 ORG $4004
61J.001JPIAIAD RM! 1

• •••••••••••••• <•••••••••••••••••••••••••••••••

• •
• :3 1/2 DII~Il H.···D •
• •
• •••••••••••••• <~••••••••••••••••••••••••••••••

THIS CONVERTER USES A MC1405 IN CONJUNCTION WITH THE
MC6800 MPU TO PRODUCE A 3 1/2 DIGIT A/D. THE
DUAL RAMP METHOD OF A/D CONVERSION IS USED.

CYCLE S~ITCH -LOCATED AT PIAIBD (PEl)
COMPARATOR = LOCATED AT PIA1ED (PB7)

RAMP CONTROL- LOCATED
CONVERSION FINI:H~D =
OVERRANGE - LOCATED
POLARITY - LOCATED

AT PIAnr, (PE:2:',
LOCATED AT PIAIBD
I1T PIAIBl' (PB3)
AT PIAIBr' (I:A2)

7 SEGt1HIT OUTPUl
TEt"E - FIAIAD
HUNDREDS - PIA2AD
THOUSANDS - PIA2BD
TENS OF THOUSHNDS DR

THE ANALOG INPUT FOR THE MC141J5 MUST HAVE A 2 VOLT
MAXIMUM WHILE THE AU10POLA~ITY CUTPUT FROM THE MPU
MAY BE USED TO TOGGLE A RELAY TO PROVIDE NEGATIVE
INPUT CAPABILITY FOR THE A/D

61.000
62.000
6:3.000
64.000
65.000
66.000
67.000
6:3.000
6'3.000
70.000
71.000
72.000
73.000
74.000
75.000
76.000
77.000
7:3.000
7'~.000
80.000
:31.000
82.000
:33.000
::l4.000
:35.000
86.000
87.000
88.000
8'3.000
90.000
91. 000
92.000
'~3.000
94.000
95.000
'36.000
'37.000
98.000
99.000

100.000
101.000
102.000
103.000
104.000
105.000
106.000
107.000
108.000
109.000
110.000
111.000
112.000
11::::.000
114.000
115.000
116.000
117.000
118.000
119.000
120.000

PIAIAC RME 1
F'IAH:D RMB 1
PIA1EC RMB 1
PIA2AD RMB 1
PIA2AC RMB 1
PIA2BD RMB 1
PIA2BC PI'1B1
••ORG 'I;OAOO
••CLI':PIA1AC

CLI':PIAIBe
CLF~ PIA2AC
CLR PIA2I:C
LDA A ~:$7C
STA A PIA1:E:D
LDA A ~:$OFF
STA A PIAIAD
STA A PIA2AD
STA A PIA2EII
LDA A ~:$:34
STA A PIA1AC
STFt A PIA1BC
STA A PIA2AC
STA A PIA2BC

•LDA A ::$OC
STA A INDE>::

•••••

A SIDE CONTROL REGISTER
B SIDE DATA REGISTER
B SIDE CONTROL REGISTER
A SIDE DATA REGISTER
A SIDE CONTROL REGISTER
B SIDE DATA REGISTER
B SIDE CONTROL REGISTER

FIRST TWO HE~ DIGITS OF LOOK-UP
TABLE A.DDPE:S.SE:S:••••••••••••••••

• BA:;IC A/D •••••••••••••••••
LDA A ~:$04
STA A PIAIED RC HIGH

START LDA A PIA1BD COMPARATOR TEST
B~11 :START

CYCLEI LDA A 0$14
STA A PIA1ED CONVERSION READY AND RC HIGH

••• ••CYCLE TEST ••
CYCLE LDA A PIA1ED

AND Fi ~:$02
I:EO C\'CLE

RESTAR LDX 0$07DO
eLR PIA1ED RESET OVERRAN6E, CONVERSION FINISHED AND SET PC LOW

COMP LDA A PIAIED
.EPL CO~1P
• ••RAMP UP TIMING CYCLE ••
RAMP UP LDA E 0$04

IIE:".ENERAMPUP
•• ••RAMP DOWN TIMING CYCLE ••
••RAMPDN STA B PIA1ED RC HIGH

121.000
122.000
123.000
124.000
125.000
126.000
127.000
128.000
129.000
1:30.000
131.000
1:32.000
133.000
134.000
135.000
136.000
1:37.000
138.000
139.000
140.000
141.000
142.000
14:;:.000
144.000
145.000
146.000
147.000
148.000
14';;.000
150.000
151.000
152.000
153.000
154.000
155.000
156.000
157.000
15::::.000
159.000
160.000
161.000
162.000
16:3.000
164.000
165.000
166.000
1':,7.000
16::::.000
16';'.000
170.000
171.000
172.000 •
173.000 •
174.000 •
175.000
176.000
177.000
17:3.1)00
17';;.000
1:=:0. (1)(1

IN><
CP;X:
LDA
BMI

•
ST:>i
LDA
LDA
SUB
SBC
Be::;;
STA
STR
STA
STA

••••••••
CLF.~ UNTTEt-i
CLF.: l-1~mTHIi
LD:x:~::J;0010

BEGIN LDA A UNTTEN
TAB
AtiD A ~:'J;OF
SUE: A ~:$05
BMI FiT
ADD E: ~:'I.03

AT TBA
At-m A ~:$OFO
SUB A ~:'1;50
Bt'1I BT
ADD B ::'1;:;:0

BT ~:TA B u~nTEti

~~00 00
A PIA1BD
RAMPDN
MSB
R MSB+1
B M~;B
A ~:$64
B ~:$OO
POLR'y'1
A MSB+1
B t1:~:E:
A r1SBTEM+1
B ~1SBTE~l

•
UIA A Ht-lDT:-iIi
TAB
Atm A ::'I;(IF
'SUB H ~:'1;1)5
B~lI O:T
ADD B ::$03

CT TF:R
At-Hi A ~:$Of 0
:~:UB A ::'1,':' 0
Bt'1I DT
ADD B ::'1;30

DT STR B Hr'lDTHD

FCL
F.:OL
POL
POL
IIi::>~
t:!'iE:

1__ ':"BTEt1
t'EBTEt',
unTTEN
Ht-HiTliD

DUMHY STATEMENT FOR TIME DELAY
CDMPARATOF~ TEST

•••••••••••••••••• BInARY TO BCD •
• CONVERTER ••••••••••••••••••

181.000
182.000
183.000
184.000
18'5.000
186.000
187.000
188.000
189.000
190.000
191.000
192.000
193.000
194.000
19'5.000
1%.000
197.000
198.000
199.000
200.000
201.000
202.000
203.000
204.000
20'5.000
206.000
207.000
208.000
209.000
210.000
211.000
212.000
213.000
214.000
215.000
216.000
217.000
218.000
219.000
220.000
221.000
222.000
223.000
224.000
22'5.000
226.000
227.000
228.000
229.000
2:30.000
231.000
2:32.000
233.000
234.000
23'5.000
236.000
2:37.000
238.000
239.000
•.40.000

••LDA A HNDTHD
AND A ~;$20
SUB A ~~$10
BH I DVRNI3E

•BRA BCD
POLRY1 BRA PDLARY
DVRNGI BRA OVRNGE
•••••••BCD LDA A UNTTEN

AND 11 :~$OF
STA A I NIlE>::+ 1
Lm< INDEX
LDA A O,X
'.::TA A PHUAII
LDA A UNTTEN
LSR A
UP A
LSR A
LSR A
'STA A INDE':<+1
Lm; INDE>::
LDA 11 0, ~.::
STA A PI A2AII
LDA A Hr"iDTHII
AND A :~$OF
STA A INDEX+l
LDX INDE>;
LDA A 0,>::
STA A PIA2BD
LDA A HNDTHD
AND A :~:r.l 0
SUB A ~:'f.l 0
BLT END1
LDA A ~~$80
ADD A PI112BIt
STA A PIA2BII

ENDI -IMP CYCLEI
•DVRNGE LDA A u'f.1C

STA A PIAIBD
LDA A ~:$F3
';TA A PIFt1AIt
:iTFt A PIFt2AD
STA A PIA2BD
Jt'1P CYCLE

•POLAPY LDX u$0100
BR DE)<

BNE BR
LIlA A PIAIBC
em, A

••••••••••••••••••••• BCD TO 7 SEGMENT •
• CDMVERTER •••••••••••••••••••••

241.000
242.000
2 3.000
244.000
24._ .000
246.000
247.000
248.000
249.000
250.LlOO
251.000
252.000

AtiD A ~S08
ADD A ~.S34
S1 A PlAne
Jt1P R£STAR

••••OR6 $ocao
FC! S7E,$30,S6D,S79,S33,. ~!,
END
MON

10

2.2 \(

12
1N5846A

47 k

13 lN91l,

L'~UJ
paO/PAO
PB1/PAl
PB2/PA2
PB3/PA3
P804/P,,,4
PBS/PAS
pa6/PA6
PB7/PA7

G S-ament
F Segment
E Segment
o Segment
C Segment
B Segment
A S-oment
~ Digit (PIA2BO Only)

4Y,-Digit Dual Ramp Program

The microprocessor software for a 4Jh-digit dual ramp
A/D is shown in Figure 19. This, program in an extension
of the 3\i-digit A/D just discussed and has a full scale
input voltage of 1.9999 volts. Due to the addition of the
extra digit, a fourth PIA port for the 7·segment display
is required. The PIA port configuration used for ramp
control, comparator, etc. is identical to that used in the
3\i·digit A/D.

The addition of the extra digit also implies a longer
ramp up time period which is produced by increasing the
initialization of the index register in line 115. This longer
ramp up time period also requires the change of the extra
count subtraction statements of lines 137 and 138 to

maintain the extra count subtraction of 10% ramp up
time. Also, the longer ramp up time period will require a
larger integration capacitor to prevent saturation of the
MC1405 integrator. This is of COl.lrse,assuming the same
MPU clock frequency. The remainder of the A/D external
hardware is unchanged except for the addition of the
fourth full digital display. Figure 18a can be used for the
4\i·digit A/D without modification, and Figure 18b can
be used with only the addition of another digit.

The software.for the binary·to-BCD converter remains
the same for the 4\i-digit AID since it is capable of han-
dling up to 16 bits. The conversion routine for BCD-to-7
segment code must be modified to handle the extra digit
although the same basic technique is retained.

1.000 NAM DWA 30
2.000 OPT t1EI'1
3.000 +
4.000 +
5.000 +
6.000 +
7.000 +
:3.000 +
9.000 •

10.000 +
11.000 +
12.000 +
1:;:.000+
14.000 +
,15.000 +
16.000 +
17.000 +
1:::.000•
19.000 +
20.000 +
21.000 +
22.000 +
23.000 •
24.000 +
25.000 +
26.000 +
27.000 +
2:::.000+
2';'.000+
'30.000 +
31.000 +
3:::.000+
33.000 +
34.000 •
35.000 +
36.000 +
"37.000 -.
38.000 +
3';'.000•
40.000 +'
41.000 +
42.000 +
43.000 •
44.000 +
45.000 OPG $0000

+++++++++++++++++++++++++++.++++++++++++++++.+
+ •
+ 4 1,'2DIGIT A.,"D •
+ •
++••++.++++++.++++.+.+ ••+++•••••++++••+•••••••

THIS CONVERTER USES A MC140S IN COhJUNCTION WITH THE
MC6800 MPU TO PRODUCE A 4 l/e DIGIT A/D. THE
DUAL RAMP METHOD OF A/D CONVERSION IS USED.

CYCLE SWITCH -LOCATED AT PIAIED (PB1)
COMPARATOR - LOCATED AT PIAIED (PE?)

RAMP CONTPOL- LOCATED
CCNV~RSION FINISHED -
OVERRANGE - LOCATED
POLARITY - LOCATED
7 :::EGt1E~nOUTP1.lT

TEt-E - PI "12ED
~UNDREDS - PIA3AD
TYDUSANDS - PIA3BD
TENS OF THOUSANDS O~

AT PIAIBD (P:I:'O)
LOCATED AT PIA3BD
AT PIAlBD (P'B2)
AT F'IAIBD (f'B6)

THE ANALOG INPUT ~OR THE MC140S ~UST HAVE A ~ VOLT
MA~IMUM WHILE T~E AUTOPOLARITY ~UTPUT FROM THE MPU
MAY BE USED TO TOGGLE A RELAY TO PROVIDE NEG~TIVE
INPUT CAPABILITY FOR THE A/D

46.000
47.000
48.000
49.000
50.000
51.0110
52.000
53.000
54.000
55.000
56.000
57.000
58.000
5'3.000
60.000
61.000
62.000
63.000
';;'4.000
65.000
E,6~000
67.000
68.000
63.000
70.000
71.000
72.000
7·3.000
74.000
75.000
76.000
77.000
7:::.000
7'3.000
:::0.000
:31.000
'::2.000
:33.000
84.000
:=:5.000
:::6.000
:::7.000
88.000
:::9.000
90.000
'31.000
312.000
9::::.000
'314.000
'315.000
96.000
97.000
9:::.000
'31'3.000

100.000
101.000
102.000
10::::.000
104.000
105.000

MSB RMB 1
LSB RI'1B1
INDEX PM!: 2
MSBTEM RM!: 1
LSBTEM RI'1B1
•••ORG $0010
UNTTEN RMB 1
Ht'iDTHDRMB 1
TEtHSD ~:MB 1
••ORG $4006
PIAlE:D F.'ME:1
PIAlE:C Rm: 1
PIA2AD PMB 1
PIA2AC F.:MB1
PIA2ED FomB 1
PIA2BC PMB 1

OF't;:; $4010
PIfr3AD PMB 1
F'IA:3AC PI'1:E:1
PIA:3BD PMB 1
PIA::::BCPI'1B1
••••

B SIDE, DATA REGISTER
B SIDE, CONTROL REGISTER
A SIDE, DATA REGISTER
A SIDE, CONTROL REGISTER
B SIDE, DATA REGISTER
B SIDE, CONTPOL REGISTER
A SIDE, DATA REGISTER
A SIDE, CONTROL REGISTER
B SIDE, DATA REGISTER
B SIDE, CONTROL REGISTER

OF.:G$OAOO
CLR PIA1BCCLF.:PI'12AC
CLF.:PIA2BC
CLR FIA3AC
eLR PIA3EC
LIlA A ~~$4D
·::TAA PIA1BD
LDH A ~:$OFF
·';TAA PIA2AD
STA A PIA2ED
·S:TAA PIA:3AD
S·TA A PI A3BD
LDA A ~:'I;34
:STA A PIAl:E:C
S.TA A PIA2AC
STA A PIA2EC
STA A PIA3AC
;:TR A PI A:::,BC

•
LDH R ~~$OC
STR H HiDE>':

FIF.ST TWO HEX DIGIT? OF LOOK-UP
TABLE ADDF'ES:';E.S

• ••••••••••••••••
• • BrC 10::: A.····D •
• ••••••••••••••••
•• INITIALIZATIONLDA A ~:'i,04

STA A PIA1ED QC HIGH
:T'1F.T_DA A PIA1ED COMPARATOR TEST

106.000
107.000
108.000
109.000
110.000
111.000
112.000
11:~:.000
114.000
115.000
116.000
117.000
11:=:.000
119.000
120.000
121.000
122.000
12~.OOO
124.000
125.000
126.000
127.000
12:3.000
129.000
130.000
131.000
132.000
133.000
134.000
135.000
136.000
137.000
13:=:.000
139.000
140.000
141.000
142.000
143.000
144.000
145.000
146.000
147.00('
14:3.000
14':;'.000
150.000
151.000
152.000
15.3.000
154.000
15'5.000
156.000
157.000
158.000
159.000
160.000
161.000
162.000
163.000
164.000
16'5.000

BMI STAIH
CYCLEl LDA A =14

STA A PIA1ED CONVERSION READY RND RC HIGH
•••CYCLE LDA A PIA1BD

AND A ~:$02
BEt:;)CyCLE

RESTART Ll17~~:'t4E2I)
•CLR PIA1ED RESET
COMP LDA A PIAIED

:E:PLCOMP
•I":At1PUPLDA B ~:'t04

liE:":
BNE ~'At'lPUP

••••RAMPDN STA B PIRIBD PC HIGH
IN:":
CPX =0000 DUMMY STATEMENT
LDA- A PIA1BD COMPAFATOR TEST
B~11 RAMPDN

••:s:n: t'EB
'S:T:X:t'E::E:TE~l
LDA A ~EI:
SUI: R ::$ 04
B!'1I POL,.: ..•.,1
STA "1 t1SB
STA A MSBTEM

••••••••CLR ,JtHTHl
ClR H~mTHIi
elR TENTH'
LIi>~~:$0010

BEGIN LDA A UNTTEN
TAB
AND A ::'tO~
SUB lOt ::1;05

'Bt1I AT
ADIi I: ~:$03

AT TBA
AND A ~:'l;(IF 0
SUI: A ~:$50
BMI BT
ADII B ~:$:;:O

BT S:TA I: UN TTEN

INITIALIZATION FOR RAMP UP
TI"lHlI3

DVERRANGE. CONVERSION FINISHEIi ANIi SET
cmlP8F:ATDR TEST

EXTRA COUNT SUBTRACTION
r'!JLARITY TEST

•••••••••••••••••
• BINARY TO BCD •
• CONVERTER ••••••••••••••••••

IO-Bit SA Program
Figures 8 and 9 show the MPU software and external

hardware for a IO-bit successive approximation AID using
the MC3410 DAC. The operation of this AID is very
similar to that of the 8-bit AID. Both the A and B halves
of a PIA are required for the DAC output while the con-
trol lines (comparator, conversion finished, etc.) are also
identical to that of the 8-bit AID previously discussed.
The pointer for indicating which bit is currently under
test is contained in two memory locations, PONTRI and

PONTR2. The pointer is initialized in lines 63 and 64 and
as before, it is continuously shifted to the left as each bit
is tested. Lines 72 through 77 and lines 89 through 101
operate on both halves of the PIA, "setting" and "re-
setting" the DAC bits under test. The final answer is
stored in the two PIA memory locations as well as two
internal memory locations (ANSI and ANS2).

By using the appropriate DAC and changing line 63 of
the software program, the IO-bit SA DIA can be modi-
fied for 9-16 bit AID operation.

1.000 NAN DWA40
2.000 OPT t1Et'1
3.000 •
4.000 •••
5.000 • •
6.000 • 10 BIT SUCCESSIVE APPROXIMATION A/D •
7.000 • •
8.000 •••
9.000 •

10.000 •
11.000 ORG 0
12.000 ANSI PMB 1
13.000 ANS2 RMB 1
14.000 PONTRI PMB 1
15.000 PONTR2 RMB 1
16.000 •
17.000 •
18.000 ORG $4006
19.000 PIAIBD PMB
20.000 PIAIBC RMB
21.000 PIA2AD PMB
21.500 PIA2AC PMB
22.000 PIA2BD RMB
23.000 PIA2BC RMB
24.000 •
25.0C,O •
2-: .• UOO •
27.000 •
2::;:.000•
29.000 •
30.000 •••••••••••••••••• PIAIBD PIN CONNECTIONS ••••••••••••••••••
31.000 ••
32.000 • PB7 • PB6. PB5. PB4. PB3. PB2. PBl. PBO.
33.000 ••
34.000 • COMP • NC • SC • CF • S~ • HC • CYCLE. NC •
35.000 ••
36.000 • •
37.000 •
::::3.000•
39.000 • COMP-COMPARATOR,SC-SIMULATED CLOCk,SO-SERIAL OUTPUT
40.000 • CF-CONVERSION FINISHED, NC-NO CONNECTION
41.000 •
42.000 •
43.000 •
44.000 •
45.000 •
46.000 ORG $OAOO
47.000 •
48.000 CLF'PIAIBC
49.000 eLR PIA2AC

FINAL ANSWER LOCATION
FINAL ANSWER LOCATION
POINTER FOR BIT UNDER
POINTER FOR BIT UNDER

01SB)
(LS:B)
TE·S:T
TEST

I:SIDE,
B ~:IDE,
A :~:lDE,
A ~.IDE,
B SIDE,
B SIDE,

DATA ~:EGISTEt':
CONTROL REGISTER
DATA REGISTER
CONTROL REGISTER
DATA PEG ETEP
CONTROL REGISTER

PIAIAD USED FOR DIGITAL OUTPUT TO DAC
PIAIED USED FOR A/D CONTROL

BEGINNING OF PROGRAM
.pIA A:,:SEMBLY+

50.000
51.000
52.000
5:3.000
54.000
55.000
56.000
'57.000
58.000
59.000
':;,0.000
61.000
62.000
6:3.000
64.000
6'5.000
66.000
67.000
68.000
6'3.000
70.000
71.000
72.000
7:3.000
74.000
75.000
76.000
77.000
78.000
79.000
80.000
81.000
:32.000
:3:3.000
84.000
85.000
86.000
:::7.000
:38.000
8'?000
'?O.OOO
':"1.000·
92.000
'?:3.000
94.IJOO
95.000
96.000 •
97.000 •
98.000 •
'?9.000 r·mp

100.000 t·mp
101.000 t·mp
102.000 tmp
10:3.000 LDA
104.000 :E:m
105.000 •
106.000 •
107.000 •
108.000 LDli H
10'3.0(11) S:UB A
110.000 5:TA A
111.000 STli '=t
112.000 LIlH A

CLR PIA2EC
LDA A
STA A
LDA A
:ST., A
nA A
LDA A
:S:TA A
:STA A
STA A

•RESTART LDA A =$10
STA A PIA1:E:II
CLJ;:POtHR1
CLR PONTR2

••••••CYCLE LDA A PIA1ED
At,m A ~:$02
BEG! C\'CLE

•
CLR PIA2AD
CL~~ PI A2E:D

•••

~:$7C
PIA1BD
~:$OFF
PIA2AD
PIA2BII
~:$04
PIAlBC
PIA2AC
PIA2:E:C

eLF:
LDA
.::TA

••••CONVRT POP PONTP1
ROP PDtHf;::2
BCS PESTART
LDA A PIA2AD
AIID A PONTF:1
::.TAA PIA2AD
LDA A PIA;~BD
ADII A POtHP2
:::TAH PI li2BD

PIA1BD
A ~::1;04
A POtHP1

PIA2AD
POt'lT!;'1
PIA28I1
AtE1
PIA2BD

SET NEW DIGITAL OUTPUT
RECALL PREVIOU: DIGITAL OUTPUT(2 ~SB)

Ramp Control I
0--

MC1405 Comparator MC14435 ~<0--

- OU
~t ~~~·D

I

~I '0.
CD0 0 ~~ "''" ::;

PAl PA5 PA" PA2 PAQ
PA6 PA3 PA'

CA2
MPU/PIA

CA'

One port of a PIA is required for the interface to the
MPU. The I/O configuration of this PIA is shown in lines
18 through 25 of the source program (Figure 21). The
output of the MCl4435 digital subsystem consists of
three multiplexed BCD digits with the half digit output
provided on a separate pin. The three most significant bits
of the PIA port are connected to the digit select lines of
the MC1443 5 while the four LSBs are connected to the
BCD lines of the MC14435. The remaining PIA bit is
connected to the half digit output. Lines 36 through 39
simulate the main MPU program which branches to the
A/D subroutine starting in line 42. When this occurs the
display update pin of the MCI4435 (CA2) is set low
which allows only the next data update to enter the
MCl4435 output latches. The wait for interrupt (WAI)
instruction (line 44) stores the MPU stack and waits
until the comparator output causes an interrupt on CAI.

At this point the processor is interrupted and vectored
to the program beginning at line 50 causing it to demulti-
plex the BCD data on the output of the MC14435. The

least significant digit (LSD) is first selected by the pointer
of lines 50 and 51. When a low condition on this LSD
line occurs, the BCD data is stored via the indexed mode
of addressing in memory location $0100. The pointer is
then shifted to the next position (line 57) and when the
digit select line goes low the BCD data is stored in the
next sequential memory location ($0101). Then the
MSD BCD value is placed in memory location $0102
when the MSD digit select goes low. After the multiplexed
BCD data has been placed in memory, the half digit is
placed in memory location $0103. At this point the
display update line to the MCI4435 is returned to a high
position and the MPU returns from the interrupt and
then from the subroutine back to the main program which
requested the data.

A minimum of 183 /lS is required to transfer the A/D
data to the MPU. This time period is dependent upon
the A/D clock frequency which controls the digit se-
lect lines.

1 .000
2.000
':::.000
4.000
5.000
"".0(10
7.000
:::.000
9.000

10.000
11.000
12.000
1':::.000
14.000

t'iA t'1 DI.•.IA4
OPT DT

••
• 3 1/2 DIGIT DUAL RAMP USING E~TERNAL •
• H~RDWARE ••
•

OF.:G '1.001 (I

POINTR RMB 1 POINTER FOR DIGIT SELECT
••ORG $400A
PIAIAD Rt'1E: 1

15.000
16.000
17.000
18.000
1'3.000
20.000
21.000
22.000
23.000
24.000
25.000
26.000
27.000
2:3.000
29.000
30.000
:31.000
32.000
33.000
:34.000
35.000
36.000
37.000 •
:38.000 •
.3'3.000
40.000
41.000
42.000
43.000
44.000
45.000
46.000
47.000
4:::.000
49.000
50.000 •
51.000 •
52.000
53.000
54.000
55.000
56.000
57.000
5:::.000
'59.000
60..000
61.000
62.000
E..3.000
64.000
65.000
66.000
67.000
~,8.000
69.000
70.000
71.000
72.000
73.000
74.000

PIA1AC RMB
••
• •• PIA1AD CONFIGURATION •••
• PA7 • PA6 • PAS • PA4 • PA3 • PA2 • PAl • P~O ••
• MSD LSD .1/2 D. MSB LSB ••
• DIGIT SELECT.. ~CD ••
••••OPG

CLI
'::LP
CLF.:
LIlA
STA
LK:

PIA1AC
PIA1AD
A ~~$3C
A PIA1AC
~:$CI020

NOP
.J"::F.: COti•..·'RT

END t·iOP
BI<:A END

••
CON'·..•PT

LDA B
STR A
t,IAI
PT::

LDA A ~~$:35
PIA1AD
PIA1AC

••
BEG I t'j LItA A ~:$2 0

STA A POINTP
LD>::~:'I,0100

NEXT LItA R PIR1AIt
TAB
AriD
BNE
F.:OL
AliD
'STA
IN>::
BCC t'iE::<T
LItA A PIA1AD

·At·m A ~:$1 0
LSP A
LSR A
LSP A
LSP A
STA A (1,::<
LDA A ~:$3C
STA A PIA1AC

A POItHI<:
riE.":T
PDHHP
E: ~:'I;01=
E: 0,::<:

PESULTS STORED IN LOCATIONS 0100-0103
LSD=0100 1'2 DIGIT=0103

A/D CDNVEPSIDN SUBROUTINE
DUMMY READ OF PIA DATA REGISTEP

75.000
76.000
77.000
78.000
79.000

•••MON

SUMMARY
Many MPU systems require analog information, which

necessitates the use of an AID converter in the micro-
processor design. This note has presented two popular
AID techniques used in conjunction with the M6800
microprocessor system. These techniques, successive
approximation and dual ramp, were shown using the
MPU as the digital control element for the AID system.
This required dedication of the MPU to the AID function
during the conversion. Also shown were systems using
the MPU to control the flow of data from an external AID
allowing the MPU to perform other tasks during the
conversion.

The variety of programs presented allow the designer
to make a selection based upon hardware cost, conver-
sion speed, memory locations and interrupt capability.
Although the AID programs shown here are complete
designs, they are general designs and may be tailored
to fit each individual application. Also a variety of digital
outputs are available including binary, BCD, and
7-segment. In conjunction with the BCD output a 16-bit
binary to BCD conversion routine is Presented in
Appendix B.

REFERENCES
Aldridge, Don: "Autopolarity Circuits for the MCI405
Dual-Slope A-D Converter System", EB-35, Motorola
Semiconductor Products Inc.
Aldridge, Don: "Input Buffer Circuits for the MCI 505
Dual Ramp A-to-D Converter Subsystem", EB-24,
Motorola Semiconductor Products Inc.
Kelley, Steve: "4~-Digit DVM System Using the MCI 505
Dual-Slope Converter", EB-36, Motorola Semiconductor
Products Inc.

M6800 Microprocessor Applications Manual, Motorola
Semiconductor Products Inc.
M6800 Microprocessor Programming Manual, Motorola
Semiconductor Products Inc.

MCI505/1405 Qata Sheet, Motorola Semiconductor
Products Inc.

MC6800, MC6820 Data Sheets, M6800 Systems Refer-
ence and Data Sheets, Motorola Semiconductor Prod-
ucts Inc.

MC 14435 Data Sheet, Motorola Semiconductor Prod-
ucts Inc.

APPENDIX A
MPU INSTRUCTIONS

IMMEO DIRECT INDEX EXTNO IMPLIED (Allrellisterlilbels 5 4 3 2 1 0

OPERATIONS MNEMONIC 0' - # 0' - ~ 0' - " 0' - " 0' - "
refer to conunu) H I N 2 V C

Add AQOA 8B 2 2 90 3 2 AB 5 1 BB 4 3 A+M-A I 0 I I I I

ADOS CB 1 1 DB 3 1 EB 5 1 FB 4 3 B + M-B I 0 I I I I

Add Acmltrs ABA lB 1 1 A+S-A I 0 I I I I

Add with Carry ADCA B9 1 1 99 3 2 A9 5 1 B9 4 3 A+M+C-A I 0 I I I I

ADes C9 1 2 09 3 2 E9 5 1 F9 4 3 B+M+c-a I 0 I I I I
A"d ANDA B4 2 1 94 3 1 A4 5 1 B4 4 3 A· M-A o 0 I I R 0

ANOS C4 1 1 04 3 1 E4 5 1 F4 4 3 B·M•S o 0 I I R 0

Bit Tut BITA B5 1 1 95 3 1 AS 5 1 B5 4 3 A-M o 0 I I R 0

BITB C5 1 1 05 3 1 E5 5 1 F5 4 3 B-M o 0 I I R 0

Clear CLR 6F 7 1 7F 6 3 OO ...• M o 0 R S R R

ClAA 4F 1 1 00"'" A o 0 R S R R

CLAB SF 1 1 00"'" a o 0 R S R R

Compare CMPA 81 1 1 91 3 1 AI 5 1 Bl 4 3 A-M o 0 I I I I
CMPB C1 1 1 01 3 1 E1 5 1 F1 4 3 B-M o 0 I I I I

CompaleAcmltrs CBA 11 " 1 A-B o 0 I I I I

COl'l'lplement,I's COM 63 7 1 73 6 3 M-M o 0 I I R S

COMA 43 1 1 ~-'A o 0 I I R S

COMB 53 1 1 B ...•S o 0 I I R S

Complement,2's NEe 60 7 1 70 6 3 00 - M•M o 0 I 1~12)
(Neyate) NEGA 40 1 1 00 - A""" A o 0 I I 12)

NEGB 50 1 1 00 - 8-8 o 0 I :<p~Decimal Adlust, A oAA 19 1 1 Convens Binary Add. of BCD Characters o 0 I
Into BCD Formal

Decrement DEe 6A 7 1 7A 6 3 M -l ...•.M o 0 I I 4 0

CECA 4A 1 1 A -I•A o 0 I I 4 0

DECB SA 1 1 B-1-8 o 0 I I 4 0

Ellclusive OR EORA B8 1 1 9B 3 1 A8 5 1 B8 4 3 A@M•A o 0 I I R 0

EORB C8 1 1 08 3 2 E8 5 1 F8 4 3 B(£lM-8 o 0 I I R 0

Increment INC 6C 7 1 7C 6 3 M+ '•M o 0 I l~ 0

INCA 4C 1 1 A+ I•A o 0 I l~ 0
INCB 5C 1 1 8+1-8 o 0 I I 0

load Acmltr LDAA 86 1 1 96 3 1 A6 5 1 B6 4 3 M-A o 0 I I R 0

LDAS C6 1 1 06 3 1 E6 5 1 F6 4 3 M-B o 0 I I R 0

Or, Inclusive DRAA 8A 1 1 9A 3 1 AA 5 1 BA 4 3 A+M ...•A o 0 I I R 0

DRAB CA 1 1 oA 3 1 EA 5 1 FA 4 3 B+M ...•B o 0 I I R 0

Push Dala PSHA 36 4 1 A ...•.MSp.SP-, ...•.Sp o 0 0 o 0 0

PSHB 37 4 1 B•MSp.SP- 1•SP o 0
Pull Data PULA 31 4 1 SP+l-SP,MSp-A o 0 0 o 0 0

PUla 33 4 1 SPt ,•Sp. MSp•B o 0 0 o 0 0

Rotate Lefl RoL 69 7 1 79 6 3
~} L{J - CIIJIITI):J o 0 I I 6 I

ROlA 49 1 1 o 0 I I I
ROlS 59 1 1 8 C b7 - bO o 0 I I 6 I

Rot,He Right RoR 66 7 1 76 6 3
~} CO - ITIIIIID=J

o 0 I I 6 I
RORA 46 1 1 o 0 I I 6 I
RORB 56 1 1 8 C b1 - bO o 0 : I 6 I

.Shift left,Arithmetic ASL 68 7 1 7B 6 3 n - o 0 I I I
ASlA 48 1 1 0- m-o o 0 I I 6 I
ASlB 58 1 1 C b7 bO o 0 I I 6 I

Shift RiSl'll, Arithmetic ASR 6J 7 1 77 6 3 ~}e:::to:ill= - 0
o 0 I I 6 :

ASAA 47 1 1 o 0 I I I
ASRB 57 1 1 B b1 bO C o 0 I I 6 I

Shilt Right, Logic LSR 64 7 1 74 6 3 n - o 0 R I 6 I
lSRA 44 1 1 o -CITIIIIIJ -- 0 o 0 R I 6 I
lSAB 54 1 1 b7 bO C o 0 R I I

Store Acmltr STAA 97 4 1 A7 6 1 B7 5 3 A-M o 0 I I R 0

STAB 07 4 1 E7 6 2 F7 5 3 8~M o 0 I I A 0

Subtract SUBA 80 1 1 90 3 1 AO 5 1 BO 4 3 A-M•A o 0 I I I I
SUBB CO 1 1 DO 3 1 EO 5 1 FO 4 3 B-M-a o 0 I I I I

Subtract Acmltrs. SBA ID 1 1 A - B ...• A o 0 I I I I
Subtr. with Carry SaCA 81 1 1 91 3 1 A1 5 1 B1 4 3 A-M-C-A o 0 I I I I

S8CB C1 1 1 01 3 1 E1 5 1 F1 4 3 B-M-C•B o 0 I I I I
TranslerAcmlus 7AB 16 1 1 A4B o 0 I I R 0

7BA 17 1 1 B-A o 0 I I R 0

Test, Zero or Minus TST 60 7 1 70 6 3 M - 00 o 0 I I A A

TSlA 40 1 1 A-DO o 0 I I R R
TSIS 50 1 1 B -00 o 0 I I A R

H 1 N Z V C

DP Operation Code (Heudetlmall;
Number of MPU Cycles;

#: Number 01 Pl'ogram Bytes;
Arithmetic Plus;
Arithmetic Minus;
Boole,n AND;

MSp Contents of memory location pointed to be Stack Pointer;

+ Boolean Inclusive OR;

o Boolean Exclusive OR;
M Complemenfol M;

Transfer In~o;
o Bn ~ Zero;
00 Byte ~ Zero;

H Hall·carry lrom bit J;
I Interrupt mask
N Negative (sign bitl
Z Zero (byte)
V Overflow. 2's complement
C Carry from blt7
R Reset Always
S. Set Always
t Test and set II Hue, cleared otherwise

Not Affected

IMMEo DIRECT INDEX EXTNO IMPLIED 5 • 32 1 0

POINTER OPERATIONS MNEMONIC 0' - # 0. - # 0' - # 0' - " 0' - " BOOLEAN/ARITHMETIC OPERATION H I N l V e

Compue Index Reg e'x 8e 3 3 ,e 4 2 Ae 6 2 'e 5 3 XH - M, Xl- (M + 1) • ·CV : I .
Decrement Index Reg OEX 0' • 1 X -l-X ·..: o 0

D.crementSteck Pntr DES ,. • 1 SP -l-SP ·... o 0

Incr.ment Indlx Reg INX 08 4 1 X+1-X • •• t o 0

Increment StICk Pntr INS 31 • 1 SP+l-SP ·...o 0

load Index Reg lOX eE 3 3 DE • 2 EE 6 2 FE 5 3 M-+XH,IM+U-Xl • .®: R 0

load Stack Pntr lOS 8E 3 3 9E • 2 AE 6 2 8E 5 3 M-SPH,IM+lI-+SPL • • (j) t R 0

Store Index Reg STX Of 5 2 Ef I 2 ff 6 3 XH-+M,XL-+(M+ll o o® I R 0

Store Stack Pntr STS Sf 5 2 Af I 2 8f 6 3 SPH-M, SPL -+(M +11 • .®: R 0

Indx Reg•.Slack Pntr TXS 35 4 1 X -1-+SP ·...o 0

Steck Pntr•.lndl Reg TSX 30 4 1 SP+l-X ·... o 0

RELATIVE INDEX EXTND IMPLIED 5 • 3 2 1 0

OPERATIONS MNEMONIC 0. - # 0. - # 0. - # OP - # BRANCH TEST H I N l V e

Branch Always 8RA 20 4 2 Non. 0 ·· 0 0 0

Branch If CaITY Clear 8ee 14 • 2 e-o 0 0 0 0 · 0

Branch If Carry Set 8eS 25 4 2 e- 1 ··· 0 0 0

Branch If '" Z,ro 8EO 21 4 2 l' 1 0 0 0 0 0 ·Branch It > Zero 8GE 2e 4 2 N (f) V'" 0 0 0 0 0 0 0

Branchlt>Zero 8GT 2E 4 l Z+(N (f) VI" 0 0 · 0 · 0 0

Branch It Higher 8H' 22 4 2 c+z=o ··· 0 0 ·Branch It <Zero 8lE 2f 4 2 Z+(N@V)=1 ·· 0 0 0 0

Branch II lower Or Sam, 8lS 23 4 2 C + Z •• 1 · 0 0 0 0 ·Branch If <Zero 8lT 20 4 2 N@Y"'l · 0 0 0 0 0

BraflCh If Minus 8MI 28 4 2 N -I ··· 0 0 0

Branch If Not Equal Z.ro 8NE 26 4 2 z·o 0 0 0 0 0 ·Branch If Overflow Clear 8ve 28 4 2 v-o ····· 0

Branch If overflowSeI 8YS 29 4 2 V-I 0 0 0 · 0 0

Branch If Plus 8Pl 2A 4 2 N-O 0 0 0 0 0 0

Branch To Subfoutine 8SR 80 8 2 } 0 0 · 0 0 ·Jump 'MP 6E 4 2 1E 3 3 SeeSp.tIIlOperatlons ·· 0 0 0 0

Jump To Subfoutme 'SR AD 8 2 80 9 3 ····· 0

No Operation NDP 02 2 1 Advances Prog. Cnu. Only
Relurn FromlnlerruPI RTI 38 10 1 --@--
Return FromSubrouline RTS 39 5 1 } : !,O{ 10101'
SoftMr.lntelTUpl SWI 3f 12 1 SeeSp.ci.llOplnlions
Waitf()(lnterrupt WAI 3E , 1 • @ ••••

MNEMONIC

ele
ClI
elV
SEt
SEI

SEV
TAP
TPA

~ 5
OP - it BOOLEAN OPERATION H

DC 2 1 O•.C
OE 2 1 0•.1
OA 2 1 O•.Y
00 2 1 l•.C
Of 2 1 1•.1
08 2 1 l•.Y
06 2 1 A•.CeR
07 2 1 CCR•.A

4 3 2 1 0

I N Z V C

RClur Carry
OurlnlerruplMask
aear Overflow
SeICarry
Set Interrupt Mask
Set OVllrflow
Acmltr A•.CCR
eCR•.Acmltr A

·····S'S·to
•
o····S .

• I 0 I .@. I 0 I 0

(Btt set if test is true.nd cleer.d olherwlSltI
Teu: Resull '" l0000000?
Test: Result'" OOOOOOOO?
Test: Decimal wlue 01 most significant BCD Charact.r greater than nin.? (Not d.ared it pr.viously set)
Test: Operand'" 10000000 priO(to execution?
Test: Operand=01111111 Prior to execution?
TISI: Set equal to rnult of NIDC aher shllt has occurred.
Ten: Sign bit 01 most significant (MS) byte" 1?
Test: 2's complement overflow from subtraction 01 MS bytes?
Test: Result leu than zero? (BitlS" 11
load ConditIon Code Register from Stack. (See Special OperatIons)
Sel wtlen int'lTupt occurs. If prevIously sel, a Non·Mlskabte Interrupt IS required to exit the Willt stJle.
Selaccording to the conlents of Accumulalor A.

APPENDIX B

BINARY-TO-BCD CONVERSION

A standard technique for binary-to-BCD conversion is
that of the Add 3 algorithm. Figures BI and B2 show a
flow diagram and example of this algorithm. The tech-
nique requires a register con taining the N-bit binary
number and enough 4-bit BCD registers to contain the
maximum equivalent BCD number for the initial binary
number. The conversion starts by checking each BCD
register for a value of 5 or greater. If this condition
exists in one or all of these registers (initially this con-
dition cannot exist), then a 3 is added to those registers
where this condition exists. Next the registers are shifted
left with the carry out of the previous register being the
carry in to the next register. Again each BCD register is
checked for values of 5 or greater. This sequence con-
tinues until the registers have been shifted N times, where
N is the number of bits in the initial binary word. The
BCD registers then contain the resulting BCD equivalent
to the initial binary word. The example in Figure B2
starts with an 8-bit binary word consisting of all "I's."
This word is converted to the BCD equivalent of 255 by
this technique. After 8 shifts the last binary bit has been
shifted out of the binary register and the hundreds, tens,
and units registers contain a 255.

Figure B3 shows an MC6800 software routine for per-
forrning this technique of binary to BCD conversion.
The initial binary number is a 16-bit number and occupies
memory locations MSB and LSB; this binary number is
converted to the equivalent BCD number in memory
locations TENTSD, HNDTHD and UNTTEN. Each of
these memory locations contains two BCD digits. Eighty-
three memory locations are required for program storage
with a maximum conversion taking 1.8 ms. ,

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000
11.000
12.0uO
13.000
14.000
15.000
16.000
17.000
18.000
1'3.000
20.000
21.0(ltl
22.000
23.000

Hundreds Tens Units 8-Bit Binary

111111,'

1 1111111

1 1 ,',111
1 , 1 11,',

1 0 , 0 "',1
1 0 1 0 1 1111

1 1 0 0 0 1111, 1 0 0 0 1 ,,,
1 , 0 0 0 , 1 11, 0 0 1 0 0 , 1 "1 0 0 , 0 0 1 , 1 1

1 0 0 , 0 , 0 , 0 1, 0 0 1 0 1 0 1 0 1

t~HM DloJA21
OPT MEM

•••
• •• BINA~¥ TO BCD CONVERSION •
• ADD 3 ALGO~ITHM •
• 16 Bll •••
•Or..:G 0
f'E;B RMB 1
L.SB RMB 1
•
!'•

O~:6 $001 (I

Utp TEN RMB 1
HNDTHD RMB 1
TEtHSD R"'B 1
•••

INITIAL BINARY NUMBER
MOST :IGNIFICANl 8 BITS
LEAST SIGNIFICAhT 8 BITS

BCD RESULTS
UNITS AND TENS DIGITS
HUNDREDS AND THOUSANDS
TENS OF THOUSANDS DIGIT

ShIft

Shift

Shift

Add 3 to Units

Shift

Add 3 to Units

Shift

Shift

Add 3 to T.n,
Shift

Add 3 to UniU

Shift

24.000 ORG SOFOO •• BE6INNING OF PROGRAM"
2~.000 eLR UHTTEN
26.000 eLR HttDTHD
2.7.000 CLR TEHTSD
28.000 LDX ~~S0010
29.000 BEGIN LDA A UNTTEN UNITS COMPA~ISON
:30.000 TAB
:31.000 AND A :~$OF
32.000 SUB A ~~$05
33.000 BMI AT
34.000 ADII B ~:$O3
35.000 AT TBA TEhS COMPARISDN
:36.000 AND A ~:$OFO
37.000 SUB A ~:$50
:38.000 BMI BT
3'~.000 ADD B ~:$30
40.000 BT :STA B UtiTTEN
41.000 •
42.000 LDA A HfiDTHD HUNDREDS COMPARISON
43.000 TAB
44.000 AND A ~:$OF
45.000 SUB A ::$05
46.000 BMI CT
47.000 RDII B ~::~03
48.000 CT TBR
4':'i.000 Fltm tl ~:$OFO
50.000 SUB A ~:$50
51.000 Bf'lIDT
52.000 ADI! B ::$:30
53.000 Dr STR B HtmTHD
54.000 •
55.000 LDA A TENTSD TENS OF TH01J:~:MI"1D:S.COMPAl<:I:~'ON
56.000 TAB
57.0(1) .S;UBA ::$05
58.000 Bf11 ET
5'3.000 ADli B ~:$0.3
60.00(, £T .STR B TEfiTSD
61.000 •62.00,) •6:3.000 A:::::L LSB
64.0UO ROL rlSB
65.000 i':OLUtiTTEN
66.000 f"OL Ht'tDTHD
67.000 f".OLT£NT';D
68.000 DE:·:
6'3.000 :E:t'1EBE.GIN aiD m· CDHVERSIOr1 ChECK
70.000 •71. (11)0•72. (i (II) •
7·;:.000•74.000 END
75.UOO r1Dr'i

1\.

AN-764

A FLOPPY DISK CONTROLLER USING
THE MC6852 SSDA AND OTHER M6800

MICROPROCESSOR FAMILY PARTS
Prepared by:
Larry A. Parker
Semiconductor Systems Engineering

This application note describes a floppy
disk controller based on the M6800 fam-
ily of parts. It uses the Synchronous
Serial Data Adapter (SSDA) asthe primary
data interface with the MPU and does not
require DMA for transfer of data to and
from memory. A Peripheral Interface
Adapter (PIA) controls all non-date re-
lated operations in the controller (includ-
ing seek, drive selection, etc.).

A FLOPPY DISK CONTROLLER USING THE MC6852 SSDA AND
OTHER M6800 MICROPROCESSOR FAMILY PARTS

With the introduction of the MC6852 SSDA, the task
of interfacing synchronous serial peripherals such as
floppy disks, tape cassettes or cartridges, and bi-sync or
HDLC data channels, has been reduced significantly.

Described in this application note is an efficient and
flexible floppy disk controller design. Various features of
this design include:

• Controller operates one to four daisy-chained drives
• Four drive radial configuration possible with addi-

tional multiplexing
• Flexible drive interfacing
• MPU controls data transfer allowing:

• Store only desired data from a sector into
memory

• Search disk for pattern match without transfer-
ring data into memory until pattern is found

• Read or write entire track in one revolution;
consecutive tracks on consecutive revolutions

• DMA not required when using host MPU
• Interrupt MPU system operations on address mark

match to start operations, allowing increased
throughput

• Seek interlaced with R/W when using radial con-
figuration

• Hard or soft sectoring
• IBM 0 r user programmable sync patterns and

format
• Write format blank disks
• Cost competitive
• Effective use of MPU leaves time available for ad-

ditional tasks (see Table I).
• _ Low parts count

Controller: (MPU and RAM shared with system)

Formatter 14 TTL SSI, MSI Devices
I SSDA
I PIA
I CRCCG

5 TTL + filter SSI, MSI
Devices

Drive Interface

Buffers and
Receivers

MPU System
Interface

5-10 TTL/CMOS Devices
+ Termination

The disk controller system consists of four basic blocks
as shown in Figure 2. The PIA serves as the interface to
the drive controls. There are 16 available PIA lines which
allow a wide variety of drive configurations. The remain-
ing four lines are used internal to the controller. The clock
is separated from the raw disk data by the phase-locked
loop data recovery block. The SSDA has the responsibility
of synchronizing read/write operations and serializing/
deserializing the data. Error detection and system clock
functions are performed by the CRCC and clock cQntrol
logic block.

The MPU has essentially complete software control
over the system. Mechanical drive functions and status

Microprocessor Processing
Conditions Time Available for

Function IBM Format Non·Floppy Operations

Consecutive Processing non·floppy 1 ms between sectors
Sector RfW operations allowed = 25 ms 21.6%
on Multiple only between sectors 11 ms at Index
Tracks

Read or Processing non-floppy 52 JlS block available
Write a operations allowed each 192 /'s 43.7%
Single while RIW the sector; 42' 52 /'s = 2.184 ms
Sector a 44 /,S RfW loop is

assumed for 2 bytes
of data

Consecutive Processing non·floppy See above 65.3%
Sector RfW operations allowed
on Multiple while RIW a sector
Tracks and between sectors

as above

Search for Assume 250 $.lS to 1.00 • 3.9 ms/rev 96.1%
Sector Read and Test 10

block for match
after Sync Interrupt

Search for Assume 50 IJS to 1.00 -50/,sl 99.97%
Track process track info 167 ms

for each step

such as step, step direction, head load, ready, write en-
able, etc. are controlled and monitored in software by the
MPU via the PIA. SSDA data transfer operations are
initialized and supervised with MPU instructions. Due to
the PIA, SSDA and system hardware configuration, pro-
gramming can be kept simple and effective with a mini-
mum of software overhead. Basic driver routines can be

DRIVE INTERFACE ~ •
! ! j " g ! f;~!.~

j
~

j ~ !] ~
~ !

~ ~ ~ , , " i 9-0J~

if l(
L~

_~JL
RfW Vee -·5V L

~cso •....c.'"""1 L.:> ~~
~CSi~C?eBl
~ ~Sl a.~:ss:~~

,r-- 0' '.s .Jr---- 06 P94

r--- 05 PBJ

r--- D4 ~ 1'82

r--- OJ CO 1'81

r---- 02 t:3 1'80r---- 01 ~ PA7

r--- DO pA6

I!r.MI PAS.,
~ Al :~ ::;

i'IRi8 pA2_
1lfllA. PAI_n:~~:::

,--- Vss ~ &4 Vee -.5 II

f--- 00 « '+ AO

f--- 01 a: i Al
f---02 A2

f---DJ AJ

f----- D4 0 A"

r---OS i: A5

f---06 U R:~~.~ ""

-
-

-

I

~
L

-
--

Drive Control
and Status
Buffers

Raw
Read
Data

-Write Data
to Drive
Buffer

PLL
Data Recovery

15-6 TTL

MSI devices)

CRCC and
Clock Control

Logic

written with fewer than 600 bytes of code. Operating
systems suitable to most user needs can be done within
two to four kilobytes.

Specific descriptions of the data recovery circuit and
read and write operations are discussed in the following
pages. Simplified logic diagrams are used in the circuit
descriptions. The actual system schematic is shown in
Figure I.

It is important to be familiar with the operation of the
SSDA, PIA and the IBM 3740 format in order to under-
stand the controller design. A review of the MC6820 and
MC6852 data sheets is recommended. A discussion of
drive interfacing and IBM format can be found in the
M6800 Microprocessor Applications Manual. A descrip-
tion of the software drivers and the software for the con-
troller is available upon request.

The raw data from the drive (clock and data) is termi-
nated and buffered before clocking the first D. flip-flop
(Figure 3-B and Figure 4-B). Flip-Flops I and 2 generate a
negative pulse I VCO period wide (Figure 3-D and Figure
4-D) which is used to load the reference counter with 9
and to set the data flip-flop 3.

IBM 3740 data can have only one consecutive pulse
missing in the stream. By loading the reference counter
with 9, Q3 will have a positive transition within 15 VCO
periods generating a clock edge even if the data pulse is
missing (Figure 3-E and Figure 4-E). Carryouts will occur
every 2 /-IS (l6/fo), nominally providing a fundamental
reference for the frequency/phase detector (Figure 3-F
and Figure 4-F). The variable input to the frequency/
phase detector is generated by dividing f0 by 16, using the
carryout to give a pulse similar in duration to the
reference.

Negative transitions on Q3 are inverted and clock flip-
flop 3, whose output goes low (Figure 3-G, H and Figure
4-G, H). If a data pulse is present, the flip-flop is set by
pulse from flip-flop 2 (Figure 3-D, Figure 4-D). If no data
pulse is present, the output of flip-flop 3 remains low
until set by a data pulse which must occur within 32 /-IS of
the last one. The output of flip·flop 3 is then clocked one
Q3 period later by Q3 to generate the NRZ data required
by the formatter circuitry (Figure 3-J, Figure 4-J).

The 8-bit shift register provides 16 /-IS delayed data
which is fed to the CRCCG. The SSDA clocks in 8 bits of
data at 500 kHz before sync occurs and the read opera-
tion starts; because the sync data is included in the CRCC
permutation, this sync data must be included in the CRCC
field.

Phased-locked loop design is described in Motorola
Application Note AN-535.

nize read operations by testing the incoming data stream,
clocked at 500 kHz (2X clock), for the first half clock and
data pattern of the desired address mark. When a match is
found, the external circuitry is released by the Sync
Match (SM) output and the second half of the address
mark (clock and data) is read from the SSDA Rx FIFO
(when it becomes available) and tested for a match with
the desired type. If it does not match the sequence is
restarted. If the second half of the address mark matches,
the desired data transfer is initiated. The external circuitry
switches the SSDA read clock to 250 kHz (IX clock) after
the second half of the address mark has been received so
that only the data portion of the remaining Rx FIFO
information is recovered. The external circuitry also con-
trols the CRCC generator (CRCCG) timing so that only
the data portion of the recovered information is clocked
into the generator.

After the data block has been transferred, the CRCC
status is made available to the MPU for 32 /-IS at a PIA
peripheral line.

Figure 5 is a simplified logic diagram of the read data
logic. Figure 6 is a timing diagram which shows the signal
timing relationship when a read operation is begun.

This explanation of the read data logic assumes that
system initialization has been completed. This includes
the completion of the seek and head load operation. The
enable read line is set and the formatter reset line has been
toggled to reset the sync match latch and set the switch
clock rate latch. These two previous operations are
initiated in software and are executed via the system
Peripheral Data Adapter (PIA). Initialization of the
Synchronous Serial Data Adapter, SSDA, has been com-
pleted as described in the SSDA Read Preparation section.

Raw serial data is processed by the data recovery cir-
cuit which provides the separated read data and 500 kHz
clock to the read data logic, Figure 5-A, B and Figure 6-A,
B.

The 500 kHz clock from the data recovery circuit is
inverted, delayed and then fed to the SSDA read clock
input (RxD), via combinational AND/OR selector logic
controlled by the switch clock rate latch, Figure 5, Figure
6-C. Inverting the clock provides the correctly phased
positive transition to load the read data in the SSDA
receiver shift register. The delay (4 inverters) is necessary
to prevent a possible timing glitch which will be discussed
later. The 500 kHz, 2X clock rate will load the receiver
register with both clock and data bits from the read data
line.

When the bit pattern loaded in the receiver shift regis-
ter is equal to the pattern present in the SSDA sync code
register, the SSDA synch match output, SM, will go high
for one read clock period, Figure 6-D. When the sync
match occurs, the SSDA receive data FIFO is internally
enabled and will begin to store the read data, Figure 6-D.

A
'0 - 8 0 MHz HHHmlHlllHHII

B
I I

+ Disk Data

C ~ (l 4

0

Count

E
03 - Clock

F
Reference

G Clock

H
Clocked Data

J
NRZ Data

V
Freq/Phase

Detector
R

Delayed
Data
(16 j.ls)

Clock
500 kHz Nom
Clock

SSDA
IMC6852l

RxD
Raw Disk
Data
(Serial)

F
C 00

Sync Match -;-16 Sw. Clock
Latch A ate Latch

Ea R 03 C
JK-F F G

C D-FF

K Q
R

-1 I ----SOOkHZ----·i250kHZ---
D 1,,, max. (tSM) L

SSDA - Sync Match (Out) I-------~rrI~-I-----Receive Data FIFO Inte+allY Enabled-----~

>-------- Coun,., CI..,ed -101 1 I 2 I3 I4 I5 I 6 I 7 8 I 9 I A I B I C I D I

Rx Clock Rate Switch Pt.+

The clock and data bit pattern used for sync match
with the IBM 3740 format is a hex F5. The example in
Figure 6-B shows the ID address mark which has the clock
and data bit pattern of Hex F5 7E. Sync match will also
occur with the data address mark which is Hex F5 6F.
The sync code F5 portion of either address mark will not
be stored in the receiver FIFO. The second half of the
address mark, 7E or 6F will be the first byte of data
stored.

The first positive transition of the 500 kHz clock
occurring while the sync match output is high will set the
sync match latch, Figure 5-E, Figure 6-E. The Q output of
the sync match latch will enable the .;-16 counter. After
eight counter counts, Figure 6-F, Q3 of the .;-16 will reset
the switch clock rate latch, Figure 6-G, H. As mentioned
previously, the clock rate latch controls the AND/OR
selector and, at this time, the 250 kHz clock rate, .;-16-QO,
Figure 6-C, is selected and fed to the SSDA read clock.
Because the .;-16 counter and clock rate latch are both
synchronized with the 500 kHz clock, the delay in the
500 kHz read clock is necessary to guarantee that the
AND/OR selector is switched before the next positive
transition of the 500 kHz read clock at the clock rate
switch point, Figure 6-C. After the clock rate has been
switched, the delay is no longer needed. The read data is
now being clocked into the SSDA receiver register at a
250 kHz rate so that only the data bits will be loaded. The
eight count delay between the sync match and clock rate
switch point allows the second half of address mark to be
clocked into the SSDA receive data FIFO register at the
2X clock rate.

The receive data FIFO will now continue to fill with
data bits clocked in at the 250 kHz read clock rate. As
described in the MC6852 SSDA data sheet, the Receiver
Data Available (RDA) bit in the SSDA status register will
be high when data is available in the last 2 locations of the
Rx Data FIFO. The read data can now be read from the
SSDA via the svstem parallel data bus.

The read operation will continue at the 250 kHz read
clock rate until terminated or reset with software.

Figure 7 is a simplified logic diagram of the read data
logic. Figure 8 is a timing diagram which shows the signal
timing relationship when a CRC read operation is begun.

This explanation of the CRC read logic assumes that
the read operation is initialized and is running as described
in the Read Data Logic discussion. The reset latch has
been toggled which presets the MC8506 CRCCG, and
resets the sync match latch. Tliis is done with software via
the PIA. Familiarity witli the MC8506 Polynomial
Generator (Cyclic Redundancy Check Character Genera-
tor) data sheet is assumed.

Separated data and the 500 kHz clock are provided to
the CRC logic from the data recovery circuit, Figure 7-A,
B and Figure 8-A, B. These data and clock signals are the
same as those received by the Read Data Logic, .Figure
5-A, B and Figure 6-A, B, except that they are delayed 16
/lS by the eight-bit shift register.

When SSDA sync code match occurs, the SSDA sync
match line goes high, Figure 7-C, Figure 8-C. The first
positive edge of the 500 kHz clock during sync match sets
the sync match latch which enables both the .;-[6 counter
and the MC8506 CRCCG, Figure 7-0, Figure 8-0, E, F.
The 250 kHz clock .;-16 QO, is now fed to the CRCCG,
Figure 8-E.

At the 250 kHz clock rate, only the data bits from the
read data are loaded into the CRCCG. The data presented
to the CRCCG is delayed eight bits (four data bits), be-
hind the read data, Figure 8-B, G. This allows the CRCCG
to receive the first half of the address mark which occurs
just before the sync match and before the CRCCG is
enabled. The first half of address is included in the cyclic
permutation of data bits which generate the two CRC
bytes. Two CRC bytes append every ID and data field.

If the complete address mark and ID or data field has
been read correctly, the CRCCG All Zero line w.ilIgo low
after the last CRCC byte for that field has been read,
Figure 8-H, G. The positive transition of the .;-16 CD out-
put will reset the CRCC = 0 latch, Figure 8-F, H, I. The
CRCC = 0 latch Q output will remain low until clocked
again one byte time later by ';-16 01, Figure 8-F, I. The
software test for a CRCC error must be made during that
one byte time which immediately follows the last CRCC
byte. (The CRCC = 0 latch Q output is read by the soft-
ware through the PIA). If a detectable read error occurs,
the All Zero line will not go low and the CRCC = 0 latch
will remain high during the one byte test time.

After completing a CRC check of a single ID field or
data field, the CRC read error logic must be reinitialized
before reading the next field by pulsing the Formatter
Reset line.

SSDA
MC6852

SM

Sync Match

Sync Latch

Match
Q

C
JK-FF

C

K 6
R

C 6

D·FF

D Q

H
CRC
All Zeros

PIA-PB2
Enable
Read

J1fLJl11.JUl.JU _
B Data Recovery - D~ta~(Out) 1

~-
C I 12nd 1/2 AD Mark I Last AM CRC Byte I

SSOA - Sync Match (Out) I

II I Ir CRC Enabled

1,2 6J8 012

~

I_I

: :::~:,,""' I IL }~-IC
H I 1st 1/2 AD Mark I

CAe - All Zeros

CRC=O LatchQ I I I
I 1

11 BYtesl
Omitted

I
I

6 7 8

I

I

I
I

E F 0

I

I~
II

DC
I fap

Table 2 summarizes the necessary sequence of SSDA
register programming steps for a read operation. A further
explanation of SSDA Register programming is sum-
marized in Table I of the SSDA data sheet.

In this particular system, hardware chip selects with
direct addressing are used to access the SSDA. Specifi-
cally, writing into hex address 00 will select Control
Register I, CRI. Writing into the next address, hex 01,
will access the CR2. CR3 or the Sync Code Register as
selected with CR I. The SSDA Status Register is read by
reading from hex address 00. Data is read from hex 01. As
described in the SSDA data sheet, the Sync and Control
Registers are write only. Status and Data Registers are
read only.

In Table 2, Step I, SSDA Control Register I, CRI, is
addressed and set to inhibit Receive, Transmit, and Sync,
and CR3 is selected. Step 2 loads CR3 to prepare the
SSDA for the one character internal sync mode. Step 3
returns to CR I and selects the Sync Code Register. The
sync code hex F5 is loaded into the Sync Code Register in
Step 4. These first four steps are required only once per
read operation.

Steps 5 through II must be carried out before each
new field is read. Step 5 sets CRI to select CR2. Step 6
then loads CR2 to prepare the SSDA for eight bit word
transfer, two byte RDA, and to inhibit the sync match
output. Step 7 enables the receiver. In Steps 8 and 9, PIA
Data Register B is addressed and set to enable read and
toggle the read logic reset latch. Step 10 enables the
internal sync and selects CR2. The sync match output is
enabled in Step II.

In Step 12, the SSDA Status Register is read and the
RDA bit is tested. A high RDA indicates two bytes of
data are ready and can be read from the Data Register as
in Step 13.

The SSDA must be programmed in the proper
seq uence to avoid several non-obvious errors. A combina-
tion of the receiver reset mode and reading gap can cause
a false sync match if the receiver is not enabled before the
sync. The Receiver Shift Register, when reset, is actually
set to all ones or hex FF. Gap read at the 2X rate will
appear as alternating zeros and ones or hex 55. If a half
byte of gap is clocked into the Receiver Shift Register, the
contents of the register will be hex F5, the sync code.
Enabling the receiver before enabling the sync allows hex
FF to be clocked out of the register while sync is inactive.
The reset latch must also be toggled before enabling the
sync. This switches the read logic back to the 2X read
clock and prevents a possible false sync match with data
at the I X rate.

The transmitter underflow (TUF) output is used to
synchronize write operations by resetting the external-o-I6

bit counter while writing the pre-addre~s mark gap from
the sync code register at 500 kHz (2X clock). After count-
ing II TUF's, 5-1/2 bytes of gap, the first half of the
desired AM is stored in the Tx FIFO.

When the first half of the address mark (C & D) enters
the Tx Shift register, no TUF output will occur releasing
the external hardware sequence. The second half of the
address mark (C & D) is then stored in the Tx FIFO,
followed by the data to be transferred to the disk. The
external hardware switches the SSDA Tx Clock to 250
kHz (I X clock) after the address mark is written and
clocks the data portion of the information into the
CRCCG. When the data transfer is complete, two dummy
bytes are stored in the FIFO while the Frame Check
Sequence (FCS) is appended by the CRCCG on command
from the MPU via a PIA peripheral line. The Sync Code
Register is loaded with the postamble which will be
written at I X clock after the FCS has been appended and
the first TUF has occurred. The sync code register is then
loaded with the 2X gap clock and data pattern which will
be written after the second TUF which switches the SSDA
clock back to the 2X mode. Write current to the drive is
controlled by the MPU via a PIA peripheral line and is
initialed at the start of the pre-address mark gap and
terminated after the postamble byte for all but write
format operations where it is held on for the entire track.

The Formatter Reset line must be pulsed prior to the
next formatter operation to initialize the sequencer logic.
During write format operations, this will not cause a gap
glitch since the formatter has already switched back to the
2X clock.

The synchronization of the write logic with the SSDA
is accomplished by the transmitter underflow (TUF) out-
put of the SSDA. This line is inverted and fed to the -0-16
bit time counter and to the enable CRCC flip flop (Figure
9). The first TUF resets the -0-16 bit counter. The Q3
output of the bit counter, which is clocked by the in-
verted write oscillator (500 kHz), is used to clock the
enable CRCC flip-flop. As long as TUF's are present, the
-0-16bit counter will be reset prior to its Q3 going high,
preventing the enable CRC flip-flop from being clocked
from its reset state (Figure 9-E, Figure 10-E). The first
TUF missing at bit 7 time is clocked through the enable
CRCC flip-flop, enabling the CRCC generator CRCCG
(Figure 9-E, Figure lO-E) and allowing the switch clock
rate flop to be clocked from its reset state by the next
positive transition of Q3 (Figure 9-E, Figure II·E). The
switch clock rate flip.flop's outputs (Figure 9-H, Figure
II-H) toggle after the 16 bits of address mark clock and
data information have been transmitted by the SSDA at
500 kHz. The SSDA Tx Clock (Figure 9-1, Figure II-I) is
then switched from the 500 kHz write oscillator to the
250 kHz QO output of the -0-16bit counter by the switch
clock flip-flop's outputs combined with the AND/OR

Register Data
Function &

Step Address R/W 07 06 05 04 03 02 01 DO Comments

1 SSOACR Rx Rs Tx Rs Strip Clear TIE RIE ACI AC2 Inhibit: Sync
CRI Sync Sync Tx

Rx
00 W 1 1 0 1 0 0 1 0 Select CR3

2 SSDAOR Intrn 1 Sync Clear Clear X X X X 1 Sy nc Character
CR3 Sync Char CTS" TUF Internal Sync

Clear: TUF
01 W 0 1 1 1 0 0 0 0 CTS

3 SSDACR Rx Rs Tx Rs _ Strip Clear TIE RIE ACI AC2 Select Sync Code Register
CRI Sync Sync

00 W 1 1 0 1 0 0 0 1

4 SSDADR D7 06 05 D4 D3 D2 Dl DO Set Sync Code to hex F5
Sync Code

Reg

01 W 1 1 1 1 0 1 0 1

5 SSDACR Rx Rs Tx Rs Strip Clear TIE RIE AC1 AC2 Select CR2
CRI Sync Sync

00 W .1 1 0 1 0 0 0 0

6 SSOAOR PCl PC2 2 Byte WSI WS2 WS3 Tx Syn EIE Inhibit SM
CR2 ROA 2-Byte RDA

B-Bit Word
01 W 1 1 0 1 1 0 0 0

7 SSDACR Rx Tx Rs Strip Clear TIE RIE ACI AC2 Enable Read
CRI Sync Sync

00 W 0 1 0 1 0 0 0 0

B PIAORB CRC = 0 Int Shift Index X Enable Enable Reset Enable Read Logic
(In) Sync CRC Drive Read Write lOut) Toggle Reset High

IIn) lOut) IIn) lOut) (Drive)

05 W 0 0 0 0 0 1 1 1

9 PIADRB Toggle Reset Low

05 W 0 0 0 0 0 1 1 0

10 SSOACR Rx Tx Rs Strip Clear TIE RIE AC1 AC2 Enable Sync
CRI Sync Sync Select CR2

00 W 0 1 0 0 0 0 0 0

11 SSOAOR PC1 PC2 2 Byte WS1 WS2 WS3 Tx EIE Enable SM Output
CR2 RDA Sync

01 W 1 0 0 1 1 0 0 0

12 SSOASR RDA TORA OCO CTS TUF Rx DVR PE IRQ Test RDA for 2 Bytes Ready
Status

Reg

00 R 0->1 X X X X X X X

13 SSDADR 0 1 1 1 1 1 1 0 Read Data
01 R Exp: 7E16 = 2nd Y, IDAM

logic. The switch clock rate flip-flop's outputs also control
the selection of 2X write data and clock or I X write data
and clock being fed to the write data formatting circuit
(Figure 9-R).

The CRCCG has been clocked from the first missing
TUF by the .;.16 QO output so that only the data portion
of the transferred information is accumulated during the
write data operation, including the data portion of the
address mark (Figure 9-D, Figure 10-D).

Once the last data byte has been transferred from the
SSDA's Tx FIFO into the Tx Shifter, the MPU enables the
shift CRCC line via the PIA (Figure 13-K and 14-K). This
signal is then clocked by the next positive transition of Q3
at the end of the last data byte. The shift CRCe command
to the CRCCG is then delayed I J.lS (Figure l3-P, S, A;
Figure 14-P, S. A; Figure IS-P, S, A) by the write oscilla-
tor clock to allow for the last data bit to be transferred
into the CRCCG registers before switching into the shift
mode.

Two dummy data bytes are written from the SSDA
while FCS is being appended to the data field. This allows
the MPU to keep track of the FCS status and disable the
Shift CRCC command at the proper time, i.e., while the
last dummy byte is to be shifted out of the SSDA. The
disable shift CRCC command is clocked by the positive
transition of Q3 at the end of the second dummy byte
and is again delayed I J.lS before reaching the CRCCG.
This switches the CRCCG data out back to the SSDA
TxD.

When the last bit of the second dummy byte is being

transmitted, a TUF occurs indicating that the Tx FIFO is
empty and the content of the sync code register will be
transmitted next. The sync code register was previously
loaded with the I X postamble data field and it will im-
mediately follow the FCS field. The first TUF following
the FCS is clocked by the positive transition Q3 to disable
the CRCCG (Figure 13-C, E, F,; Figure 16-C, E, F) starting
the write termination sequence. The next positive transi-
tion of Q3 restores the clock to the 2X mode which
allows the second TUF to reset the .;.16 bit counter
(Figure 13-F, H, N; Figure 16-F, H, N). While the post-
amble is being written, the sync code register is loaded
with the 2X gap clock and data pattern which will be
written until the FIFO is loaded with the next address
mark restarting the operation or the transmitter section is
reset by software. Using this technique, the entire track
may be formatted without write current to the drive being
shut off and without any glitches at the switchover points.

TUF's may be counted to determine gap sizes when
write formatting the disk.

The write data format logic takes the NRZ clock and
data information (Figure 9-R and Figure 12·R) and
generates the raw unseparated clock and data format
required by the drive electronics (Figure 9-M and Figure
12-M). The NRZ data is clocked and delayed for one-half
a write oscillator period (Figure 9-L and Figure 12-L) to
remove any delays generated in the previous logic. The
invert~d and delayed NRZ data is NANDed with the 500
kHz write oscillator (Figure 9-A and Figure 12-A) to
generate the -Write Data for the drive electronics.

Special appreciation is given to Mark
Eidson who is responsible for the original
text of this article. Also, credit and
thanks for initi~1 circuit design are given
to Mark Eidson and Tom Daly.

N Bit Counter
D

C QO

+16

R Q3TUF
Missing
at Bit 7

Time

-Reset

D
S Q

Swelk D-FF
Rate

C
R

"0
H

PU

R/W

D

D-FF

Q C

Q

PU

r 1 J.1s max (tTUF)

____ n n
10 1,12131415161710 1,121314151617

I TUF Missing at
17'1 Bit 7 Time
I I

(Clocks Data
into CRee

I
I

Finish Pre-AM Gap --t-- Start Write Data

I'

r (Track No. 64)
E --i 1 Jls max (tTDO)

D2 C3 D3 DO D' D2 D3

1st
:-! Missing TUFs

71al9jAIBIciDIEI

I___________ 4

I
I

1

-Enable CRee----,

---2X Clock --+- 1X Clock

SSDA-TxC --i f-21',1 1-41"-1

CReCG - Data Out I ----l ~ 1 IJs max (tTOO) + 100115

D1 C2 D2 C3 ID3 DO rD"1"l D2 D3 D4

--(2nd 1/2 AM)-_'I~I------oata Field

';"6 - 00

R
Clock & Data

D' C2 D2

a
500 kHz - Write Osc

L Delayed Clock & Data

A
500 kHz - Write Osc

M -Write Data

C, D1 C2
D2 C1

D3 CO DO C1 D1 C2 D2 C3 D3 C4 D4

1 , 1 , , 0 , 0 1 1 1 0 1 0 1 0
H

Switch Clock Rate

I

PIA -
+Shift
GRGG

0 Wrt Data

WrtClk

GRGGG
MG8506

P S
Q 0 Q Shift

Delayed
D-FF D-FF GRGG

Shift (1 J.ls)

0 A G

Write
Dsc

Enbl GRGG

Data Out

0 J

$welk

D-FF
Rate

1 X Data & Clock

G Q
E H

J1I1M1l .MIlf

I I
~4 IlS J1..J1.L.fl.I

II- I II
'III III
111 ~~ 41

ShiftGRG 'I I 1
Delayed Shift GRGG I H 'I \1

1'J,lsDelay
Tx FIFO Empty After Txing 2 Dummy Data Bytes

SSDA - TU_F ~~ rTll

II I -;-16 Not Reset Until 2nd TUF
Switch Clock Rate - Q Bp.cause $w elk is High

-Enable GRGG III
Last Data Byte -----4----0ummy #l----~I----DummY #2

SSDA - TxD --1r' J.ls max (tTDO) r-l _

CRce Generator
Data Out

Last Data Byte
from SSDA TxD

Write Osc r- 2 /ols--j

~~::: ~::::,"'"jJ +_1 _
SSDA __TxD --l J, J,ls max (tTDO) --i r-' JlS max (tTDO)

.:QD<JOO __ 2 Dummy Data Bytes TXD--:Q:[)<~D~O~ _
1001)s typ--jl-I ---j I-- 270 1)smex Itr - D)

CReCG - Data Out II --1r-7511styP II-n--75 1)5 typ
SSD~Q15 ---FCS ---CRCC~~D~O~S~S~D~A _

I
CRCCG

+16 -- 00 Write Clock

~~

500 kHz
Write Qsc----Il...ll-n-
Write Osc 500 kHz

-ul.fU1..JL

11 _

111

II1X Clock +2X Clock

Switch Clock Rate - Q I---------------~I

716 - Reset II---------------------~U~---
>----------1 Xpostamble---------~f___2X Gap

AN-771

MEK6800D2 MICROCOMPUTER KIT
SYSTEM EXPANSION TECHNIQUES

Prepared By
Wayne Harrington
Microprocessor Applications/Systems Engineering

The bus architecture of the MEK6!lOOD2
Kit Microcomputer provides straight-
forward design options for memory or
I/O port expansion. This note outlines
techniques for interfacing an 8K or 16K
memory array with the kit. A technique
is also outlined whereby a data terminal-
based ROM monitor such as MINIBUG
may co-reside with the basic kit R9M
JBUG Monitor. The resulting two-
monitor system allows the user to switch
between either the JBUG I/O port or
the MINIBUG I/O port for moving data
to and from RAM.

MEK6800D2 MICROCOMPUTER KIT
SYSTEM EXPANSION TECHNIQUES

INTRODUCTION

The Motorola MEK6800D2 kit microcomputer sys-
tem (hereafter referred to as MEK/D2) is a complete
computer requiring only a +5 V power supply to begin
microprocessor evaluation. It features a hexadecimal
keyboard for data and command entry and seven-
segment LED array for data display. In addition, the
MEK/D2 provides an audio cassette I/O data transfer
capability. Figure I presents a functional block diagram
of the basic system. The intent of this note is to describe
some useful system expansion techniques which exploit
the architecture of MEK/D2 computer. This note is
intended to supplement the information provided in the
MEK/D2 manual and is divided into sections which
discuss memory expansion, data I/O port expansion
and expanded system application considerations.

Off-board memory expansion involves only minor
changes in addressing and control logic plus certain
elementary control-handshake logic to support both
dynamic memory arrays and provide MPU control for
slow memory arrays.

The inclusion of an I/O port to add data terminal
communication in addition to the keyboard module
function is accomplished by inserting control logic
which converts MEK/D2 into a dual-monitor micro-
computer system. This modification allows the basic
MEK/D2 JBUG monitor ROM and its ACIA to co-
reside with a MINIBUG ROM/ACIA combination.
The JBUG-ROM/ACIA pair support keyboard and
audio cassette data I/O transfer while MINIBUG, along
with its ACIA, supports RS-232 or current loop-eon-
figured data terminals. Each ROM/ACIA pair may be
manually initialized or software-accessed from the user
program.

The capability to select, initialize, or address loca-
tions in either monitor ROM at will provides useful
system application benefits. These include moving data
between various storage media, directly addressing
proven subroutines in either ROM from user program
and manually selecting either monitor as desired to
exploit the most useful commands of each during a soft-
ware or system development phase. These modifications
convert the MEK/D2 into a powerful software develop-
ment tool.

RANDOM ACCESS MEMORY EXPANSION

Functional Design

The basic MEK/D2 Microcomputer Module provides
for a maximum of 512 bytes of On-Board static RAM.
Expansion for additional memory is accomplished by
providing address and data bus buffers as well as some
Off-Board control logic.

Figure 2 presents a functional block diagram sum-
mary of the supplemental logic necessary to support
Off-Board memory expansion. Shaded blocks represent
logic available with the basic MEK/D2 system. This
convention holds for all schematics and diagrams in
this note.

Certain static RAMs require up to 100 ns of data hold
following chip deselect. The IOns data hold specified
for the MC6800 MPU is insufficient to meet this require-
ment. The data bus enable (DBE) stretch network shown
must be added if this type of RAM is utilized in the Off-
Board expansion array. The Memory Control Handshake
Logic provides control and timing signals between logic
resident on Off-Board memory systems and the MPU
clock module. Data transceivers, with a control logic
block, are required to buffer bidirectional data to the
Off-Board memory array as shown. The block labled
"Array Select Decoder" represents logic for converting
high-order address decode signals to Memory·Block
enabling signals. These activitate either the On-Board or
Off-Board array within the appropriate addressing range
of a memory reference instruction.

Logic Design

Figure 3 shows a network which exploits the propaga-
tion delay of non-inverting CMOS buffers to generate a
"stretched" ¢2 for processor and peripheral' data bus
enable. This network delays the falling edge of DBES
approximately 125 ns with respect to DBE. This meets
the data hold time requirement of most static RAMs.
Trim capacitor Ct may be added for fine adjustments to
account for device variations in accordance with the
equation shown.

Memory Control Handshake Logic is shown in Figure
4. Clocked latches EI7A and El7B provide signals to
control either dynamic memory refresh or slow-memory
access on a synchronous basis with respect to MPU
timing.

r------- ---- - - ---,
I

~
I

MPU ICloek
MPU I

MC6800 I
I
I
I KEYBOARD AND DISPLAY MODULE

I
JBUG JBUG I
ROM RAM

MCM6B30 12B I
Byt •• I r------------------. I,

CD I
e· I

I "- fl I
2 to'"4 I

12B I
PROM Q Byte I

Ken ••• City
StandardUser I MODEMRAM,i. MCM6B10 I Logic

~~ I

i<{ I Dloploy

! [[[0 CO]U•• r
Keyboard

I
,

ACIA
PROM 1 MC6B50 I

I
I
I
I
I Keybo.-d

User 'I
Array end

PIA Keyboard
I Display Logic

MC6820 PIA
I L __________ ;,... ______
I

ON-BOARD RAMr-------,
I I

1
1:1
lel
I

Valid I
Array I 1

Addr·"L ..J

OFF-BOARD RAMr-------...,
I
I
1
I
I

Addressl
Lines I

I
I

valid:
Arrav

Addres.l

ClocltM_ ••
MaI.na
e1.••Aktb

HiGh
Order

Add' •••
Decode{

B-16K
Static

or
Dvnamic

RAM
Array

Control
Handshake
and Timing

I
I
I
L•NOTE: Shaded areas denote logic

included in the basic MEK/02 Kit.
This convention holds for all figures
in this' note.

4>1 V6

4>2
U15

MCS8718
Clock Module

r-------- -----...,
I R3 1

3 I
1
I

I E21 1

L__~2~ l-C~(~~ J

DBE~ _I __

I

DBES~
I---+1 t. l+-

ts = 125 ns .•.ats

Dynamic memory cells store data in the form of
electronic charge on the capacitance inherent in MOS
transistor junctions. This charge must be periodically
"refreshed." This is accomplished in most dynamic
memories by performing a "dummy" read or write
operation on each cell. In the case of the 8K Dynamic
RAM Module (MEX6815-3), complete memory refresh
is accomplished by a modified internal read operation
on each of 32 columns once every 64 J.ls. (memory

U15
4>1

NMOS 13
MC88718

4>2614.4 kHz
NMOS 12

Un-
got~
~

TTL 2x Fe

3 24

-=

Refresh
Request I

I

Refresh I
Grant

system organization is 128 rows X 32 columns). The
columns are accessed by an address multiplexer which is
pulsed by the Refresh Grant (RG) handshake signal once
every 64 J.lS.

The power-up reset network, composed of E9' and
E4D, sets latch EI7 A on power-up to insure a proper
initialization of the refresh-handshake logic. E9 also
automatically initializes the MPU system on power-up
by pulsing E6/12.

ue
¢2 MPU

E1 - 74LS04
E4 - 74LSOO
E9 - MC1455
E17 - 74LS74
E22 - 74LSOB

I
I
I
I Memory

Clock

0.' +5V

II'F

:J Jumper for
Slow Memoryr Absent

Figure 5 presents an example of refresh-handshake
timing between latch EI7A and logic on a dynamic
memory system. The latch is clocked by AND-gate
output CA. The first low-to-high transistion of CA (pulse
I) following time-out of the refresh-period one-shot
(8602) samples the logical zero state appearing at the D
input of E17A. This state and its complement are trans-
ferred by the rising edge of CA to the Q and Q outputs
of E 17A as the signals Hold I and Refresh Grant (RG),
respectively. The resultant falling edge of RG retriggers

E17
A

o Q

the 8602 to start a new timing cycle as shown in the
diagram. This action returns the Request Refresh (RR)
signal to logical one. This is sampled by the low-to-high
transition of CA, which returns Hold I high. The result-
ing Hold I signal applied to the HI input of the MPU
clock module is correctly phased to meet H I set-up and
release time requirements and "freezes" the MPU clock
in the phase relation shown. The resulting RG pulse
automatically increments the refresh address counter for
the next refresh cycle.

,------------------
I
I
I
I
I
I
I
I
I
I

I

L - -:Y:A~::~:R~~O~~D-5--

Trig 1 Trig 1

One Shot ~ lOne-Shot Timing Cycle i ~ 1-------
Time-Out ---+L...--.J-.•---------~

l-J j~

--~II--s~
+1 l~

Figure 6 presents a typical example of slow memory
control with handshake-timing between latch E 17B and
memory control logic on a slow memory board. Slow
memory control signals are required to account for
memories (or peripherals) whose access times are in the
range of 540 to 4500 ns. The control signals provide
proper slow memory data acquisition by freezing the
MPU clock. This effectively allows the MPU to "wait"
for memory data to return and still meet the maximum
MPU bus memory access time specification of 540 ns.
The access time upper limit of 4500 ns is determined by
the maximum allowable clock phase 2 high time of 4500
ns. High times in excess of this value will introduce data
loss within the MPU dynamic registers. These registers
use the MPU clock for refresh, just as with memory cells
in dynamic RAM. The sequence of events for a slow
memory access are described in the waveform timing
diagram. The array decoder output, AS, goes high fol-
lowing the low-to-high transition of q,2 for a memory
reference within the addressing range of the array. The
high-state of AS (or Sio Mem Acc) applied to the
asynchronous-set input of latch EI7B releases the
hold-set condition on the latch and allows it to be
clocked by the first CB pulse. This forces Hold 2 (Q)
low, which freezes the MPU clock in the phase relation
shown. Hold 2 is returned high with the low-to-high

4>1 NMOS}
To MPU·

4>2 NMOS

Address
Lines

VMA

4>2

Data
Lines

Sio Mem Ace

transition of the next CB pulse, since latch E 17B is
connected as a toggle flip-flop. Since Hold" is returned
to logic I, the clock is allowed to resume as shown, and
the cycle is complete. The resulting freeze of the clock
cycle with q,2 high and q,1 low adds a I-clock-cycle delay
to the normal access time available. This scheme may be
extended with additional counters and logic in place of
the toggle flip-flop to hold the clock a multiple-number
of MEM Clk cycles for very slow memories. The total
hold time must not exceed the 4500 ns maximum limit.

A key integrated circuit for generating system bus
chip-select or enabling signals in the MEK/D2 is the
high-order address decoder U II - a 2-line to 4-line
decoder/demultiplexer. 'This logic element decodes the
three-most-significant bits, AI5-A13, of the address bus'
in accordance with the following truth table.
A15 A14 A13 Bus Enable Term Comments
o 0 0 RAM = 0 Enables 512 byte array

On-Board RAM
Enables 8K range of user stack
Fnables 8K range of user stack
t:nables user PROM located at
6000'16

o 0 ~ = 0 Enables ACIA located at 800816
o 1 STACK = 0 Enables 128 byte RAM used by

JBUG monitor
Enables user PROM located at
C00016
Enables JBUG ROM located at
EOOO16

·Oenotes Base 16 (he>c:adecimal) number

m =0
~ =0
PROM 1 = 0

This scheme divides the 64K addressing range of the
MPU into eight 8K blocks. The 512 byte static RAM
array is placed in the bottom 8K range, the next two 8K
blocks are reserved for expansion RAM, the fourth con-
tains a user PROM, etc.

Figure 7 presents the Bus Peripheral Allocation Map
for the basic MEK{D2 system. Exact address boundaries
of the bus peripherals described in the decoder truth
table are defined in this map. The decoder output terms
which enable the first three 8K blocks of memory,
beginning with address zero, are RAM, 2{3 and 4{5. In-
spection of the map shows that within the first address-
able 8K block, only 512 bytes are dedicated to static
RAM. This produces a memory addressing "gap" in the
range 0200 to I FFF as far as continuous addressing
within the first 8K block is concerned. This problem
may be solved by additional decoding of the three RAM
select signals above so as to place an 8K expansion RAM
in the first 8K addressing block, or a 16K expansion
RAM .within the first two 8K addressing blocks. The 5I 2

A15

A14
A13
\iMA

High
Ord8f'

Addret.
Decoder

Ull
74155

Array
Select

Decode
_r---,

64/51 I
52/31 ~
4 RAiiii I

I IL__ ...J

To
E7/10

IF;g.10)
Bus

Trani·
celver

MC8T26

To
E7/13

IF;g.101

Addrsss
Rang"

JBUG ROM EOOO·E3FF

User PROM COOO-C3FF

JBUG Stack/RAM AOOO-A07F

Keyboard Module PIA B020-8023

Keyboard Module ACIA 8008-8009
User PIA 8004-8007

User PAOM 6000-7FFF

User RAM 4000-5FFFf----------
User RAM 2000·3FFF

User Static RAM 0000-01FF

512·Byt.
Stetle
RAM
Arrey

D8E

DBE

VR'A.2

2000
to

21FF

8K
Dynamic

RAM
Array

0000
to

lFFF

byte static array is then placed in either the second or
third block, respectively, "on top" of the expansion
RAM. Figures 8 and 9 show the additional decode re-
quired to form either an 8.5K or 16.5K memory con-
figuration. Control and Timing signals necessary to
support these arrays are also shown.

Data flow direction to Off-Board memory is deter-
mined by the decode/control logic shown in Figure 10.
This logic asserts DBRE (Data Bus Receive Enable) for
any MPU read cycle involving Off-Board memory. This
enabling scheme should be used with any additional
Off-Board memory, whether static or dynamic.

Recent developments in semiconductor dynamic
RAM system design have provided compact, cost-
effective arrays such as the MMS68100 and MMS68103
produced by Motorola Memory Systems. These are avail-
able in 4K x 8, 8K x 8, or 16K x 8 size. The most
notable feature of these memories is that the usual
refresh-handshake logic, such as shown in Figure 4, is
not required since refresh is processed by memory board
logic during MPU phase I.

I/O DATA PORT EXPANS~ON/MODlFICATlON

Dual Monitor System - Functional Description

The basic MEK/D2 system with keyboard data entry
and seven-segment light-emitting-diode display may be
expanded to include a co-resident data terminal I/O
capability which may be evoked manually or from user
program. The software necessary to support data
terminal operations is provided in firmware using a
MINIBUG ROM. This ROM monitor co-resides with the
JBUG monitor ROM supplied with the basic MEK/D2.
ROM access and initialization is controlled by the logic
shown in functional block diagram form in Figure II.
With this scheme, peripheral chip-select signals' derived
from the high-order address decoder (UII) are steered
to the desired ROM-ACIA pair as a function of the state
of the Chip Select Control ~ignal, CSC. CSC is generated
from either the manual ROM select switch (S R) or by
user-program command from the PIA. Control from user
program automatically overrides the manual input but
does not initiate an MPU reset cycle as does a manual

4
To E7!10

A15 (Fig. 10)
A14 High Array

A13 Order Select

liMA Add,", Decode
Decoder r------,

U11 6 4/51 I
7.156 5 2/3 I

4 RAM I, 2',
I

,
E23 I

174Ls86 I
8 Bus 8

L___~ _.J

Trans-

00·07
c.lvera 00·07

MCST26

(See Fig. 10)

To
ET/13

(Fig. 10)

612-Bvte
Static
RAM
Arrav

ON-80ARD

.000 MEMORY

to
.1FF

VRA2
RAM

Ul., 18, 18, 111

8

00·07

14 AO-A13

16K
R/W' Dynamic

Mom RAM

elk Array

or Bus 412 OFF-BOARD

MEMORY
0000

VRA'· to
IVUA) 3FFF

RG

RR

DO

3 D1
1

DO DO D2

D3

RE DE

Typical Receiver -

Driver Pair. MC8T26

D4

D5

D6

D7

MEK/D2 -+
Data Bus

To: Figure:

DBES
E4/3 3

R/W
U7/3

PROM 0
U7/6 3

PROM 1
U7/1 4

MPU Module
Stack

U7/11 5 9

Read Enable
E7

Terms Ri5"MJ E5/3 12 6

E5/B 12
I/O J

VAA 2
U11/6 10

E5/6 12 11
ROM M

E5/11 12 12
I/O M

Off·Board {VRA 1
E23/3 B,12 13

Read Enable 14

Term 15
+5V

select from SR. With SR in position J (for JBUG enable),
the ROM and I/O chip-select signals (ROM and I/O are
steered, respectively, only to the JBUG ROM or ACIA,
while the MINIBUG ROM and ACIA are held deselected,
The converse actions occur for SR at position M (for
MINIBUG enable). Each toggle of SR generates an MPU
Reset pulse via the State Change Detect Logic. This has
the effect of automatically initializing each monitor
ROM when manually selected. Nine standard data
terminal baud rates may be derived from existing
MEK/D2 logic and are used to provide transmit and
receive clocks for the MINIBUG ACIA.
Logic Design

Logic realizations of the system functions depicted in
Figure 11 are presented in Figures 12, 14, 15,16 and 17.

Figure 12 shows the Chip Select Steering Logic, MPU
Cycle·Sync Logic and State Change Detect Logic. Chip-
select steering is accomplished by the network composed
of gates E5 and EI C. The clocked-latch network (E3A -
E3B) which generates the chip-select steering control
signal, provides two design benefits. First, monitor
switching occurs only after MPU reset is asserted and
prior to a t/J2 cycle, thus assuring that data will not be
erroneously written or read as a result of a manual
monitor select. In addition, latch E3A, under the control
of the PIA, provides an asynchronous-override to the
manual select switch control. This feature allows direct
access to subroutines in' either ROM or addresses in
either ACIA from the user program. A subroutine to
accomplish this access is described in a following section.

r--------,
I
12,4 3
I 5,7 6

9,11 MC~~26 10
12,14 13

I
I
I
I
I
I 2,4 3

I 5,7 6

9,11 M~~26 10
12,14 13

I
I
I
I
L _

To Off-Board
Memory

Array

PBa PBl

lJ20

U_
PIA

MC61120

2/3
4/5
RAMHigll

Order
Add •.••
o.codw

U1f

JBUG
ROM

(EOOO)

MINIBUG
ROM
Ell

ROM M
Chip Select CS

Steering Logic
(EOOO)

I/O J Ci Tx 0

U23
Rx 0

JBUG
ACIA
(8008)

Tx Rx
Clk Clk

I/O M Tx 0

CS Rx 0
MINIBUG

ACIA
E12

9 (BOOBI

Tx elk

Rx elk

~1MPU
-= Reset

NOTE:
Address and 08ta buses
not shown for clarity.

HIllh
o.dw

Add,..
~

U11
74155

4>1NMOS

2
E1 - 74LS04
E2 - MCBT97
E3 - 74LS74
E4 - 74LSOO
E5 - 74LS32
E6 - MC14070

8------~fJ
a (E3A)

- 'cmos'

r

Figure 13 shows the chip-select timing for a manual
command conversion from JBVG to MINIBVG via
toggle switch SR. Exclusive-OR gates E6 in Figure 12
form the state-<:hange detection circuit which generates
a 4 ms reset pulse for automatic MPV initialization
whenever the monitor select switch is thrown in either
direction. Note that provision for direct push-button
reset of the MPV is also retained via E6D to pin
60fV22.

Figure 14 shows address, data and control signal
interconnection to the MINIBVG ROM and its ACIA.
Note that even though these peripherals reside at the
same bus address as the JBVG pair, the two pairs are
never simultaneously selected due to the complemen-
tary' control nature of the chip select steering logic.

Figures IS and 16 show circuitry necessary for inter-
facing with data terminals using either RS-232 or
current-loop I/O configuration. Data terminal baud-
rate clocks may be taken from the existing MC14040
binary counter (VI7) outputs as shown in Figure 17.
An MCI455 connected as an astable multivibrator
(EI3) is utilized to generate a baud·rate clock consistent
with current-loop TTYs.

Software Control Considerations

Software access to addresses in either Monitor
ROM or ACIA is gained through a subroutine which
controls the output states of PBO and PB I of the user
PIA. The four possible states of PBO - PB I produce the
following control functions with respect to latch E3A,
Figure 12:

pel PSO Monitor Control Function

o 0 Illegal Slate

o 1 Enable MINIBUG ROM/ACIA user addressing

1 0 Enable JBUG ROM/ACIA user addressing

1 1 Addressing controlled by Monitor Select Switch. SR

The I-I state is automatically entered upon system
power·up or manual reset, since following the power-up
reset pulse the PIA Data·Direction·Registers are pro'
grammed as inputs (all registers cleared). PBO - PBI
appear as high-impedance inputs and both terms are held
at logic I by the 10 kn pullup resistors.

4ms- ~

H--J

A3
AO

110 M

.
To:

U3/11

E5111 (Fig. 12)

U9/13 I

+5V +5V
E5/6 (Fig. 12)

14d d10

~ CS3 2 DO E 22 DO
A/W 3 01 ~ A/W 21 01

~ CS1 4 02 14 20 02

AO 24
-E

19 035 03

A1 23 6 04 9 E E12
18 04E11

A2 22 MINI8UG 7 05 MINI8UG 17 05

A3 21 8 06 1~ 16 06

A4 20
ADM ~ ~IEOOO) ACIA

AS 19 (8008)

A6 18 ~ AS 7
A7 17 A3 8 I

16
r-- E

T~ C
A8

A9 15 Ax C
CSO Tx 0

1~ ~ 11 Ax 0
CfS
i5Ci'>

12

6
10

E
Tx 0

8
E E12

11
AS OCO

23

9 CTs 24

E
13

A/W -=
14 5

E ATS
7

IAQ

ACIA
4

T)(elk

3
Ax elk

Ax 0

Data
Lines not shown

for c1airw.

E12 - MC6850
E14 - MC1488
E15 - MC1489
E16 - MC8T96

Baud
Rate Logic

Fig. 17

+5V +5V

E Tx D

A3 E

AO RS

9 E
E12

I/O M

DBE
14

E

13
RIW R/W

IRQ IRQ

ACIA

4
Tx elk

3
Ax elk

-:-''-Data
Lines not shown
for clarity.

~

5

D 4N33
Detail

2 4

E2 - MCBT97
E12 - MC6B50
E15 - MC1489
E16 - MCBT96
E1B, '9,20 - 4N33

Baud Rate
Logic

Fig. 17

~ r-- ------------------,

To E12/3, 4 (Fig. 15, '6)

4

16 x 9600
16 x 4800

16 x 2400

16 x 1200

16 x 600
16 x 300

16 x 150

16 x ,75

16 x 110

Standard
Data Terminal

Baud Rates
x'6

Required for.-J-- 110 baud operation

~ ~ only.
I
I
I
I
I
I
I

I-:- 62BO pF I
I -:-:L ~

ToPin4 ~JX X
U23

Cut
for baud rates

other than 300.

Adjust P
for 1760 Hz
(t = 568}Js)

22

23

24

AO
35

A1 36

21
R/W

OBE 25

DO
33

0'
32

02
31

03
30

04
29

05
2B

27
06

07 26

!
USER
PIA

csoR
CS2
CSl
RIO
RSl
RIW
E
DO
Dl
02
03
~
OS
011 '6
D' PB6

I'll 1'112PBO
17 12 10

Mct820

V20

(lIOCM)

+SV NC
1 6

r
2200 :
1/2W 21

+5V,
r-
I
I
1

21

.,
I
I
1 '50
14 '/2 W

MC'4B9AL

{
Gnd for 30 CPS
+5V for 10 CPS

2 3 9' k
Reset In,

9 A Baud Rate
'3

MC'4536 620 pF /Adjust
Dout 4

6 Out1
B·Bypass 50 k

'0
11 5

·'2Vr----.,
I E3 I
I
I E4

L~e_N~t~_?J

UB
ROM '3~~c~~:~ CS2

CSO

" CS,
CS, ROM CS2\:- CS3

CS3 cao
,4 '0 "- Add Inverter MC8T96

Tie eso to +5V
+5V +5V

MINIBUG
o
o
1,

MIKBUG,,,,

Serial
Common

Serial
Input

RS·232C
Input

RS·232C
Sig Gnd

Reader C
Control
Return

Data Terminal-Only Configurations

A configuration which employs data-terminal com-
munication interface only may be easily implemented by
inserting MINIBUG or MIKBUG Monitor ROMs into the
JBUG ROM socket (US). Foil path modifications and
additional logic necessary to support these ROMs are as
follows:

Modifications for MINIBUG
I. Cut foil path at U17, pin 13.
2. Connect pins 3 and 4 of U23 (ACIA for Audio

Cassette).
3. Add terminal I/O interface logic as shown by

Figures 15 or 16 and Figure 17. Connect U 17 out-
put to pin 3 or4 of U23 as shown. U17/3 need not
be cut (as shown in Figure 17) if 300 baud opera-
tion is desired.

Modifications for MIKBUG
I. Add terminal I/O interface logic to the user PIA

(U20) as described by the schematic of Figure IS.
2. Cut foil paths at US/1O and US/II and connect

per Figure IS.

The I/O logic and discrete components described in
these figures may be mounted in the wire-wrap area pro-
vided on the microcomputer module board.

A subroutine which controls the monitor-selection
latch (E3, Figure 12) through the PIA is presented in
Figure 19. User program access to subroutines in ROM
or addresses in ACIA is accomplished by first calling the
monitor access subroutine (MONACC) shown in Figure
19 and then executing a memory reference instruction
to the ROM or ACIA address desired. As an example,
the subroutine calling sequence:

LDAA # S 41 Form ASCII "An
LDAB # SOl Get subroutine constant
JSR MONACC Enable MINIBUG ROM/

ACIA addressing
JSR S E IOS Output ASCII char to

terminal

causes the character "An to be printed o'n a terminal as
a result of MINIBUG monitor access from the subrou-
tine MONACC. In this example, the hex address EIOS is
the start vector of the MINIBUG II subroutine OUTCH
which outputs one ASCII character to a terminal. The
following is a list of useful data-moving subroutines con-
tained in MINIBUG II and 11I along with their starting
addresses, entry and exit conditions:

) - Addresses in MINIBUG II
) - Addresses in MINIBUG III

BADDR (SEOD9) (SEOFS)* - Build a 16-bit hexa-
decimal address from four digits entered from the
keyboard.
Entry requirements: none
Exit: X-register contains the 16-bit address. The A &

B registers are destroyed.

BYTE (SEOE7) (SEI06) - Input two hex characters
from the keyboard and form a I-byte number.
Entry requirements: none
Exit: A-register contains the S-bit number. B-register

is destroyed.

OUTHL (SEOFA) (SEilS) - Output left digit of hex
number to console.
Entry requirements: A-register contains hex number.
Exit: A-register is destroyed.

OUTHR (SEOFE) (EIIC) - Output right digit of hex
number to console.
Entry requirements: A-register contains hex number.
Exit: A-register is destroyed.

OUTCH (SEI08) (SEI26) - Output one ASCII character
to terminal.
Entry requirements: A-register contains ASCII char-

acter to ou tpu t.
Exit: No change

INCHP (SE1l5) (SI33) - Input one character, with
parity, from terminal to A-register.
Entry requirements: None
Exit: A-register contains character input.

INCH (SEIIF) (SE133) - Input one character from
terminal to A-register and set parity bit = O. If char-
acter is a delete (S7F) it is ignored. Location SAOOC
should be equal to zero if the character should be
echoed (MINIBUG II only).
Entry requirements: none
Exit: A-register contains character without parity.

PDATAI (SE130) (SEI4B) - Print at terminal the
ASCII data string pointed to by X-register. Data
string must contain an ASCII EOT (S04) as a
terminator.
Entry requirements: X-register contains the address

of the I st byte of the data string. The data string
is terminated with a S04 character.

Exit: A-register is destroyed. X-register contains
address of S04 character.

OUT2H (SEI73) (SEI8D> - Output two hex characters,
pointed to by X-register to the terminal. .
Entry requirements: X-register contains the address

of the characters to be output.
Exit: A-register is destroyed. X-register is incre-

mented.

OUT2HA ($EI75) ($EIOF) - Output two hex char-
acter in A-register to the terminal.
Entry requirements: A-register contains the char-

acters to output.
Exit: A-register is destroyed. X-register is incre-

mented.
OUT4HS ($EI7C) ($EI96) - Output four hex char-

acters (2 bytes) plus a space to the terminal.
Entry requirements: X-register contains address of

first byte.
Exit: A-register is destroyed. X-register contains

address of second byte.
OUT2HS ($EI7E) ($EI98) - Output two hex char-

acters (I byte) and a space to the terminal.
Entry requirements: X-register contains address of

byte to output.
Exit: A-register is destroyed. X-register is incre-

mented.

Entry requirements: none

Exit: A-register destroyed.

The ability to gain access to two co·residing monitor
ROMs via manual or software commands combined with
keyboard, audio cassette, or data terminal I/O capability
provides opportunity for moving program data between
various storage media. It is possible, for instance, to
create and assemble a program under the control of
MINIBUG II or III using an RS-232-compatible digital
cassette terminal. The resulting object code is loaded to
MEK/D2 RAM using the MINIBUG "L" command. The
Monitor Control Switch may now be used to initialize
the JBUG Monitor in order to move the object code in
RAM to an audio cassette tape with a JBUG uP"
command.

tiAM MoNACC
OPT o,:s:

• SUBROUTINE TO CONTROL ROM ACCESS PIA
• FROM U:S:ERPROGRAM. ROM ACCESS CONSTANT
• IS REQUIRED IN ACC-B ON SUBROUTINE
• ENTRY AS FoLLo~S :
• $01 ENABLE MINIBUG RoM/ACIA ACCESS
• $02 = ENABLE JEUG RoM/ACIA ACCESS
• $03 = ENABLE TOGGLE SWITCH ACCESS
IoDDB EQU $8006
CRB EQU $8007
MoNACC PSH A

CLR A
STA A CRB
COM A
STA A
LIlA A
:S:TAA
LIlA A
STA A
STA B
PUL A
RTS

DIIB =
CRB =
IoDDB

END

00001
00002
00003
00004
OOOO~
00006
00007
00008
00009
00010
00011
00012
00013
00014
0001~
00016
00017
00018
00019
00020
00021
00022
00023
00024
0002~
00026
00027
IoDDE
CRE
MONACC

8006
8007

0000 :36
0001 4F
0002 E7 8007
OOO~ 4'".~
0006 B? 8006
0009 86 04
OOOB B7 8007
OOOE 86 0::::
0010' It? 8006
0013 F7 8006
0016 32
0017 39

8006
8007
0000

IODDB
~:$04
0<::1::
::$03
IOIIDB
IoDDB

PRE-SET E3 S,R INPUTS
WRITE ACCESS WORD TO E3

PIA DATA DIRECTION REGISTER-B SIDE
PIA CTRL REGISTER-B SIDE
= PIA I/o,DIRECTIoN REG-B SIDE

Figure 20 presents a tabular comparison of command
sets for JBUG, MINIBUG and MIKBUG monitors. Any
two pairs of these monitors may be used to configure
the MEK/D2 computer to maximum advantage to suit
the application through use of the dual monitor access
logic described in Figure 12. A comparison of the com-

mands of Figure 20 reveals that an excellent combina-
tion might be a MINIBUG II/MINIBUG III configura-
tion. This would provide capability for memory test,
punching and loading of binary tapes as well as access to
the powerful software edit functions of Trace and Break-
point insertion.

Monitor Function
Display Internal Registers

Load RAM from Tape

Dump RAM t9 Tape (Punch)

Memory Examine/Change

Go to Entered Address and Execute

Set Terminaf Baud Rate
Test Memory

Punch Binary Tape from RAM

Load Binary Tape to RAM'

Abort Program Execution (Escape)

Trace One Instruction
Set a Breakpoint
Reset a Breakpoint

Continue Execute from Breakpoint

Delete All Breakpoints

Print Addresses of All Breakpoints

Trace N Instructions

JBUG
R

L

P

M

G

MINIBUG II MINIBUG III MIKBUG Notes

R R R

L L L

p p p 2
M M M 3
G G G 4

S S S

W 6
Y 7
Z 7

N

V 8
u
C

D 8
B

T

NOTES

1. Order of Display: JBUG (PC,X,A,B,CC,SP); MINIBUG II and III, MIKBUG (PC,SP,CC,B,A,X).
2. Before executing, load beginning and ending address of fange in locations A002 to A005.
3. For JBUG: Enter address, type M for contents. For MINIBUG; Enter M followed by address. Contents are

displayed after typing last address character. For MIKBUG: Enter M, .pace, address. Addre •• and deta are
printed.

4. For JBUG; Enter starting address, type G. For M1NtBUG: Type G, followed by address. Execution begins
after type of last character. For MIKBUG: Load start address in A048/A049, type G.

5. For 110 Baud: TypeS1. For 300 Baud: TypeS3.
6. Performs six memory tests: walking address, write/read all ones, all zeros, AA, 55 and "Walking Bit."
7. Data is in binary (not ASCII) format. Requires a terminal with DC2, DC4 character recognition.
8. For J8UG: Type address where breakpoint is desired, followed by V. A total of five may be entered. Re·

moval of all breakpoints executed by typing V not preceded by address. For MINIBUG III: Same asJBUG
except eight breakpoints may be entered.

9. IRQ vector must be stored at AOOO/AC01, NM I must be stored at A006/A007 for all monitors.

Figure 21 presents a brief test program for evaluating
user-program access to monitor subroutines through the
monitor switching logic. The program should be exe-
cuted from JBUG, i.e. with the monitor select switch in
the J-poisition. Upon execution, MINIBUG addressing
is enabled and a string of control characters are trans-
mitted to the terminal. Following this, any character
typed at the terminal is echoed to the terminal. When
the character "ESC" is typed, the program jumps from

the echo loop, JBUG addressing is software enabled and
program control passes from the user program to the
JBUG monitor. This action may be checked by viewing
the dash "prompt" in the keyboard LED display im-
mediately after typing the "ESC" character on the
terminal keyboard. .

The W command of MINIBUG II may be used to test
all memory in the expanded system. Figure 20 describes
the use of this command.'

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00011.0.
00017
00018
00019
00020
00021
00022
0002:3
00024
00025
00026
00027 4000
00028 4000
00029 4003
00030 4004
0003.1 4005
000:32 4007
0003:3 400A
00034 400C
00035 400F
00036 4011
00037 4014
00038 4016
00039 4017
00040 401A
00041 401C
00042 401F
00043 4020

l-iAM TEST1
OPT O.S

•• TEST PROGRAM TO EVALUATE SOFTWARE ACCESS TO
• JBUG AND MINIBUG SUBROUTINES THROUGH MONITOR
• SWITCHING LOGIC. TERMINAL IS 300 BAUD. RS-232
• CONFIGURED. PROGRAM DOES MINIBUG ADDRESS
• ENABLE. EXECUTES cR + 4LF'S AT TERMINAL.
• THEN JUMPS TO A CHARACTER ECHO MODE. EACH
• CHARACTER TYPED AT THE TERMINAL IS ECHOED
• AND PRINTED AT THE TERMINAL. WHEN AN "ESC"
• IS TYPED. THE PROGRAM JUMPS OUT OF THE ECHO
• LOOP AND ENABLES JBUG MONITOR ADDRESSING.
• CONTROL IS PASSED TO THE JBUG MONITOR. THIS
• ACTION MAY BE VIEWED BY OBSERVING THE JBUG
• "PROMPT" (A DASH) ON THE MEK/D2 KEYBOARD
• DISPLAY IMMEDIATELY FOLLO~ING TYPE OF THE
• "ESC" ON THE TERMINAL. THE PROGRAM IS INITIATED
• FROM JBUG WITH THE "G" COMMAND.
•8004 Io[IIIA EQU $8004

8006 IODIIB EQU $8006
8005 CRA EG!U $8005
8007 CRB EQU $8007
8008 ACIAC EQU $8008
8009 ACIAD EQU $8009

ORG $4000
CE 41FF LIi:>< ::$41FF
01 NOP
OF SEI
C6 01 LDA B ::$01 GET MINIBUG ENABLE CONSTANT
BII 403A -JSR MmiACC ENABLE MINIBUG ADIIRESSING
86 0:3 LDA A ::$03
B7 8008 STA A ACIAC CLEAI':ACIA
86 09 LDA A ::$09 7BITS. EVN PRT'T'.1 STOP, /16
B7 8008 STA A ACIAC CONFIGUI':EACIA
86 OD LDA A ::$OD
5F CLI':E:
BD E108 J:';:I':$E108 :':MITCR
86 OA LIlA A ::SOA
BD E108 U JSR $,E108 ><MIT LF
5C INC B
C1 04 CMF' B ::$04 4 LF--S ?

26 F8 BNE K1 END LOOP
BD El15 1(2 JSR SEl15 BRING IN TER,.,INALCHAR

• ACCUMULATOR A CONTAINS THE ASCII CHARACTER
81 1B CM~' A ::$lB 1'- IT AN "ESC" l'.;,

27 05 BEQ 1<:3 IF YES LEAVE ECHO LOOP
BD E108 JSR SE108 ECHO CHAR TO TER,.,INAL
20 F4 BRA K2 GO LOOK FOR NEXT CHAR
C6 02 K3 LDA B ::$02 GET .JBUG ENABLE CONSTANT
01 NOP'
01 tmp
BII 40:3A JSR MONACC EtiABLE JBUG ADDF,:ESSING
7E E08D .JMP $E08D .JUMP TO JBUG INIT VECTOR

00044 4022
00045 4024
00046
00047 4027
00048 4029
00049 402B
00050 402E
00051 4030
00052 4032
00053 4033
00054 4034
00055 4037
00056
00057
00058
00059
00060
00061 403A 36
00062 403B 4F
00063 403C B7 8007
00064 403F 43
00065 4040 B7 8006
00066 4043 86 04
00067 4045 B7 8007
00068 4048 86 0:3
00069 404A B? 8006
00070 404D F7 8006
00071 4050 :32
00072 4051 39
00073
IODDA 8004
IODDB 8006
CRA 8005
CRB 8007
ACIAC 8008
ACIAD 8009
~~1 401C
K2 4024
K3 4030
MONACC 403A

•••• SUBROUTINE •••
• ACCB CONTAINS ENABLING CONSTANT
• $01=MINIBUG,S02=JBUG,S03=,.,ANUAL
•MONACC PSH

CLR
:S:TA
COM
STA
LDA
STA
LDA
STA
STA
PUL
RTS
END

ON ENTRY
SWITCH

A
A
A • CRB
A
A
A
A
A
A
B
A

IODDB
::$04
CI':E
::$03
IOIIIIB
IODDB

PRE-SET E3 S,R INPUTS
WRITE ACCESS WRD TO E3

A summary of foil-path modifications which account
for both memory expansion arjd inclusion of multiple-
monitor logic is tabulated in Figure 22.

Figure 23 presents a tabular summary of additional
power supply capability required to support the expan-
sion logic and memory. Data from this table may be
used to estimate requirements for a specific system
configuration.

Cut Foil Connect Cut See
Path At Path Term Figure
U6/36 A Side to E4/3. E7/1 DBES 3
·U11/4 A Side to E23/1 RAM 9

B Side to Ul1/6 4/5 - iiRA 2 9
Ull/9 A Side to E5/2.4 ~ 12

B Side to E5/3 ~J 12
Ull/12A A Side to E511~T2 I/O t2

B Side to E5/8 170 J 12

U23/3,4 8 Side to El/12 ~ 12

U7/B B Side to E7/9 i5"iiFfE 10

U20/23 A Side to..W11112 I/O - User PIA -
U21/23 A Sido to·U·ll/12 i70- Keyboard PIA -

Expension Worst Ca•• Supply Reference
Device Typo Currants (mAl Figur.

El 74LS04 6.6 4. B. 12
E2 MCBT97 9B.0 12
E3 74LS74 B.O 12
E4 74LSOO 4.4 3,4,12
E5 74LS32 9.B 12'
E6 MC14507 O.OOB 12
E7 74LS133 1.1 10
E9 MC1455 6.0 4

Ell MC6830 130.0 14
E12 MC6B50 105.0 14,15,16
E13 MC1455 6.0 17
E14 MC14BB 25 (+12 V), 15 (-12 V) 15
E15 MC14B9 26.0 15,16
E16 MC8T96 B9.0 16
E17 74LS74 B.O 4
E1B 4N33 10.7 (+5 V), BO(+12 V) 16
E19 4N33 20.0 (+12 V) 16
E20 4N33 10.7 (+5 V), 20 (+12 V) 16
E21 MC14503 0.004 3
E22 74LSOB B.B 4.6
E23 74LSB6 10.0 9

Worst.ea •• SUD"I Curronts (mAl
Architecture Typo Motorohl Part +5V +12V -5V -12 V

2k x 8 Static MEX6B12·1 1000 - - -
8k)(8 Dynamic MEX6B15-1 860 300 - -

16k x 8 Dynamic MMS68100· 1200 333' 4 -
16k x 8 Dynemic MMS68103 1200 333 - 1.7

The technqiues discussed in this note add the follow-
ing capability to the basic MEK/D2 kit microcomputer

* Power-up auto-reset
* Switch-selectable monitor operation
* RS-232 or current-loop data terminal operation at

all standard baud-rates
* RAM expansion to l6.5K bytes
* ROM-resident subroutine acquisition by user

program
* Operation with JBUG, MINIBUG II and III or

MINIBUG ROM monitors

A CRT TERMINAL
USING THE M6800 FAMILY

Prepared by:
Joe Roy and Dusty Morris
Systems Engineering

This Note describes an M6800-based CRT
Controller. A display format of 24 rows
of 80 characters is featured. A Motorola
M3000 Video Monitor is utilized.

AN-773

A CRT:·Terminal
Using thelM6S0(j Family

This article describes a versatile M6800 based CRT
Controller for "glass-teletype." smart. programmable.
and intelligent CRT terminals. While a complete dupli-
cation of the entire package may be beyond the capa-
bilities of most readers. some of the design features
should be of particular utility in other construction pro-
jects. Of particular interest is the exploitation of the bi-
phase clock architecture of the M6800 system. provid-
ing higher throughput. more I/O handling capability.
less interference patterns during refresh memory
accesses. and easier task-orientated multiple pro-
cessor implementation in a CRT terminal than is pos-
sible with other approaches. Let's look at the features
of this CRT terminal:

1. 24 rows of 80 characters.
2. 7' X 9 uppercase characters in a 9 X 12 dot

block; shifted lower case through the use of a
custom programmed MCM6832 16K Binary
ROM.

3. Conventional non-interlaced raster scan.
4. 8link. half-intensity. video invert. underline. and

non-display FACS (Field Attribute Codes);
embedded FACSwith optional widened memory
capability.

5. Alternating inverted/non-inverted cursor.
6. 50/60 Hz field rate is logic selectable; display is

centered for both 50 and 60 Hz.
7. Transparent accesses of Refresh Memory by VIA

and MPU.
8. Limited graphics implementation with no

changes in basic design philosophy.
9. Design philosophy facilitates up-grading a sim-

ple economical terminal with upward compati-
ble software and hardware to a task-oriented
multiple processor intelligent terminal.

10. M PU is unburdened from overhead of refresh
memory contention and is free to service key-
board. edit functions. serial communications.
and high speed control such as floppy disk.

The basic configuration for a microprocessor-
controlled CRT terminal is shown in Figure 1. An
MC6800 microprocessor executes the CRT terminal
executive firmware routine and jumps to driver sub-
routines when servicing the keyboard. serial synchro-
nous or asynchronous interface. floppy disk formatter.
and other peripherals. Cursor movements. R/W. and all
editing functions are programmable and under micro-
processor control. Actual refresh of the CRT monitor
display is done with a configuration of SSI/MSI hard-
ware called a VIA (Video Interface Adapter). The VIA
provides video. vertical sync. and horizontal sync to the
Motorola M3000 (or equivalent) monitor. The monitor
must meet the requirements specified in Figure 2.

The MPU and VIA share the CRT Refresh Memory.
Since the processor clock is derived from the VIA. both
are synchronized. As shown in Figure 1 timing
diagram. the VIA accesses memory for CRT refresh
during clock phase 01. while the M PU accesses
memory during 02. The Refresh Memory is organized
in an odd address block and an even address block.
Both an even and the adjacent odd address characters
are transferred during a 01 access. whereas a single
character is transferred to the MPU during a 02
access. The "odd/even memory" concept allows char-
acters to be pulled from memory at a rate (~ 2 MHz)
sufficient to update the CRT. The "interleaved clock-
ing" of memory makes it look transparent to both the
MPU and the VIA. That is. neither delays the access of
the other to memory. Consequently. less MPU over-
head results than in other approaches.

Note that the interleaved clocking of memory is
unaffected by cycle stretching of either M PU 01 or
02 ... techniques used for refreshing dynamic
memories. synchronizing other I/O. or interfacing slow
memory.

The Refresh Memory provides a bidirectional data
bus to the MPU and a two byte output bus for screen
refresh. The two bytes of display data are pipelined to
even and odd latches which are alternately enabled as
data to the address inputs of an MCM6832 character
ROM. The address is an ASCII character which the

2.POAT REFRESH MEMORY OPERATION

MPU 1 IVicMo lnt.rt.c:. I
1 MHI ~,=t:~~.nd _

tdj.c.nlodd
tMrK1••.

-The MCM 6832 is a
custon 16K binary ROM.
selected for 450 ns access,
Ind programmed for row
select.

• The MPU .1 Ind 42 clocks Ire
synchronized to the Video
Interface Adapter (VIAl timing

• Accesses to the Refre~ MemMY
on opposite phases of the clock
by the MPU and VIA result in
completely transparent operation.

• There is no annoying flickering
or blanking of the screen
during data transfers.

(Columns
1
(Rows

(Columns
1
(Rows

~{

7 7

9 9

9 9

12 12

50 HZ 60 HZ

24 24

288 288

1667",1311 0

215",141 215",141

2634", (49) 968",1181

372 310

18.6 KHZ (53.76 "'I 18.6 KHZ 153.76 "

1.8972 MHZ 1.8972 MHZ

80 80

2.1", (41 2.1", (4)

4.7"' (9) 4.7", (9)

4.7",191 4.7",191

11.5",11021 11.5",11021

17.074800 MHZ 17.074800 MHZ

12" 12"
527 ms 527 ms

948.6 KHZ 948.6 KHZ

58.6,us 58.6,us

}

1.18m,

Figure 2 Video Monitor Timing
(Motorole Displey Products M3000
Monitor milts thlSe requirements)

Address
EVENButter ODD

A'5
& MEMORY MEMORY

VMA Decoder BLOCK BLOCK

RIW

EvenByte 0000

Odd Byte 0001

EvenByte 0002

Odd Byte 0003

, ,I.
2K x 8
equals
one page !--1-1 ,..

EvenByte

Odd Byte 07FF

ROM maps into a block of dots. The particular row of
dots (0 to 11) in the block is determined by four "row
select" inputs from the VIA. In a raster scan system,
each ASCII character is presented 12 times to the
character ROM with a sequential row select each time
in order to paint the complete character on the screen.

Each row of dots is parallel loaded into an 8 bit shift
register and clocked out serially. Field Attribute Codes
(FACS) such as inverted video are imposed on the
serial data stream by the VIA before the video is sent
to the monitor.

This section describes the 2 port memory tech-
nique which allows interleaving of the MPU and dis-
play functions with minimal interference. Figure 3 is a
simplified block diagram of the functional 'impli-
mentation. As can be seen the memory is divided into
two blocks; one 'even' and one 'odd.' Selection of the
appropriate block is by address line AO, while A 1
through A 10 select one of the 1024 bytes in each
block. A 11 through A 13 are used to select the parti-
cular "page" of memory. RIW and VMA are used in the
read/write process and to determine if data is gated 'in'
or 'out' on the data line DO through D7.

As described earlier, the refresh RAM is organized
as a 1K X 8 even block and a 1K X 8 odd block.
Even and odd blocks are interleaved to form a 2K X 8
"page." Of the 2048 bytes, 1920 (80 times 24) are re-

quired per page of display, leaving 128 bytes spare.
Because the refresh memory looks like any other RAM
on the MPU bus, this spare 128 bytes are free for
scratch' and the stack. In multiple page systems, it
serves as an edit buffer.

The refresh memory is implemented with 450ns
2102 style 1K X 1 memories. Even and odd blocks
each contain eight devices. The new 2114 style 1K X 4
static memories (spec'd at 450ns) are an attractive
alternate (only four are required per page). Memory
addressing is through 1 of 2 ports. Referring to Figure
4, the schematic offers the two port memory, we will
look into the detailed design.

The VIA address counter (DA1-DA10) is gated with
a set of MC6887' high speed three state buffers, the
Motorola equivalent of the 8797 device. The enable
signal to pins 1 and 15 on U20 and U21 is generated
only during EN DISP ADDR at P2 pin 3 (roughly 01
interval) and when PAGE SELECT is high at P2 pin 4.
The latter signal is only required in multiple page sys-
tems, and determined which page is displayed. Note
that pin 15 on U20 is always enabled. This gates pin
12 to 11 path buffers VMA (Valid Memory Address).
This signal is for gating the M PU address buffers (U18
and U19). When used with systems such as the EXOR-
cisor where a block of addresses must be uncon-
ditionally protected, this signal should be VUA (Valid
Users Address).

'"~~~~~~a
r .' §;l.::: ~~ 1:'" 1.!:: £ ~ ~ N}:t::; tUr

,- --.------] ,[g~!HHBHt-.
',- • ~ 1 ~L~.".---
:Slltl~~4!';lfJO:;'9~"9-;l-;:_: -,...,., ~ ~~

: -mcp'r"l'!:1,,: I i ~ n~ ~~

1~1~~;;':t~lt~';;:f~£~ ~ ="6 ia8~
: -f"W!1'1"1-1'11'":: ' 'n' ~080
: ~ ~ ~ .c: 4! ~ ~ ~ ~ < ~ ~ ~ =i '" d'§ ~ 08 -9
: -"f["' "f[=14·1'!" •

•i~~r:F~-TCi4<~,f::'h[tHf·n ..~~-8: • "'-"rmwr[=:
:51~-~ 4 ~ , - •• ~ •• ~ ~~C
: 'oT"j'fl"ll"'lJl1!" -:
ig Fu ~ ~ ~';.1 'fl 'l. i ~~~"';

:!1'ff or'r-H'I"l'!"(-:
:~ ,~ SI • :! 0 •• ~ • ~ ~~ ~:

-L~n'~."F-ITf-1:1:'l': =,
:~~~c~~t~':t;f~~ _,;0'" 'TI-I-!'!'!!!" _:
:r--I"'~<t:¥ ~:':2t~~~~~

:' ol"I'!" 'I"ITI'I"I'I"
:~~1.:! ~: ~~< ~ ~~
: Off- - TI-r-I'!"!'!"
:~ e ~ < ';J ~ 1 '{l ~ ':i ~ f~

: TI-" ''fT"ITI"T!I"
:;:e 2", ':i ~ :s: ~ :: 'C, ~~:~ :

: 'frj- "'fT-I-I'I"I!I" ::
:~ I'J' •• 't ':;:::':l ~ ~ '1I!~B :

: 'ff" rrPrr"I!I" -:
:~ tt" c ';f ':I ~ ::; :t ~ f ~.~:N;
!~'Fff."1'-1"1-1'1"1'1"1=!

l'.".'."': '1'1+;:':;'

~~
!" ••. § <il o§

"'o~, go:§Q
..:~ ~ 08 "

, -",... o~ CIa

~ o~ .- -

= "8 ~ oB ~
I'- o! '! 08 0

- "8 ~ 03 "
..- o:! 08,0)
- .§

-
" 1:!

G ••, "III
'S "' ~J:<:~

E,~~ ••::E
>-••~ "ii.

IS :t ..
:! Ci,~" ~ ~

16 ~ !
Ill • =~.

0

§

_~o~

"a ~08 •
....o~~oa,...

~~
'!: erg ~ 08 ~

ag .2

-- 'I
I I

I

The selection of U18 and U19 is decoded by U27
which generates BAN K Select. The particular bank (1
of 8 pages) is strap selectable (U29 and U30). The
ENABLE/DISABLE switch on U27 provides a means
of overlaying other chunks of memory with the same
address. The other~ng for BANK SELECT is VMA
(described above). A 14, A 15, and EN DISP ADDR (EN
MPU or roughly 02 interval). AO and PJW from the
MPU are gated at all times because pin 15 on U18 is.
tied to ground.

Devices U22 through U25 are MC6880 high speed
bidirectional data buffers for multiplexing the Even and
Odd Memory bytes into the MPU data bus (DO - 07)
and vice versa. In systems requiring a non-inverted
data bus, MC6880 is replaced with MC6889. During
an MPU read, either U22/U23 or U24/U25 is enabled
by EVEN D/E or ODD D/E respectively. The buffered
LSB of the MPU address, AO, determines which sig-
nal is active. During an MPU write, both U22/U23 and
U24/U25 are enabled into their respective Even and
Odd Memory blocks. The buffered LSB of the M PU ad-
dress, AO, determines whether EVEN R/W or ODD
RIW is active.

The refresh data is an even byte (EMD0-7) and an
odd byte (OMD0-7).

Memory for Graphics Applications

Alphanumeric refresh memories arl'l organized on a
character· basis. Each code stored in memory repre-
sents a 7 X 9 pattern in a 9 X 12 dot block. The dot
pattern is stored in a character ROM addressed by the
character code in the RAM. The repetition of a limited
set of symbols on the screen to construct messages
makes it possible to use a smaller amount of memory
than would be required in a full graphics application
where every dot is addressable as a memory location.

A "limited" graphics set of symbols for line draw-
ings and forms is usually implemented with a special
character ROM. The nine horizontal dots per character
are provided by the ROM. However, most ROMS are
organized by eight. It is usually acceptable to get the
ninth bit from one of the eight ROM outputs, by
parallel load of the 8th bit of ROM into both the eighth
and ninth bits of the shift register.

Character ROM
output

Parallelload to
shift register

A full graphics capability requires every possible dot
on the screen to be stored in memory. Since the pat-
tern is stored directly in RAM, all alphanumeric pat-
terns are generated external to the refresh loop.
Accordingly, the character ROM is placed on the MPU
bus, and the dual latches drive the shift register di-
rectly. As in the alphanumeric controller, the RAM
delivers two bytes (even and odd) when addressed by
the VIA for refresh. Read and write addressing by the
MPU is efficiently handled by bit addressing rather
than byte addressing. The complete 64 K address
structure of the MC6800 is decoded by hardware; only
one of the eight M PU data bits is used for transfers.

A graphics terminal dedicates an MPU to the key-
boara and I/O transfers with the refresh memory. All
calculations (e.g. vectors). curves, rotations are done in
an outboard high speed processor (e.g. micropro-
grammed bipolar slice). An interface between the MPU
and the higher speed processor provides means for
control and exchange of input parameters and results.

DISPLAY CONTROL

The DISPLAY CONTROL consists of circuitry to: se-
quentially access ASCII characters from the 2-PORT
REFRESH MEMORY; generate character row selects;
load row patterns into the Parallel-to-Serial Shift
Register; serially shift the row pattern through Field
Attribute circuits to the monitor as video; provide
blanking, horizontal sync, and vertical sync signals;
perform cursor compare and generate cursor block.

Character ROM

The purpose of the Display Control circuitry is to
paint the contents of the character ROM at the
designated positions on the CRT screen. Custom char-
acter ROMS contain 9 X 16 dot matrix patterns for
alpha-numeric characters of various domestic and for-
eign fonts, limited graphics symbols, control char-
acters, or combinations of all from the above. The ad-
dresses of the character dot matrix patterns cor-
respond to their ASCII code representation in the case
of alphanumeric and control characters. (Assignment is
somewhat arbitrary for graphic symbols.)

The particular row of dots in each character dot
matrix is selected by four binary row select inputs. Only
12 of the possible 16 rows are utilized in the CRT dis-
play being described. The 12 rows are adequate for
shifted lower-case characters (g, j, p, q).

Referring to Figure 5 we see that a 16 K binary
ROM (e.g. MCM6832) provides 128 possible ASCII
characters (only 7 X 12 of the 8 X 16 dot block is
used). This is a practical number of characters for most
applications. Note the eighth bit of the ASCII code is
always available. If it is not used for imbedded Field
Attribute Codes (see FAC circuitry description). it can
be used to select a second MCM6832 with a differ-
ent font or graphics. The tri-state capability of the
MCM6832 facilitates this mode of operation.

General Timing

All timing, including MPU 01 and 02 is derived from
an MC 12061 crystal oscillator running at the video
rate, 17.074800 MHz. The circuit is very stable and al-
ways starts from power up. The TTL output of the
MC12061 is buffered with a 74S04 before distribut-
ing the clock to avoid distortion. The distribution of the
clock is critical. Video Clock and Video Clock are
fanned out using 74S04 inverters in the same pack-
age (for minimum differential propagation delay).
Loads are split equally. An alternate distributor is a
high speed clock driver with complementary outputs.
An important consideration is to keep all 17 MHz logic
close together and in proximity to a ground. This will
minimize noise and distortion.

There IS another method for arriving at 17.074800
MHz. Although it is more expensive, a phase-locked

.-}'
.C II~ .
. il

ij ,

i~ i iuB
~~~~~

ll •.o "1",~" ~., 2,..1£
~ •.• ~ ., •• .= ~ •. 2•. :t;

I~"I~"I~" '1:
-- - -~- -'--

~i' ~l

. 1m
n ~
I!J~y"
l1i: '" ,~~~



loop or phase-locked oscillator is used. The line fre-
quency is the reference and vertical sync the compar-
ison signal. In areas where the line frequency varies
radically from nominal. the more expensive system is
often required to reduce the visible beat on the CRT
screen.

A + 9 counter divides video rate down 10 a
character rate of 1.9 MHz. On/Off decodes from the +
9 counter are resynchronized in 74S113 high speed
flip flops. The signals provide the General Timing in
Figure 6.

Decodes off the Character Column Counter provide
horizontal timing (Figure 7). Vertical timing is from the
Character Row Counter (Figure 8).

Note the operation of the Address Counter. It must
repeat each character address 12 times to paint a
complete line of 80 characters on the screen. This re-
quires storing the address of the first character in each
line (function of the 74LS latches). Another function of
the Address Counter is to advance to address 64 dur-
ing V blank. (Effectively .. this amounts to a start ad-
dress of 128 since the memory is addressed two bytes
at a time.)

Another function of the Display Control Electronics
is cursor compare. The contents of the Address
Counter are compared with PIA data for coincidence.
The DM8160's are exclusive-or comparators. PIA data
is a binary address which is manipulated by the MPU
for cursor control.

The other circuitry in the Display Control portion
generates invert/non-invert cursor block when cursor
compare is sensed and furnishes FAC (Field Attribute
Code) logic.

FACS (Field Attribute Codes)

There are two popular methods for handling FACS.
In the wide memory method. the memory size is in-
creased by adding bits to each character in memory.
Each bit controls a different attribute code for that
character. The other method imbeds FAC characte'rs in
refresh memory. The eighth bit of the ASCII code is
usually decoded as a FAC flag.

8 7 654 3 2 1

~
. ,

Flagfor FAC -
PossibleFACS

When it is a logical one. the other seven bits are
latched as FACS. Once latched. the FAC applies to all
subsequent characters until another FAC code is
decoded. The only exception is at the end of a char-
acter line; all FACS are hardware reset. This scheme's
advantage is low cost to implement; the disadvantage
is the use of a memory location per FAC code. Not only
is character density decreClsed.but the individual char-
acters in a string can not be accented with FACS. It is
possible to get around this drawback by stripping
FACS from the memory before display. but requires
extra hardware and is a programming nightmare.
When individually accented characters are required. it
is usually better to implement a wider memory.

The wide memory approach to FACS may seem
clumsy at first glance ... the M PU has an 8 bit bus.
How are 8 bit MPU transfers done? Construct two
pages of memory - a page of ASCII characters 2K X
8. and a page of attributes (2K X 1.2.3: 4•.... 8). The
attribute page is a mask and need only be accessed
when the attribute changes or must be read.

For simplicity. the imbedded FAC method was
implemented in the CRT terminal. Few changes in
Display Control circuitry are required for a wide
memory approach.

Referring to Figure 9 we can see how to add a cur-
sor/keyboard 'interface to this "glass teletype."

Cursor

The cursor address is stored as the contents of a
PIA. The eight least significant binary bits are PBO -
PB7 and the three most significant binary bits are PAO
- PA2. There is a one-to-one correspondence between
the binary cursor address and a memory location on
the screen. The assignment of bits in the PIA is for
programming convenience. An STX instruction to the
A side of the PIA writes the higher order byte of the
index register into the A side of the cursor PIA and
the lower order byte into the B side of the cursor PIA
(provided the address lines to RSO and RS1 are re-
versed).

The cursor address is binary rather than X-Y be-
cause the binary address manipulations are more fre-
·quent. When X-V addressing is required (e.g. com-
munication interface). a conversion subroutine is
called.

Keyboerd

Either a fully-encoded or non-encoded keyboard can
be designed. Whichever. a PIA provides the interface
to the MPU. In a fully-encoded keyboard. the key-
board hardware generates a strobe and an ASCII
encoded character corresponding to the depressed
key. All debounce is handled by the keyboard hard-
ware. The strobe pulse applied to the PIA CA or CB in-
puts causes an interrupt to the MPU. The MPU reads
the ASCII character through the PIA and performs the
appropriate function. For an alphanumeric character.
the M PU writes the data at the present cursor loca.tion
and increments cursor PIA contents. For control char-
acters. the corresponding commands are executed.
(e.g. space. carriage return. insert. delete. etc.)

A non-encoded keyboard is a set of switches wired
in a column/row matrix.



MPUADOR _

i.NI1UI

'-'001'110 ~
A.fr_M""~

l--

~'---' ILATCH STR t14-8J I

------LJ------LJ
: :---------------------------------j------------------------------------;-----------------------------------~-------------------------------------7, I

---"-,"Ch-"k-'''''-;''''-'''''---~ I
I

i
f( _

amOI~&:;-------------------LJ L
CURSOR MATCH h I--._________ , L-

STA 12·11)

[COUNTI ~ 78 ~ 79 j SO~ 81 j 82) 83 ~84~ 8< 86181 [88189 ~9O~91 ~ 92j93 ~94 j 95)96 ~97 ~ 98~ 99 ~100jl01j 0 j 1 :

CHAR

RATEI1.~1

{

'TRO",
~ 133-3)

- LOAD

111·81



V8LANK~

12&-121



ll~rHH
!.HnnH~Hnnn~~~

I ~
~

~ ~~

J.~



If the columns are scanned one at a time. and the
rows read back. the simultaneous depression of any
one or two keys can be discerned. For n keys. diodes
are wired in series with the switch contacts.

The scanning of columns. reading of rows. and
switch debounce are under software control. Keys are
strategically placed in the matrix so the column and
row location easily translate into an ASCII code. Cost
savings and flexibility of this non-encoded keyboard
versus a fully-encoded keyboard sometimes justifies
the additional MPU overhead in a basic CRT terminal.

A non-encoded approach is described here.
Referring to the schematic. the keyboard columns are
normally held low. When key(s) are depressed. lows
appear on the keyboard row inputs. A keyboard inter-
rupt is generated. which starts a scan. Keyboard
column outputs are brought low in sequential order.
Together with the Shift and Control PIA inputs. the
active columns and rows are encoded as an ASCII
character and temporarily stored. A 6.88 msec inter-
rupt is provided for debounce and a PIA input for
REPEAT (also .1 sec interrupt for this function and a 1
second interrupt for clock functions).

The software for a non-encoded keyboard ranges
from simple to quite complex depending on how fool-
proof the algorithm is.

Comparilon of CRT Tarminel Architecturel
The central design criteria of a modern CRT ter-

minal is the method used for multiplexing refresh
memory between the M PU and the display refresh cir-
cuitry. In this section we will discuss time-division
multiplexing and priority multiplexing. Throughput ver-
suShardware complexity for different techniques will
be analyzed. Schemeswhich result in missing a,charac-
ter refresh during an MPU transfer are not considered.
These techniques result in operator annoyance in
many applications (e.g., Key-to-Disk), and are not
appropriate for the modern CRT terminal.

Priority Multiplexing of Refrelh Memory
These techniques fall into two general categories:
A. MPU grabs Refresh Memory and locks out

Refresh Circuitry.
B. Refresh circuitry grabs Refresh Memory and

locks out MPU.
Method A results in zero burden on the MPU; how-

ever. a sufficient number of refresh characters must be
pipe-lined into FIFO to keep the screen refreshed dur-
ing an M PU access. The fast memory and complex
hardware to accomplish this task is unattractive.

Method B is probably the most widespread tech-
nique in use today. The dual line buffer approach is

REFRESH
RAM

n byte
Line Buffer

(EVEN LINES)

n byte
Line Buffer

(ODD LINES)



representative of this class, All data for a line on the
screen is stored in FIFO's (usually 80 bytes),

While the Odd line buffer is keeping the display
refreshed. the Even line buffer is being filled with the
next displayed line from Refresh RAM through a DMA
channel. The functions are alternately reversed, In an
alphanumeric terminal. average MPU burden is be-
tween 15 and 30% with peak burden on the M PU of
100% for 80-100 microseconds when loading either
line buffer. The M PU is stalled during this transfer and
cannot service high speed interfaces (e,g, Floppy Disk),
With the addition of extra hardware. the Refresh page
of the RAM is isolated from the processor bus during
DMA. thus allowing the MPU to continue processing
provided it attempts no accesses to memory, In con-
clusion. the dual-line buffers and DMA configuration is
more expensive. has higher parts count. and imposes a
severe burden on the MPU compared to the time-
division multiplexed technique,

Furthermore. the DMA approach is very inefficient
for full graphics. since there are no recirculations of the
line buffer as in an alphanumeric display,

TIME
INTERVALS

Time Division Multiplexing of Refresh Memory
In the most general time-division multiplexing sit-

uation. either an MPU or Refresh access may com-
mence or end asynchronously to time-division multi-
plexing intervals, By delaying accesses. the MPU and
Refresh circuitry are brought in sync with their respec-
tive time intervals, The sync delay for MPU access. at
the expense of throughput. is implemented by "cycle-
stretching," The sync delay for Refresh access is
accomplished by pipe lining a sufficient number of re-
fresh characters into a FIFa to keep the screen

TIME
INTERVALS

REFRESH
ACCESS

refreshed during an MPU synchronization delay, The
FIFa is typically two bytes deep, The disadvantage of
this technique is the requirement for fast memory, It is
considerably simplified if the time-division multi-
pl~xing is made synchronous with character rate, Sync
delay is no longer required for refresh and the FIFa cir-
cuitry is eliminated (a single byte latch is still re-
quired). Also memory speed is reduced, This simpli-
fication is not always acceptable; e,g, it may result in
excessive MPU "cycle-stretching" at slow character
rates,

The technitjue for sharing CRT Refresh Memory
described in this article is a special case of time-
division multiplexing, The access intervals for Refresh
and MPU are ¢ 1 and ¢2. respec,tively.

As ¢ 1 and ¢2 clocking signals are outputted even
during wait states. no matter now long this MPU is
forced into a wait state the screen will remain re-
freshed, Since there is no overlap of accesses. no
contention circuitry is required and the MPU burden is
zero at all times, While you may not want or need to
duplicate the entire circuitry described in this article.
the bi-phase memory access technique may be used

wherever it is necessaryto use a DMA (Direct Memory
Access) for two major systems.

The M6800 implementation is very simple due to
constant cycle lengths. whereas it is difficult if not
impossible with variable cycle length MPUs. The only
drawback to this scheme is that the MPU rate is a de-
rivative of the character rate, This translates into a
clock rate lower than the maximum MPU clock rate
allowable. Consequently. the throughput is reduced.
For example, the parameters chosen in this design
reduce the throughput by 5% because the MPU runs
at 950 KHz,

MPU
ACCESS

REFRESH
ACCESS

MPU
ACCESS



AN-774

A SIMPLE HIGH SPEED BIPOLAR MICROPROCESSOR
ILLUSTRATES SYSTEM DESIGN

AND MICROPROGRAM TECHNIOUES

Prepared by:
Bill Blood
Applications Engineering

High speed bipolar LSI 4·bit slice
circuits can significantly reduce processor
system package count. This is shown with
a microprocessor which uses only 10
integrated circuit packages to perform
2's complement add, subtract, multiply
and d,ivide.



The engineer familiar with MOS microprocessors
learns new skills when designing a higher performance
bipolar LSI system. Bipolar LSI 4·bit slice circuits are
building blocks allowing the designer to configure a
processor architecture, size, and instruction set for
optimum performance. Additional flexibility is gained
through the use of microprogramming because the
processor can perform more complicated instructions such
as multiply and divide or; alternately, can be designed to
take advantage of existing software.

The following text goes through a complete bipolar
LSI system design. Steps include define the system,
block out system sections, set up the microprogram
structure, pick bipolar LSI parts, generate a microprogram,
and finalize the system design. Three system goals are
used throughout the project.

I. Maximize the use of bipolar LSI.
2. Show the flexibility of microprogramming.
3. Maintain the bipolar LSI speed advantage.
The system is being designed as a demonstration and

technical support tool. However, the design flow and
decisions involved represent a wide range of bipolar
LSI processor systems.

DEFINE THE SYSTEM

System functional requiremen ts must be defined prior
to hardware design. This seems obvious, but changes
later in the design cycle complicate programming and
often increase package count. Figure 1 shows the I/O
structure and program functions of this processor project.

Operand A

Multiplicand

Dividend MSB

The system has 16 input lines which enter a 16·bit data
word or two 8·bit words in parallel. Similarly, 16 ou tpu t
lines display the results as either one 16-bit word or two
8·bit words.

A program select input port selects which processor
program is executed.

I. ADD, SUBTRACT, and EXCLUSIVE OR read two
8·bit operand inputs and generate an 8·bit answer.
The eight most significant bits are held at zero.

2. MULTIPLY reads an 8·bit multiplicand and 8·bit
multiplier. The answer is a 16·bit product.

3. DIVIDE requires two data inputs. First a 16·bit
dividend is entered, then the 8·bit divisor. The
answer is an 8·bit quotient and 8·bit remainder.

The final processor input is a start signal given after
input lines and program select are present. Since start
could be from a pushbutton or toggle switch, bounce
elimination and pulse shaping are included in the
system design.

BLOCK OUT THE SYSTEM

The major blocks of a bipolar LSI processor are ALU,
I/O, microprogram sequencing control, and microprogram
memory. These functions are interconnected as shown
in Figure 2. The ALU block handles all arithmetic, logic,
and shift operations. It also includes working registers
for temporary storage and a means for the input of new
data and output of results. The MICROPROGRAM
SEQUENCING block generates the microprogram memory
address and provides a method for sequencing through
microprogram. It combines with BRANCH LOGIC to
/Tlake tests for conditional jumps in program.

Operand B

Multiplier

Dividend LSB/Divisor

}

P,og'Om
Select

Zero

Product MSB
Remeinder

Sum/Difference/EX OR

Product LSB

Quotient



The key to building a bipolar LSI system is in parti-
tioning the MICROPROGRAM MEMORY block. The
memory is divided in to sections called fields, each capable
of an independen t function. Any combination of these
fields can be selected to execute a microinstruction.

In Figure 2, the PROGRAM FLOW field is separated
into two parts. The INSTRUCTION section tells the
microprogram sequencing logic how to generate the
next program address. Instructions include increment,
jump, branch on condition,jump to and from subroutine,
etc. The NEXT ADDRESS section of the program flow
field provides a destination address for direct jump or
conditional branch instructions.

The BRANCH field sets up test parameters for
conditional jumps in program. For example, a jump if
ALU results equal zero would be accomplished by gating
zero detect from the ALU to a branch input on the
microprogram sequencer. The corresponding INSTRUC-
TION would be branch on condition and NEXT ADDRESS
contains the conditional branch destination. In this
manner it is possible to select any number or combination
of test signals.

DATA and ALU fields go to the ALU and I/O block.
The DATA field controls data transfers between the
input ports, output ports, and internal working registers.
The ALU field controls the various arithmetic, logic, and
shift operations reqUired to execute a program.

Microprogram

Sequencing

MC,OBO'

The system being developed here is designed around
three LSI circuits as shown in Figure 2. Two MC 10803s
handle all ALU operations, provide working registers,
and control the 16 input and 16 output lines. A single
MCI0801 provides logic for microprogram flow and
addressing. Additional MC 1080 I and MC I 0803 infor-
mation is given in the following key LSI parts section.

Processor programs are stored in the microprogram
memory. This system uses four 10139 PROMs in a 32-
word by 32-bit organization. At first it inay seem
surprising that add, subtract, multiply, divide, and
exclusive OR are all stored in 32 memory words.
However, each word is 32 bits wide so several processor
functions can be performed in parallel. These seven
integrated circuits form the processor nucleus. Three
additional SSI parts provide for crystal OSCillator, power-
up reset, and start pulse shaping. Branch logic gates
route test signals into the MCI0801 for conditional
jumps in program. The result is a high-speed bipolar
processor with only ten integrated circuit packages.

Figure 2 can be used to define the term micro-
instruction. A microinstruction executes all functions
in a microporgram memory word. A clock signal into
the MCI0801 microprogram sequencer logic puts a
program address location on the address lines. The micro-
program memory then sets up select lines on the MCI0803
to read data in, operate on the data, and display or

Data In
( /'o.. ~

ALU and I/O

MC10B03 I MC'OB03



store the results. In parallel with the ALU, a new micro-
program address is being generated from microprogram
memory and branch logic inputs to the MClO801. A
second clock pulse gives the microprogram a new word
address and clocks any ALU function into the appropriate
storage register. System performance is measured by the
microinstruction time and by the number of micro-
instructions required to execute a program.

processor to perform a wide variety of system functions.
The five programs-add, subtract, exclusive OR, multiply,
and divide-being developed are only a small sample of
the possible combinations. The processor could be
expanded for process control, data .formatting, digital
filtering, minicomputer design, peripheral controllers,
etc. Four MClO803s will directly operate on l6-bit words
and give a corresponding increase in I/O lines. Two
MCl080ls allow microprogram memory expansion to
4K words for more comprehensive programming.

0Bus I Bus

MC10S03
0B IB

Data Matrix MDR
Pointer

Clock ALU Carry

Register ZD
Condition

File MAR OV

DB MS AS

Data Select Address
Bus Lines Outputs

FIGURE 3 - Key LSI Parts



Prior to continuing it is important to look at the
MClO801 and MCI0803 LSI parts. The various internal
sections of each part are shown in Figure 3. MC10801
CRO register holds the microprogram memory address.
Sequencing information goes into the Next Address
Logic block where it is decoded and the correct next
address routed to CRO. An incrementer is used with
several sequencing commands. For example, an increment
command routes the CRO outputs through the incre-
menter to CRO inputs. Each clock pulse then advances
the microprogram memory one location.

CRI is used with program flow repeat cycles. The
repeat count is loaded into CRI enabling an individual
instruction or sequence of instructions to be repeated
until the cycle count is reached. CR2 is a general purpose
register that can be used to store machine instructions or
interrupt vectors. CR3 is a status or condition code
register. Individual bits can be tested within the MC10801
for conditional jumps in program.

A 4.deep LIFO stack is included in the part for storing
subroutine return address. A jump to subroutine command
takes the present microprogram address through the
incrementer and pushes it into the stack. Next Address
inputs go to CRO for the subroutine destination. A
subroutine return pops the LIFO and routes the return
address to CRO. A total of 16 different instructions are
built into the MCI0801 for various program flow
requirements.

The MCI0803 performs both data transfers and ALU
operations. There are five I/O ports (I Bus, <P Bus, A Bus,
D Bus, and P inputs) for transferring' data to or from the
part. Internally there are six storage registers. The MDR
can be used to hold incoming or outgoing data, It also
functions as an accumulator for the ALU. The MAR
holds outgoing data for the A Bus. Four additional
registers are contained in the internal register me block.
A Data Matrix accepts data transfer commands and routes
data between the various I/O ports and internal registers.
The final block is an ALU which performs arithmetic,
logic, and shift operations. Both the MCI0801 and
MCI0803 are controlled by select lines which in turn
are controlled by microprogram memory bits.

Program flow charts describe the various processor
operations and determine a microprogram instruction
sequence. Figure 4 shows system data paths available to
a programmer. These data paths, the ALU, and working
registers are used in the follOWing program flow diagrams
and later to write the microprogram. All Figure 4 data
paths and logic except the link bit storage are contained
within the MCI0803. Link bits are used with multiply
and divide to hold shift in and shift out status. Available
CR3 register bits in the MCI0801 provide this function.



Figure 5 shows the flow patterns for add, subtract,
and exclusive OR. Initially the processor is random on
power-up or displaying the results of a previous calcula-
tion. It is in a continuous loop waiting for a start signal.
After receiving start, the program performs several
initialize functions. RFO is zeroed as required for add,
subtract, and exclusive OR, see Figures I and 4. Setting
up for a possible multiply or divide the link bit is set to
zero, the ,complement of 8 is loaded in the MCl080l
program cycle counter CRl, and I Bus data is transferred
to the MAR. These functions are common to both
multiply and divide. Location at this point in program
saves microinstructions.

"0"- RFO
"0 .......• Link

8" - Cycle Count

Program flow continues to a main decision point.
Here, the processor looks at the program select inputs
and picks one of five possible program directions. Add,
subtract, and exclusive OR are each one step programs,
Figure 5. The ALU looks at the <p Bus and I Bus inputs,
performs the selected operation, and transfers the answer
to MAR. The program jumps back to start and displays
the answer.

Multiply is an implementation of Booth algorithm as
shown below:

I. Load multiplier into MAR
2. Load multiplicand into MDR
3. Zero RFO and link bit
4. Set cycle counter to 8
5. Test MAR LSB and link bit

LINK

o
I
o
I

GO TO 8
GOT06
GOT07
GOT08

6. Subtract RFO - MDR -> RFO, go to 8
7. Add RFO + MDR -> RFO
8. Arithmetic shift right RFO -+ MAR -+ LINK
9. Decrement cycle counter;if,*zero, go to 5

10. End.



The multiply flow diagram is given in Figure 6.
Figure 5 sets up the multiplier, RFO, cycle counter, and
link bit. Figure 6 loads the multiplicand and contains
the program paths for add-shift, subtract-shift, or shift-
only as required for 2's complement multiplication.
As seen in the figure, the processor alternately tests the
link bit and MAR LSB to select a program flow path.
This simplifies the branch select compared with testing
both status points in parallel. The program cycle counter
is incremented after the double precision RFO/MAR
shift right and tested for the end count. After 8 cycles,
the program is complete. The result is a 16-bit answer
with the 8 least significant bits in MAR and the 8 most
significant bits in RFO.

Divide is an implementation of a non-restoring division
algorithm as shown below:

I. Load dividend LSB into MAR
2. Load divided MSB into RFO
3. Load divisor into MDR
4. Set cycle counter to 8
5. MSB RFO exclusive NOR MSB MDR --? LINK
6. Shift left RFO <- MAR <- LINK
7. Test MAR LSB; if zero, go to 9
8. Subtract RFO - MDR --? RFO, go to 10
9. Add RFO + MDR --? RFO

10. Decrement cycle counter; if# zero, go to 5
II. Shift right MAR, link = "I"
12. Go to format correction.
The program flow diagram starts in Figure 5 where the

program cycle counter is set and the least significant bits
of the dividend are transferred from the I Bus to the
MAR. The remaining divide program flow is shown in
Figure 7. The first block is a start loop which waits for
the divisor data on the I Bus. The dividend MSB is trans-
ferred to RFO and the divisor to MDR. The program goes
through eight repetitive cycles, each setting link bit
status, shifting left the MAR and RFO,· and performing
the divisor add or subtract with RFO. After the eighth
cycle MAR is shifted left with a logic "I" forced into
the LSB through the link bit.



At this point, the answer is numerically correct with
the quotient in MAR and the remainder in RFO. However,
the answer may be in an unacceptable form. For example,

37 .;. 6 comes out 7, remainder -5. The program flow
on the right side of Figure 7 checks the format by testing
RFO - MDR = 0, RFO = 0, RFO + MDR = 0, and MSB of
RFO = MSB of dividend on ~ Bus. If the format is correct,
the program jumps to start. If incorrect, the quotient and
remainder are corrected as shown in Figure 7.



Various test parameters can be identified from the
program flow diagrams. These are I) start, 2) program
select, 3) shift right link bit, 4) MAR LSB, 5) cycle count,
6) MSB of RFO EX-NOR MDR (available on C out),
a.nd 7) zero detect. From the flow diagrams and the basic
block diagram in Figure 2, the complete system is tied
together as shown in Figure 8. Start and program select
go directly to the MCI0801. Cycle count is a feature of
the MCI0801 and requires no special treatment. Zero
detect, MAR LSB, and C out are gated to the MCI0801
as required for program test. Shift right link bit must be
stored between microinstructions and uses bit I of register
CR3. This bit can be tested internal to the MCI0801 for
program flow decisions.

Register CR3 holds three program status bits. CR3,
bit 0, is a page address representing the fifth microprogram
memory address bit. CR3, bit I, is the shift right link bit
and can be gated to the ALU C out (shift right input).
CR3, bit 2 performs the same function for shift left and
can be gated to ALU C in.

The Figure 8 microprogram memory fields have been
refined from Figure 2. Individual bits control the program
test inputs, shift link bits, C in, and MCI0803 P inputs.
The three LSI parts have been previously defined. The
remaining blocks in Figure 8 are SSI. A dual flip-flop
(10 131) supplies bounce elimination and start signal
pulse shaping. Leftover NAND and OR gates are used
for power-up reset and a crystal oscillator clock.

"";~ I 081,11 181,1$

Power Up
Sync Reset Clock

I I l
P'O',~ L 1,8
SeleCI

o BUI B A
CR30 Plge Add 08 1Ic 18 t08
CR31 SA Link

MC10801 ~ CR32 SL Link MC10803 MC1080J

~ G -
~ G:JNex' LIFO 0::'- 6 8Add,e" $t.ck M.t,;x Mln'x

~ LogiC B CR4-CA7
1

'---- 2 CO G ~ B ~'
CO

~ B ~
XB -w

~~
C[] c;]

0
File ~ File ~

CS 0 1 2
20

AF MS ZOT .,....08 A8 P AF DB MS ZO A8 P

CAD I CA3 • I • I

~
I

r- J I I

tE>
Add.

8",

01'1
8"'

I. I r.I. . 1 1 , 1 1 . 1 1 1

~
801 C

Addreu , NA CS
ZO LS8 0", SH A SH L 803 803 803 C In PIN

~ 0-3 EN EN EN 01'1 ALU AF



The complete microprogram for Figures S, 6, and 7 is
given in Figure 9. A function column briefly describes
each program step. Add column is the microprogram
word address in hexadecimal format. Table I shows
MCI0801 sequencing instructions. INC and JMP are
direct transfers of a new address to the microprogram
address register, CRO. JEP is used for the five-way
program select jump. Program select inputs are connected
to the MCI080 I <P Bus port and program select information

corresponds to the individal program starting address.
RSR loads the repeat cycle count into CRI. JSR jumps
to the NA input address for a subroutine location and
pushes a return address into the LIFO stack. If the sub-
routine is to be repeated, CRO is pushed into the stack.
Otherwise, CRO plus I is loaded in the stack. This repeat
function is automatically controlled by the cycle counter
internal to the MCI0801. RTN pops the LIFO stack
into CRO for a subroutine return. In a repeat mode, the

FUNCTION AOO I NA a01 CR3 XB SH DATA ALU RF CIN P

READ 0 BSR 0 NOP NOP NOP RFO~OB IF OBI NOP 0 - -
"0" AFO,L 1 RSR a IB~CR31L1 NOP NOP laUS-MOR IIDR) RFO'P-RFQ 0 0 0

PROG TEST 2 JEP F NOP NOP NOP NOP MOR,P--...MAR 0 - 1

MUL TIPL YIP) 3 JSR 5 NOP NOP NOP CZlBUS~MDR (CZlDR) NOP 0 - -
END 4 JMP 0 NOP NOP NOP NOP NOP 0 - -
TEST LINK 5 BRC A CR31-XBILI NOP NOP NOP NOP 0 - -
TEST LSB 6 aRC 9 NOP LSB-X"B NOP NOP NOP , 0 - -
$HR MSB 7 INC - IB-CR3IL) NOP NOP NOP ASR RFO--RFO 0 1 -
SH A LSB a RTN - IB~CR3IL) NOP SHR NOP LSR MAR .......•MAR 0 1 -
SUB 9 JMP 7 NOP NOP NOP NOP SUB RFO-MDR·P .......•RFO 0 1 1

TEST LSB A BRC 7 NOP LSB-XB NOP NOP NOP 0 - -
ADD B JMP 7 NOP NOP NOP NOP ADD AFO+MDR'P-RFQ 0 0 1

ADDIP) C JMP 0 NOP NOP NOP NOP ADD 0B+lB'P-MAA 0 0 1

SUBIP) 0 JMP 0 NOP NOP NOP NOP SUB 0B-IB'P-MAR 0 1 1

EX ORIP) E JMP 0 NOP NOP NOP NOP 08 lD [B'P-MAR 0 - 1

DIVIDEIP) F BSR F DINIXB)-CR30 NOP NOP IBUS-MDR(IDR) CZlBUS·P-RFO 0 - 1

MDR MDR 10 JSR 2 NOP NOP NOP ALU-MDRIADR) MDR EllP-- 0 - 1

SL MAR-1 " JMP 7 NOP NOP NOP NOP SL MAR--MAR 0 1 -
SET L 12 INC - IB-CR3ILLI NOP NOP ALU-MDR(ADR) RFO 61MDR'P- 0 - 1

SL MAR 13 INC - IB-CR3ILLI NOP SHL NOP SL MAR-MAR 0 1 -
SL AFO 14 BRC 6 NOP LSB--XB SHL IBUS-MORIIDR) SL RFO--RFO 0 1 -
ADD 15 RTN - NOP NOP NOP NOP ADD RFQ+MDR·p .......•RFO 0 0 1

SUB 16 RTN - NOP NOP NOP NOP SUB RFO-MDR'P-RFO 0 1 1

SUB TEST 17 BRC C NOP ZO--XB NOP ALU-MDRIADR) SUB RFO-MDR'P- 0 1 1

ZE RO TEST 1a BRC 0 DIN(XB)-CA30 ZO-XB NOP IBUS-MDRIIDR) RFO,P-RFO 0 - 1

ADD TEST 19 BRC E NOP ZD--XB NOP ALU-MDR(ADR) ADD RFO+MDR'P-- 0 0 1

lD MSB TEST 1A BRC 0 DINIXB)-CR30 COUT-xa NOP ALU-MDRIADR) RFQ ED CllBU$'P- 0 - 1

MSB TEST 1a BRC E NOP CQUT-XB NOP NOP MAA'P-MAR 0 - 1

INC 1C INC - NOP NOP NOP IBUS-MDR(IDR) AOD MAR+P-MAR 0 1 0

SUB 10 JMP 0 DIN-CR30,CR3O-XB NOP NOP NOP SUB RFO-MDR'P-RFO 0 1 ,
DEC 1E INC - NOP NOP NOP IBUS-MDRIIDR) ADD MAA+P-MAA 0 0 1

ADD 1 F JMP 0 DI N-C R3D,C R3(}-XB NOP NOP NOP ADD RFO+MDR'P-RFO 0 0 ,

DESCRIPTION FUNCTION

INC INCREMENT CRD PLUS 1 - CRD

JMP JUMP TO NEXT ADDRESS NA - CRO

JEP JUMP TO EXTERNAL PORT (/) BUS·NA ....•CRD

RSR REPEAT SUBROUTINE CRD PLUS 1 - CRD
NA ....•CRl

JSR JUMP TO SUBROUTINE NA - CRD
CRD PLUS 1 - LIFO

JSR JUMP TO SUBROUTINE (REPEAT) NA - CRD
CRD- LIFO

RTN RETURN FROM SUBROUTINE L1FO ....•CRD

RTN RETURN FROM SUBROUTINE (REPEAT) LIFO - CRD
CRl PLUS 1 ....• CRl

BRC BRANCH ON CONDITION CRO PLUS 1 ~ CRO (TEST = 0)
NA"'" CRD (TEST = 1)

BSR BRANCH TO SUBROUTINE CRD PLUS 1 ....•cRD (START)
NA - CRD ISTART)



cycle counter CRI is automatically incremented on this
instruction. BRC looks at the selected test parameter and'
depending on test status executes either an increment or
jump to NA inputs. BSR, normally a conditional branch
to subroutine, is used to enable the MCI0801 Branch
input for a jump on start signal instruction.

The NA column in Figure 9 is a jump destination. It
is used with all flow instructions except INC and RTN
which require no additional information for program
flow. The NA field in this system is four bits wide and
operates within a 16-word memory page. Page addressing
is part of the 80 I CR3 column in Figure 9.

The MCI0801 CR3 register holds the memory page
address and two shift link bits. This register is parallel
loaded on an I Bus to CR3 command, see Table 2. Notice
CR3 bit 0 is connected to IBO in Figure 8. This holds the
page address constant on the I Bus parallel load command.
The multiply program requires testing status of the shift
right link bit for a program flow decision. Testing is
accomplished by gating CR3 bit f to XB and making a
program flow decision with a BRC instruction. The last
two Table 2 commands control page address. For
conditional jumps between pages CR3 bit 0 is loaded from
D In connected to XB. Alternately, CR3 bit 0 can be
toggled for unconditional jumps.

The remaining fields in Figure 9 are relatively straight-
forward. XB can be selectively programmed to zero detect,
LSB, or C Out. These are used with the BRC program
flow instruction to make decisions in program. The SH R
field gates the shift right link bit in MClO801 CR3 bit I
to carry out of the MC10803. It is disabled for all other
arithmetic functions. The SH L field performs a similar

function for the shift left link bit. Additional information
on shift operations follows in the paragraph on MC I0803
ALU operations.

The data field selects four different MCI 0803 data
transfer functions. FDB transfers the information in RFO
to the D Bus for answer display. GlDR and IDR read the
processor inputs and transfer data to the MDR accumula-
tor. ADR routes the ALU output to MDR. This is used to
modify the MDR contents as in Figure 9, word 10, or
to avoid changing information in RFO or MAR (program
words 12,I7,I9,and IA).

The MCI 0803 ALU selects between RFO, MAR, MDR,
if! Bus, I Bus, and P for operands. AND and exclusive OR
are selected logic functions, with add and subtract selected
for arithmetic. These functions combine with the P inputs
for special operations: ALU = zero, word I; MDR invert,
word 10; and MAR decrement, word IE. Five different
shift combinations are formed with the ALU, MCI0801
CR3, shift, and C In fields, as shown in Table 3. An
IB --+ CR3 in the MCI08o'I CR3 field connects the shift
out to a link bit. The shift field routes link bit to the
shift input. Word II disables the shift left link allowing
C In to become the shift input. Word 13 uses the shift
left link for a rotate.

Only selected MCI0801 and MCI0803 functions have
been described as required for this program. They are a
small percent of the total combinations available to a
system designer. The LSI circuits therefore adapt to
a wide range of system architectures and applications.
Additional information is available on component
data sheets.

FUNCTION DESCRIPTION

IB -+ CA3 PARALLEL LOAD CR3

CR31 -+ XB TEST SHIFT RIGHT LINK

DIN - CR3Q CHANGE PAGE ADDRESS FROM 0 IN

DIN - CR30, CR30.- XB TOGGLE PAGE ADDRESS

FUNCTION OPERATION

ASR RFO -+ RFO

LSR MAR -+ MAR L§E] pCici=J
SL MAR - MAR

SL MAR -+ MAR

SL RFO - RFO ~



Figure 10 is a picture of the complete wirewrapped
system. The three lSI parts are in 48-pin quad-in-line
packages with memories and SSI in standard 16-pin
packages. IC headers hold discrete resistors and capacitors
for the crystal oscillator, start pulse shaper, and power-up
reset. The four remaining packages are pull-down resistors
as required for ECl signal lines. A 10 MHz clock (100 ns
microinstruction time) gives program execution times
of 500 ns for add, subtract, and exclusive OR. The longest
multiply is 5.3 J.1Sand the longest divide is 5.2 J.1s.
Additional circuits used as pipeline registers would reduce
the microinstruction time, but the goal of this project
is to keep part count and cost down. System power is
under 14 walts including drive for 16 LEOs used to
display the answer.

Are bipolar lSI processors fast? This system is
designed with the industry's fastest bipolar lSI circuits,
the MI0800 family, but does not fully utilize the speed
potential to minimize part count. Even so, the system
performs the 8-bit 2's complement multiplication approxi-
mately 100 times faster than a 1.0 J.1SMOS microprocessor,
10 times speed improvement is gained with clock time,
and 10 times speed improvement from architecture
and microprogramming advantages.



AN-775

M6800 SYSTEMS
UTILIZING THE MC6875 CLOCK GENERATOR/DRIVER

Prepared by
Stephen R. Bookout
Microprocessor Applications/Systems Engineering

This application note describes the use
of the MC6875 clock generator/driver in
M6800 based systems. Design examples
will demonstrate the capabilities of the
driver in systems using slow and/or
dynamic memories. Multiprocessing and
DMA methods are also covered.



Previous methods of implementing MPU clocks ranged
from discrete components to expensive hybrid schemes
with hardware fixes for dynamic and slow memory
handshaking.

The MC6875 is a monolithic MPU clock driver
containing the dynamic and slow memory handshaking
logic. A series resonant crystal with a center frequency of
four times the desired MPU operating frequency is all that
is required for most systems. For systems in which
frequency stability is not critical, R-C networks may be
used.

This application note describes the MC6875 clock
generator/driver and illustrates its use in M6800
microprocessor systems. Included in the design examples
are slow memory, dynamic memory and DMA
(multiprocessor) examples.

The MC6875 clock generator/driver is contained in a
16 pin dual-in-line package. The part uses Schottky
devices to provide the high speed needed for fast rise and
fall times and reduced propagation delays. Frequency is



controlled by a series resonant crystal or, alternatively,
either an RC or LC network may be used. The resonant
frequency of the oscillator is buffered and divided to
produce the 4 x fo and 2 x fo outputs. The 2 x fo is then
used to produce the Memory Clock, MPU <1>1,MPU <1>2and
Bus <1>2.Memory Ready and Refresh Request inputs are
internally sampled on alternate edges of 2 x fo enabling
the stretch of either <1>1or <1>2.All outputs are capable of
driving high capacitance loads typical of unbuffered
systems. The MPU <I>I and <1>2signal outputs provide the
necessary VOH (VCC - 0.6 V) and VOL (VSS + 0.4 V)
capable of driving two MPUs.

The functional block diagram of the internal logic of
the MC6875 is illustrated in Figure 1.

SIGNAL DESCRIPTION

4 x fo, 2 x fo
A free running oscillator at four times (two times) the
MPU's clock rate useful for a system sync signal.

DMA/RefReq
An asynchronous input used to freeze the MPU clocks
in the <1>1high, <1>2low state for dynamic memory
refresh or cycle steal DMA (Direct Memory Access).

DMA/Ref Grant
A synchronous output used to synchronize the refresh
or DMA operation to the MPU.

Memory Ready
An asynchronous input used to freeze the MPU clocks
in the <1>1low, <1>2high state for slow memory interface.

MPU <1>1,MPU <1>2
Capable of driving the <1>1and <1>2inputs on two
MC6800s.

Bus <1>2
An output nominally in phase with MPU <1>2having
MC8T26 type drive capability which follows MPU <1>2.

Memory Clock
An output nominally in phase with MPU <1>2which free
runs during a refresh request cycle.

Power-an-Reset
A Schmitt trigger input which controls Reset. A
capacitor to ground is required to set the desired time'
constant. Internal 50 krl resistor to VCC. .

Reset
An output to, the MPU and I/O devices.

XI,X2
Provision to attach a series resonant crystal or RC
network.

Ext In
Allows driving by an external TIL signal to
synchronize the MPU to an external system.

CAPABILITIES
Slow memory access, dynamic memory refresh and

DMA are three areas in which the MC6875 can be used to
manipulate and control the MPU timing.

Slow memory access is performed by stretching MPU
<1>2,Memory Clock and Bus <1>2in the high state while
stretching MPU <1>1in the low state. Memory Ready is the
control signal used to stretch these signals. Memory Ready
is normally high and is active (low) only when addresses
are valid to a slow memory or slow peripheral. It should
be noted that at higher clock frequencies (above I MHz)
many of the ROMs, RAMs and peripheral parts with
access times sufficient for I MHz operation will be
classified as Slow Parts needing this interface. The timing
relationships are given in Figure 2. Memory Ready is
sampled internally on the falling edge of 2 x fo. To stretch
<1>2,Memory Ready must be in its low state within the
required minimum setup time, and held low for the mini-
mum hold time, with respect to the falling edge of 2 x fo
corresponding to the leading of <1>2(see MC6875 Data
Sheet). Returning Memory Ready to its high state prior
to the minimum high setup time referenced to a falling
edge of 2 x fo will result in terminating the stretch bn the
following falling edge of 2 x fo.

A method of generating Memory Ready is illustrated in
Figure 3. CS is an active low signal developed from the
address decode including VMA used to enable the RAM
array. This signal is inverted (CS) and used to hold



2 fo

4 fo

8u$ tP2

Normal
Slow Memory

Cycle I
Refresh Cycle I Resultant I

while Addresses are Slow
valid to Slow Memory Memory

Cycle

I 1

: I : I

I! : I : :

CS A_valid Address _1 : dJ_ Valid ~ddre~s

; i I : I I I
Memory Ready -----~LJJ~-----+-:-....:1 r-;-l :I~-----------------

I I < If Memory Clock is used instead of Bus 412 for "0" input.
Refresh Request -------------LLJJ .

1
Refresh ~:n- _
Grant . -

Memory Ready at a logic" I" when addresses are not valid
to the slow memory. When addresses are valid the CS
signal releases the S input to the MC7479 D flip-flop and
allows 2 x fo ANDed 4 x fo to clock the present value of
Bus <P2 on to the Memory Ready line. This scheme will
stretch <P2 high for an additional 1/2 MPU cycle. If
additional access time is needed a one shot may be added
as indicated by the dotted lines.

Dynamic Memory refresh can be done by cycle stealing
using the Refresh Request and Refresh Grant functions of
the MC6875. The clock generator will stretch <pI in the
high state and <P2 in the low slate allowing a refresh cycle
to occur within the <pI time. Figure 4 illustrates the
Refresh Request and Refresh Grant timing requirements
for the MC6875. Refresh Request is internally sampled on
the positive or leading edge of 2 x fo. To be recognized
Refresh Request must be an active (low) prior to the
minimum setup time and held low for the minimum hold
time, referenced to the leading edge of 2 x fo occurring
during the high portion of Memory Clock. If this is per-
formed <pI will be stretched for a total of 1-1/2 MPU
cycles providing Refresh Request is returned to a ., I"
level prior to the minimum setup time preceding the next
leading edge of 2 x fo. Since Refresh Request is an asyn-

chronous signal, Refresh Grant is provided by the MC6875
to indicate to the board requesting refresh that the re-
quest has been recognized. Thus the inactive edge of the
Refresh Request signal can occur synchronously with
Memory Clock. In Figure 5 Refresh Request is generated
by clocking a D flip-flop with a refresh clock whose period
is the required refresh rate. Refresh Grant is returned
from the MC6875 to clock another D flip-flop which en-
ables the Request flip-flop to be reset when the negative
(leading) edge of the Row Address Strobe (RAS) occurs.
The reset is disabled when the next leading edge of
Memory Clock is encountered. Figure 6 illustrates the
timing relationship of these signals.

The three basic methods of doing DMA include cycle
stealing, multiplexing and halting the processor. Cycle
stealing is done in the same manner as dynamic memory
refresh. Refresh Request and Refresh Grant become DMA
Request and DMA Grant. When performing DMA by cycle
stealing it is important to observe the maximum stretch
time the MPU can tolerate. Figure 7 illustrates the timing
of DMA transfers by cycle stealing. It should be noted
that the DMA controllers must provide the control signals
R/W and VMA as well as the address and data lines. If the
DMA Bus interface is wire ORed with the MPU Bus, the



2 fo

-R-.f-r-'S-h-R~eq-~-.C-st-------------t-tSH-:~-R-H----1

Aefresh ;I---------.....I~ _
Grant

MPU </>2

MPU</>1

'-- __ ---'-_---'r--
l-

J

I
I

I

I

------.
}.....-.J

MPU control pin (TSC) can be used to force the MPU Bus
drivers to high impedence state. Another alternative
would be to use a Bus Switch such as the MC3449.

Multiplexed DMA results in the highest DMA transfer
rate since the DMA operation is invisible to the MPU.
Multiplexed DMA timing is given in Figure 8. This method
requires memory access times fast enough to allow a
complete read or write cycle to occur within 1/2 MPU
cycle. A sample dual processor design given later will
illustrate this technique.

DMA by halting the processor is illustrated in the
timing diagram of Figure 9. In this mode the MPU may be
halted as long as necessary to perform the DMA as the
MPU clock signals are not stretched. This technique is
useful when Burst DMA is desired. The DMA controller
must provide the halt signal (active low) to the MPU. The
MPU will finish the current instruction and respond with a
positive transition of BA (Bus available) when the
instruction is finished. The DMA controller may then take
control of the Bus for transfer.

MPU</>1

MPU </>2

Refresh Clock
32 kHz

Refresh Request

Refresh Grant

RAS

CAS

Strobe
RAS

(from controller)



Address
Bus
R/W



4 fo

2 fo

Me ~

<1>1 I
<1>2 .-J

'---_I ~_I
1'----_ l~_

_---'I _---'I
I I
I I
I MPU DMA I
I I
I I
I

DMA Add ---'X D~~Ii~ddX:===D=;s=a_b-,=ed====X-D-M-vA-al-~-dd-X~========================
DMA CS '----J Disabled '----J
DMA R/W L---l Disabled ~

DMAData~~!sH~~~ .... _

__ I

L
---I

Typical Buffered System

In the block diagram of Figure 10 the MC6875 is
connected in a typical buffered MPU system. The
MC6875 should be located such that the signal path is less
than two inches for the MPU ¢>l and ¢>2.The damping
resistors shown at the MPU ¢>I and ¢>2inputs should be
located as close to the MPU inputs as possible. The value
can range from 0 to 30 ohms but the optimum value range
is 10 to 20 ohms. These resistors damp the overshoot and
ringing typically found in these systems. They also extend
the rise and fall times and reduce non-overlap time of the
¢>I and ¢>2 signals. The block labelled DBE stretch is an
optional circuit used with memory peripheral parts
requiring longer data hold times. DBE stretch circuits are
given in Figures IIa and 11b. These are basic stretch
schemes and may be modified to suit the hold-time
requirements. DBE may be stretched up to the maximum
time allowed by the MPU specification used.

The block labelled Bus Control Logic of Figure 10 is
expanded in Figure 12. As shown, this logic controls
receiver/driver sections of the MC8T26. The Read Enab~
(Receiver) is an active low signal enabled only when R/W
is high and Bus ¢>2is high (Read Cycle). The write Enable

(Driver) is an active high signal enabled only when R!W is
low, MPU DBE is high and the MPU is not in the halt
mode (M high). MPU DBE is used to provide the data
hold times required by some memories such as the early
2102.

2048 x 8 Bit Slow Memory Design Using Silicon Gate
MOS 2102

The very first step in designing a memory system is to
develop a timing diagram showing the relationship of the
MPU timing and the required memory timing for both the
Read and Write cycles. Once this is done the designer can
easily develop the controller which consists of address
decode, R/W and various strobe signals. £igure 13
illustrates these relationships. The memory CE can be
presented to the memory array as soon as the MPU
addresses are valid. As described earlier, CE should be
used to develop the memory ready signal stretching ¢>21.5
/lS. R!W to the memory array must wait at least 200 ns
after CE for a write cycle. This can be accomplished by
incorporating Bus ¢>2into the Memory R!W signal. See
schematic of Figure 14.

16K x 8 Dynamic Memory Using MCM6604
Dynamic memory system design has been complicated

due to the involved controller. The controller has to



Last Cycle
of Current
Instruction

~-I 1(0--- I-

d
470ns Max -, ~I-__ ---I( I --.l 300 ns MaxI t------ \~ _

---- i300nSMax-===- -----------<{!'-- ~/-----

_~.. ~~_DMA_HK DMA )~ _ ____e(~~.~y
~ =A~dr1O ~_ __D_M_A_/-1f\ DMA )}--------{( ":d~r -.. =A~~r1)

_~~ • ~-B___rf_____8>--------.~

uu



- -
AO r-- - AO 00 I---- 50
Al - - Al -

01 f-- 01
A2 - - A2

A3 - - A3 02 I---- 52
A4 - - A4 -03 f-- 03
A5 - - A5

- 04

~

Bus H- Control
05 Logic

I TA6 - - A6

A7 - - 06 -f-- 04
A8 - -

07 -
A9 - - I---- 05

Al0 - - 56f--
All - - All

- I---- -
07

-
A12 f-- - A12

20n
A13 I---- - <1>1

A14 f-- - 20n
<1>2

A15 I---- - A15

OBE

- - R!W ~4>BA BA-
Halt-
NMI

VMA VMA
NMI

IRQ IRQ Reset -

R/W

Reset <J---«J- Reset MPU <1>2
I OBE I
I Stretch

Halt
Power-On

MPU <1>1

± Reset- 20 n

If> 10 k .--- Xl Bus q.,2 Bus $2
10 k

k
Mem elk Mem elk

--< H
2 fo 2 x fo

+5 V -- X2

4 MHz c5 4 fo 4)( fo

J Mom
Mem Rdy

RdV

t Ext In Rol Roq Ref Req

Rof
Ref Grant

Grant



BUStP2~
I

MPUDBE~ --j f--- Oelav ~ 80 n,

BUSep2~
I

MPUOBE~ --l f-- Oelav ~ 125 n,@ 1 MHz

Read Enable
(MC8T26 Pin 1)
Active Low

Write Enable

(MC8T26 Pin 15)

Active High

BA
(Inverted MPU BA Signal)

provide refresh, R/W and Rowand column address
strobes. The MC3480, in conjunction with the MC3232A
and MC6875 handles all of this with ease. The block
diagram in Figure 15 describes a typical 16K system
employing the MC3480. The MC3480 is intended for use
with the MC3232A (Address multiplexer and refresh
counter) and the MCM6604 4K dynamic RAM. The delay
circuit may be manipulated to configure the output
timing for other memory types.

Figure 16 is the timing diagram for the MPU, MC3480
and MCM6604. The time delayed inputs, tl through t5,
may be generated by delay lines, one shots, counters or
combinational logic, depending on the speed of operation
and signals available. One method of generating these
delays employing a shift register is shown in Figure 17.
The shift register is clocked on the positive edge of 4 x fo
and is pre-set on the logical AND of 4 x fo, 2 x fo and fo.
Figure 18 uses combinational logic to develop the delayed
inputs to the MC3480. With this technique the MC6875
must run slower (3.32 MHz Crystal) to align the 4 x fo
and 2 x fo signals with the required time delays.

Multiplexed Dual Processor System
Several methods exist for designing dual or multi-MPU

systems. The multiplexed scheme is the most popular due
to its high processing rate. The block diagram of Figure 19
illustrates the technique of swapping the MPU 4>1and 4>2
signals and multiplexing operations on a common memory
array. The total system in actuality would contain three
buses. One bus for each MPU containing ROM, RAM and
I/O and the third bus containing the common RAM. As
stated earlier the access time of the RAM and/or I/O used
on the common bus will determine the clock period. The
same techniques used here for accessing the common area
would also be used for DMA access. Figures numbered 20
and 21 indicate the buffered dual processor board and
common memory board. Not shown are the main buses
containing the required ROM, RAM and I/O. The MPU
board is straightforward; note that the MC6875 is directly
driving both MPUs. In Figure 21, MC3449s are controlling
the address and data bus. 4>2controls the selection of Bus 1
or Bus 2. When 4>2is low, Bus 2 is selected and when 4>2is
high Bus 1 is selected. CS is then developed by decoding
address bits A8 through A15. CS is then used as a chip
select to memory and as an enable to the MC3449s
controlling the data bus entry. The R/W line is then used
to control the direction of the Data Bus. Because of the
timing requirement of the MCM68lOALl and propagation
delay of the MC3449s along with the Address and Data
buffers, the MC6875 must run slightly slower
(approximately 840 kHz). This technique can be
expanded by adding other MPUs sharing common
memory with the first MPU. Thus MPUI becomes a
master and the other MPUs are slaves sharing common
memory only with the master. (Note: All addresses must
be unique.)

Dual Processor Using Halt
This technique, as described earlier, is illustrated in the

block diagram of Figure 22. For simplicity, it is shown
with MPU 1 as a master with access to Bus 2 as well as Bus
1. In a user system both MPUs may have access to either
bus. In this application access is gained to the second bus



I. 1.5Jjs ------.~ 50ns/div.

MPU4>1~--I~ 1
I I c.rDBEExtended 100 n.

~300 n.-! II
11 , ------ •...•~Il

MPU Address X Address Valid

----- •••• 1 1,
~540n.~ 100n.--.I u.....
I I Max I M'n 1 :'

~:a~ Data ------'----: ---e:<J Data Valid Read : :?--
I 22S n. 1 ' I I,~_~ I ,

1/1
~~:I I """ Data Valid Write V

I I I ~I 900 n. I II
~ M'n :r

200 ns ~ ~ 1·~--r------7-S-0-n-.:::::::-.:.I-d
______ I ~I M,n ----j tt--SO ns Min

RIW I, ~f111
Write Mode ~ ! ;11

I I I --I 1--100n.hold
750nsMin~

I
It--r500 ns Min~

~::~ (2102) ~
Data Valid V

(2102) Reed ~

--i f--SO n.

~ = Don't Ce'.

by halting MPU2 using a PIA on Bus I. When MPU2
finishes the current instruction BA will return high
switching control of Bus 2 to MPU I and at the same time
indicating to MPUI that the bus is available. This
technique can be used in conjunction with the
multiplexed scheme in multiprocessing applications;
however, NMOS drivers may have to be used to expand
the drive capability of the MC6875.

Design And Layout Considerations
Certain precautions must be taken when designing an

MC6875 into an M6800 system. It is recommended that:

l. The MC6875 be located such that the MPU </>1and </>2
signal paths are within 2" of the MPU.

2. Damping resistors within the ranges of 10 to 30 ohms
should be located as close as possible to the MPU </>1
and </>2input pins of the M6800.

3. Refresh Request and Memory Ready be pulled up
when not in use.

4. Crystal, RC or L-C controlling networks be located as
close as possible to the corresponding inputs of the
MC6875.

5. Ground loops be avoided and high frequency bypass
capacitor used directly at the MC6875. (0.1 J.lF ceramic
disk)

6. The External Input be grounded if not being used.



+SVoc.

1>1
4.11<

OSr -------,
I """"1

8126 I
Itl t-l r--.. 114

: "L 1

9! -;t I'-.. : \I

~ ~.J
,i~-aT26--ls

: 'L- :
.! '""";:l ~ :t

1 'L. :
q;~ r-.. 111

: 'L. :
r,:~ r.... :14

, 't:.- 1L -.J.• ,
os ,

J':;8Ti6:- it
1 ..,

1 ~ 1-',1 ~ 15
: 'L- :

,I~ ~ ,,,
1 v 'L-'

,,:h ~ :. I
L ::-:: J

" ,~-8T26--l
" ~ ~ I.
: I'L-:.

4: ~ ~l

: I"'L-:~
L J

.. ,
[-----1

oil
"h8T26 1

, "L ,,,, :, h ~VUA 4, It

I 'L- ,
I I.
I '--;< ~ I,

I>/W "I "L 1
I 1

L______J

4 .•10

2.'0
MEM ROY

L
r'-'

.
"",

-~
VUA

~

Sii
WC7479

C 0

+5 VOC

~l



I ~
I It " 0\1 ,II, It o • II ,II" 0 • II I r It

o • II I It " II r It 0
q II

0= o l"l OOJT 01"" O()J1' DIU OOUT 0'" 0"'" 0'" 0""' 0'"
2102 O'Z. 2102 D~ 2102 04 210

2 ""
2102 0<; "02 O?

~•., • " .~, , 04 " III ~ 2. , 4 l~ 14 "" t " 4 I! 14 ~ t El 4 I!I ~ •• 2 6 .", • , • , • . , 5 5 , , , • 5 , • •

I

, . . , ., '!l , , . ,
'!l '"

, . . . , .." , ,"'I .~, ""11""' .. "] ~ ~ 2 .. '" .~, , 4 " .~, " .• I'
2102 0' 210Z 03 2102 04 210Z OS 210 2 DO "02 07

0= o ,u o Oft o IlJ O()JT 0"" 0= 9°.:1>.1 I Dr " • 011 OOJT DllJ

" " • II " 10 9 II 11 10 . II It " II It II • 0

""'"

-- ~
. I4;MCaTii-~-i t~

[j'l

" ,,: ..r- I:
I'MC8T:z8 -~-~" , 1
1 , ,

0;:;
~...r n 1 ,

I I I
It I V' , I -,.. 1

I I ," "0 D!:, , I r- I:, 1 ..
I ..•.. ;~

, I

"'
, ,

154
.: ..r r I I, I, ~v

I I
1 I I
1 I ---... ,,

S I '6 53
I ,

" .r I:I
I .•.. , 1

,
" I, , , en4: ...r 1: I I,

I, I ,
"A-

I
I I " " (jf
I , 4: ..r- I', I ,
I h- , , - , __ ..J

s' I~ ~-~ 007: ....r I, '-
L_~ - r---.J

-



Mem Clk
RASl

MPU
System Ref Req

RAS2
Clock

MC6875 Ref Grant

Memory Control RAS3
and Timing

MC3480 RAS4

Control Bus
CAS

Address Bus
R/W

7. If Dynamic Memory is used the Reset output should be
buffered and the resulting Reset be· ORed with a
debounced Master Reset signal. This is ~eeded since the
Power-On-Reset input will disable the dynamic
memory refresh.

8. TTL and NMOS loads should not exceed the maximum
capability of tpe MC6875. . .

9. Crystals be selected with equivalent series resistance of
35 tQ 60 ohr(ls and that can tolerate a circuit load

. capacitance of 12.5 to 19 pF. These crystals may be

purchased from Tyco or CTS Knights Inc.

CONCLUSION

The MC6875 is a very versatile, reliable and
inexpensive clock. It can be tailored to tl\e users' system
with a minimum of hand~haking logic. As sho)Nn earlier,
the 2 x fa and 4 x fa outputs are useful in oeveloping
various control signals needed with certain memory and
I/O parts. The high drive capability mak~ it useful in
buffered, unbuffered and dual MPU systems. The clock
stretching capability make it useful in Dynamic Memory,
sl9w memory and DMA applications. '



Memory Clock

<1>1

<1>2

MPU Address

MPU Data Bus

"T1

"T2

"T3

~ ~:T4.j>.-...j

"TS

RAS

CAS

Memory Address

Memory Data 110

"1'
Memory R/W

"0'

"'"

Read Cycle Write Cycle Refresh Cycle

'-- f\-- /
~ ~

~

_oJ

-
I

I-- 300ns--j '- -300ns--j
225 ns- i'-

X X
I

Data Valid X MPU Data Valid

'""'\
100 ns ==-Min

\
....,

\

'""'\

- -
/

- ,.... ~ ~

'I.. 1\ \

~
20no- -f-- 20ns- - 20 ns__ II- 20ns- 20 ns 20no-

1\
-20 ns t--20 ns -If--20 ns

AO-AS;( A6-A11 x: ~ AO-AS ;( A6-A" X:~AO-AS)I\ A6-A1' OC-~30 ns 30ns_ ~ _ ~30ns 30ns- ~ - f-30no 30 no-

Output Data Valid Input Data Valid

_2~~~S--j I I I
r\. 11

20ns-lf- 20 ns--ll--



4 x fo

2 x fo

I

fo 1 I I
I I II I

OA Tl I III
I I I

OB I I I
I I I

oc I III I I

I I I
OD I III I

I I
RAS I I

T1
I I

Row En,
A6-A11

Ref En

T2

CAS

T3

Read

RIW Write

T4 - - --'
T5

""- 11MHz

MC7496

4 X fo T12 X fo PE
fo Clock QA

+5 V A OB T2
B OC

+5 V C OD T3
D

10k R1 E OE
S.1. T4
Clear

()-11Jf C1 T5

-=



dress 8u5
-

MC3232A

AO -----
A' -----
A2 :------
A3 :------
A' r-----
AS r-----

-

Row En f--

Ref En f--

A.fClk ~

32 kHz

II
Aefresh
Clock

L MC3480

2~

Aef Clk Aef En

MC - U Aow En -
MC7402 'Fi'ASi ------"

...--- A/W "R"A""S2 ------"
Aef Gnt AAS3 ------"

- Ref Aeq R""A"S4 ------"
AI2 CAS ------"
A'3 Mem AIW ------"

- - T3 CE

- T2 MC

T1 TS

MC8T26
2.2k CSr----:::;-'

rH';;-S':;ch'Ir-l ~ IIV t'-.

1 re- LC...-
I j I MC7410

IV •.... I --L/ Co
"C...:.- I I II re-

I ~IV •....
1 roe- "C...:.- I I

:t:-o--+-
IV •.... I L __ J

Co- "C.......,
I1"-*L:::::. ____ J RJW MC7402

MC8T26r-----::,-.., A/W

I" ~
IV t'-. AIW

I re-'
LC...- I

Me
IV t'-. MC

I ,.c-' LC...-
I

2"X'f'O
IV t'-. 2. fo

I ,.c- l-C.:..... 1
- I "- 4. fo

I
l-C.:..... I

I
-

L _____ ..J



r- R"A"5'l

r- CAS
r- R!W

r-CS

...- RAS3

.- CAS

.- A!W

...-CS

ASh r- 'R'AS1

A4 r- CAS

A3 r- R!W

v-
V-
V-OS

A4 r- CAS

A3 r- R!W

-
A2 ~ r- CS

At ~ 004

AO~ 014

A4 ~ 004

A3 f-/ ~ OS

A2 f'.- R!W

A1 f'- CAS

AD f'.- RAS2

AS r--- V- RAS3

A4 r-- V- CAS

A3 ~ V- R/W

A2 r-- V- OS
At ~ 004

AD ~ 014

r'--OS
f'- A/W

f'- CAS

'- AAS4

AS ~ AASi

A4 V-- CAS

A3 ~ V-- R/W

A2 V-- CS

Al ~ 003

AD ~ 013

A4 f-/ 003

A3 r'-- CS

A2 f'.- A/W

At f'- CAS

AD I'- AAS2

v- AAS3

V- CAS

V- R/W

V-OS
003

AS~ ~ AASt

A4 ~ V-- CAS

A3 V- A/W

A2 V-- CS

Al ~ 002

AD ~ 012

A3f-/ ~ OS ,

A2 f'.- R/W

A1 f-/ ~ cAs

AD I'- Fi'AS2

-
A4 r-- V- CAS

A3 V- R!W

A2 V- CS

V-
V-
V-
V-OS

~OS
~ R/W

I'- CAS

'- R"AS4

A3 '- CS

A2 '- A/W

At ~ '- CAS

AD '- RAS2

AS ...- AAS3

A4 .- CAS

A3 r-- V- R/W

A2 V- CS

AS """'"\~ AAS1

A4" V- CAs

A3 r-- V- R/W

A2 V- CS

A3 I'- CS

A2 I'- R/W

A1 f-/ ~ CAs

AD I'- AAS2

V-
V-
V-
V-OS

I'-os
I'- R/W

I'- CAS

'- AAS4

AS r--- ~ R""AS1

A4 r-- V- CAS

A3 r-- V- R/W

A3 '--- CS

A2 ~ '--- R/W

A1~'-CAS

AD '--- RAS2

AS ~ ,- RAS3

A4 ~ ,- CAS

-r- CS

,,-
V-

'-OS
'- A!W

'-- CAS

'-- RAS4



Mlltn Bus

Datal

'.f I I Common

MPU 1 I
Memory

Addreu 1 - Array

Reset

I I

I
Cantrall

.2 .' DBE " I I
>--U I IF ¢2 MPU

MC6875 I I¢1 MPU

, I I

J II I
410 r--

Address

":" 210

I I
r-- .nd -

Me r-- Dua -Direct

Bus ¢2
I

r--

h L -'-
...J

~.' .2 DBE A

Reiei
Data 2'- " f---

MPU 2 Address 2

A

Control 2

'J '---
FIGURE 19 - Dual Processor Block Diagram

Bus 1

AO DO~ Al
01•.

A2 Bus 1~..
A3 02u

DO~ A< 03
AS Di

0< 52
AS

05 D:i
A7 OS

AS 07
A9

AlO ~
All ~ .' D<
A'2

.2
A13 05

A1<
DBE 0.

A15

AIW BA 07

Halt VMA VMA
NMo

BAfmj Reset

Bus¢2

ReHt
'5 V

MPU ¢2

AO Reset Reut '"Al
VMA

..
A2 Xl Ii
A3 BA ~
A<

DSE X2
R;;;t

AS
.2

"" Do
AS .' T '" DiN

A7 :;; 52
AS U

A9 ~ ~ D:i
AIO ~
All

DO

A12
01

Al3 02

A1<
03 r>4

A'S '"AIW 0< N 155
:;;

05 u 156
H8it

OS
~ iS7NMi

iRi:f 07
VMA

Bus 2
BA

'5 V
Bus (/12

8...,2

FIGURE 20 - Dual Procaaor (Multiplex' Proe..sing To Camllloh Memory)

151



MC3449

A3 AO
B3 A1
C3 A2
Sol

God VCC
DO AO
01 Al
02 A2
03 A3
04 A4
05 A5
06 A6
07 R/W
CSO CS5
CS; CS4
Cs2 CS3 A7

06 A3
07 B3



MPU1
I\.

Control
Address )

V Data
ROM-<1>1 /I > Address

- <1>2 Data

- ReS"et
MC6875 Control

I~

f
Reset RAMXl

IX2 Mem Ady

RG

I RR
I/O-= _ MPU01 H Timing PIA

MPU02 I--t--< Buffr- Ext In

MC3449"l

Mem elk

210 Data

410 Address
ROMr P-OR

"-
Control

- )I4JJF

- MPU2

"-Halt I-- )SA ~ RAM

"-
~

Address )
<1>1

~ >'--- <1>2 Data

~ "-- \/0- Reset Control



AN-777

A DUAL PROCESSOR SYSTEM
FOR USE IN THE EXORciser

Prepared by:

Raymond H. Naugle
LSI Systems Applications

This application note describes the
design of a dual processor system for use
in the EXORciser. In this system, the
processors have control of a common bus
on opposite phases of the clock.



INTRODUCTION

This paper describes the design of a dual processor
system with a minimum of additional circuitry over a
single processor system. The system is EXORciser com-
patible, operating under a common program, EXbug.

You can increase your system's throughput by using two
processors instead of one. The added speed is accomplished
by doubling the available processing power which includes
increased interrupt handling capability for the same
system. The system may also be designed so the cost will
be only a little more than a single processor system.

Many configurations are possible when connecting
two processors together. Figures I and 2 show two imple-
mentations each using two proces'sor subsystems connected
by some logic interface. Although these figures show
two completely separate systems, they may share
some common components such as power supplies,
clock circuitry, etc. Also, these two implementations
may be extended for use in a system with more than
two processors.

In Figure I, PIAs are used for communication between
the two systems. The PIA contains two 8-bit data ports
with additional internal logic to take care of the "hand-
shaking" between the two processors when the data is
transferred. The PIA can be programmed so that one is
an input port and the other is an output port. In this
scheme, one processor could handle the peripheral input
and some data formatting, 'then send the data to the
second processor for the data maipulation. After the task
is complete, the second processor sends formatted data
back to the first processor for unformatting and output

to a peripheral. Thus, while the first processor is
receiving/transmitting data, the second processor could
be doing the "number crunching".

Figure 2 shows a FIFO (First-In First-Out Register)
being used for transferring data between the processors.
(Shown in the diagram is data flow in one direction, but
the same logic could be repeated for data transfer in the
other direction.) In this configuration, the first processor
may stack data for use by the second processor and the
second processor may read data as needed, thus saving
processing time from answering interrupts for data being
transferred in. Here, the processors are allowed to operate
more efficiently.

Another approach to the dual-processor implementation
is shown in Figure 3. Here both processors utilize the
same bus, operating on opposite phases of the clock.
This system eliminates the need for a second bus structure
and most of the hardware or software for communication
between processors. Since the processor transfers data
only during the q,2 portion of its clock cycle, it needs to
have access to the bus only during this time and not during
q,1. Therefore, when one processor is in the q,l portion of
its clock cycle, the other processor is in its q,2 portion and
has control of the bus, This doubles the effective speed of
the data transfer rate. (Since the bus cycle time has been
cut in half, the response time of the bus parts should be
checked to insure proper timing.)

Communication between the two processors inay now
be done in common RAM. This feature saves adding a
couple of PIAs or FIFOs plus extra interface logic,

Some other features of this system include eliminating
some ROM where common routines may be utilized. If
both processors execute the same program, the cost of
the total system's ROM will be cut in half.



If the same program is used for both processors, each
processor will probably need some dedicated "scratchpad"
RAM and I/O. Dedicating certain blocks of RAM and I/O.
to one processor can be done by including a clock signal
as part of the address decoding. If processor A needs a
certain block of memory dedicated to it, the clock ¢2
signal should be included in the address decoding for that
block. Then when processor B tries to access that block
during its"'¢2 portion of the clock, the clock's ¢2 is low,
thus, that memory block isn't fully addressed and won't
respond, while the memory enabled with the clock's ¢l
signal will respond only to processor B.

SYSTEM DESIGN
Of the three dual processor systems described, the

latter approach was used because of its simplicity, minimum
package count, and common utilization of memory and
software. The dual processor system was designed in
accordance with the following set of requirements.

First the system will use one EXORciser with little
modification, since the EXORciser has the needed bus
structure and power supplies.

Second, both processors will execute the software
resident to the EXORciser system, namely EXbug. Using
this program will eliminate extensive software develop-



ment for the system, since EXbug has routines to load and
punch program tapes, change memory, and start execution
of the programs entered, along with some program
debugging capability.

Third, each MPU must have dedicated memory and I/O
to accommodate the EXbug program. The I/O (serial
communication utilizing an' ACIA) must interface to both
a TTY 20 mA loop and an RS-232C terminal interface.
In addition, each MPU must have a ROM for vectoring to
a system reset address.

Fourth, each processor will operate at a I MHz clock
cycle time. With both processors operating at I MHz,
the bus will operate at 2 MHz or 500 ns cycle time. To
be included in the clock design is the ability to refresh
memory on a "cycle-stealing" basis, thus transparent
to the MPU. Also to be included should be the ability to
slow the clock to allow data transfer for the slower
responding bus parts.

Fifth, when one or both of the MPUs are halted
(either by a WAI instruction or pulling the Halt line low)
the address and data bus should go into the high-
impedance state, with the exception of VMA. VMA
should go to a "0" level so erroneous reading and writing
does not occur. An option should be included so control
of the bus may be taken over during the time when an
MPU is in a halt condition.

The EXbug program requires a minimum of an ACIA,
RAM, and ROM for its hardware support. These items
are needed for program operation and are duplicated for
each MPU. The addition of a PIA and its supporting
hardware will enable the following EXbug commands:
(;P), (n;P), (N), (;N), (n;N), ($T), and ($S). (See the
EXORciser User's Guide for command descriptions.)
Although not included in this system, the address
decoding must allow for the PIA so that no other com-
ponent on the bus will respond to that address.

Figure 4 shows the memory map for this system.
Common user memory is allocated addresses $0000 to
$EFFF (Hex). The EXbug program occupies addresses
$FOOO to $FBFF. The address block $FCOO to $FFFF is
a block of memory dedicated to each MPU. In this block
is the mutually exclusive hardware support for the
EXbug program.

The block diagram for this system implemen ted as one
module for the EXORciser is shown in Figure 5. This
system is divided into three blocks plus the MPUs. The
three blocks consist of Clock/Control, Bus Interface, and
Dedicated Memory and I/O.

Clock and Control

The clock and control section is described in two
sections: Reset and Clock Design.

Reset. The reset of either the A or the B MPU can be
actuated by a number of signals (Figure 6). Both the A

rand B systems are reset by a power-on reset. When the
+5 V power is turned on, the timer (MCI455) is auto-

RAM1A RAM 18

MCM6810Al MCM6810Al

RAM 2A RAM 28

MCM6810A1 MCM6810Al

PROM A PROM 8

PIA A- PIA S·

f'i"/////~
ACIA A ACIA B

r:w
EXbu 9 ROM

User's
Common
Memory

FCF8

FCF7

FCF6
FCF5
FCF4
FCF3
FCOO
FBFF

matically triggered and pulls the Master Reset line low,
resetting the whole system. When the timer has timed out
(about 400 ms) the reset line is brought high allowing
both the A and B MPU to come out of the reset mode and
start execution. The Master Reset line may also be pulled
low by a signal from the bus. The bus master reset and the
power-on reset are wire-ORed so either may cause the
whole system to be reset.



r--------------,I Dedicated Memory and I/O I
I . I
I
I

n
~ [

~
c.

~
n
0~ ACIA2.

PROM I
I
I
I

I IL J



EXORciser Bus

Reset A c-

Reset B 25

Master Reset 5

+5 V

4

MC1455

6 5
1M

+5 V

0.1 0.1 0.1 0.1 0.1

Each MPU also has its own reset line (Reset A and
Reset B) which will reset the respective MPU and the bus
parts connected to it. These two reset lines are pulled low
each time the entire system is powered up or when the
Master Reset line on the bus is pulled low. Also, an
individual MPU may be reset by pulling the reset line
associated with it (Reset A. or I<eSetB) to ground. The
reset from the bus is wire-ORed with the reset from
power-on/Master Reset so either signal may reset the MPU.

Clock Design. The system clock can be analyzed in two
parts: The bus clock and the MPU clock (Figures 7 and
8). The bus clock runs at 2 MHz and provides the 2ifi2
signal for the bus. Additional circuitry is included in the
bus clock to allow for the slow response time of some bus
parts and for the refreshing of dyn~mic memory.

When using dynamic memory, a refresh cycle must
be provided io recharge the memory cells. To execute
a refresh cycle, the memory module generates a request
for refresh (REF REQ) signal. This signal asks the clock
for a refresh cycle. On the next 2ifil portion of the clock
cycle (see Figure 9A), the clock generates a refresh grant
(REF GNT) signal telling the bus that a refresh cycle has
been granted and it is now taking place. During the refresh
cycle, the 2ifi2 clock remairs low for that cycle of the
clock. Since some memory modules need a clock for
timing during a refresh cycle, another clock signal is also
generated called Memory Clock (MEM CLK). This clock
signal is the same as 2ifi2 except during a refresh cycle it

continues to cycle while 2ifi2 remains low for that
clock period.

Also included in the bus clock design is the ability
to stretch the 2ifi2 or data transfer portion of the cYlile.
Since the clock period is ·500 ns (2 MHz) some of the
logic interfaced to the bus may not have enough time
to respond to the fast rate and requires more time for
the data transfer. When an MPU addresses such logic,
the logic should respond by pulling the Memory Ready

2<1>2

Memory Clock
LBus

Clock Refresh Grant
13

A-efresh Request
12

</>1
14

</>2
15MPU

Clock

MPU Clock {</>1 B
Inputs cP2B



+5 V

7479

7404 S

C Q

7404

Crystal +5 V 0 Q

Oscillator
680 PFI R

2.0 MHz

+5 V

-=
+5 V

7479

7404 S~
(j) C Q
0

7400

+5 V 0 Q

R

+5 V

+5 V

S

C Q

0 Q

R

+5 V

Memory Clock

R Memory Ready

13 REF. GNT.

MC3459

"'2 - MPU A

10 "" - MPU B
620

15 "'2

'14

""

"" - MPU A

10 "'2 - MPU B

620

+5 V



2<1>1

2<1>2
Bus
Clock

Memory Clock

Refresh Grant 11

1
Refresh Request ~From

the Bus
Memory Ready

~
<1>1

MPU
Clock

<1>2

Crystal Oscillator ~ 1 1

Memory Clock 1 1 I
1 1

I 1__

L-

------------1
__ I

--~---------~
_~~ fL
__ ~ fL

__ f __ f



10 ns
--I~

Oscillato, -.J~---I l

Memory Clock 1 1 ! _
L

------_1

_B~ A__ ~~

_B~~ A m
MPU Read Data ~~ B __ ~ A ~

I • 231 os I
_B __ A ~

line to ground, asking the clock to stop in the 2</>2portion
of the cycle in progress. When the data has transferred,
the Memory Ready line is brought high again. (Memory
CJock is unaffected by this operation and keeps on
cycling.) Therefore, when the Memory Ready signal is
brought high, the bus clock output 2</>2waits in the 2</>2,
or high, portion of the cycle until the Memory Clock
signal has completed its 2</>2portion of the cycle. Figure
9B shows the timing when addresses $FOOO to $FFFF
(EXbug portion of memory) are on the bus and valid.
This cycle stretching is done to allow for response time
of the ROM, RAM, and ACIA.

The MPU clock is a derivative of the bus clock. This
clock takes the 2</>2signal from the bus clock section
(Figure 8) and uses the negative going edge of 2</>2to
toggle a flip-flop, dividing the b.us clock by two. The clock
outputs of this circuit produce non-overlapping </>1and
</>2signals. These signals correspond to the clock inputs
to MPU A (MPU Buses </>2as its </>1input and </>1as its
</>2input). The </>1and </>2signals used to drive the MPUs
are from the outputs of an NMOS address line driver
(MC3459). Although these clock signals don't meet
the worst case specification for the MPU's clock inputs,
they have been found to work satisfactonly.

Since the system operates at 2 MHz, the timing
relationships between the MPU and bus must be carefully
analyzed. The MPU clock generates non-overlapping </>1

and </>2signals. In this generation, the </>2clock is held
low six gate delays longer than the </> I clock signal so the
</>2clock is high for a shorter time than </>1.Figure 9C
shows the timing necessary for data transfer to and from
the MPU. (The timing diagram is looking at the bus after
the typical delay times on the dual processor module have
been included.)

BUS INTERFACE
The bus interface associated with each MPU will be

enabled only during the </>2portion of that MPU's clock
cycle. Since the MPUs operate on opposite phases, each
set of drivers/receivers will be enabled only on half of
a clock cycle in a non-overlapping fashion. An MPU
control signal, Bus Available (BA), is also used to enable
the bus interface. The BA signal, when high, indicates
the MPU has stopped (either by a Wait instruction or the
Halt line going low) and the bus is available. This signal
disables all the bus drivers of that MPU during its normal
</>2cycle.

The bus interface (Figure 10) is divided into two
sections: The address drivers and the data drivers/receivers.
The address drivers buffer the 16 address bits, R/W and
VMA. These drivers are enabled during each </>2clock of
that MPU unless the BA signal is high, then the drivers
are left in the high-impedance state. When the bus is
available, the VMA: (see Figure ll)and VMA are normally



Data
Drivers/

Receivers

held at a "0" level. If some peripheral (i.e., Direct Memory
Access) needs the bus, the YMAEXT signal must be used
to get YMA on the bus to go to a "I" level. Here the
peripheral will raise to a "J" level the YMAEXT ·line
when the valid address is on the bus for data transfer.

The data drivers/receivers are bidirectional three-state
devices. To enable either the drivers or receivers, it
requires a combination of the R/W, YMA, BA and ¢2
signal for the MPU being buffered (Figure 12). The bus
drivers are enabled when the MPU's clock is in its ¢2
portion, R/W is low indicating a write function and BA is
low. The bus receivers are enabled when the MPU's clock
is the the ¢2 portion, R/W is high indicating a read
function, YMA is high indicating the address is valid and
BA is low.

DEDICATED MEMORY AND 1/0

To minimize the logic needed, the two MPUs and the
dedicated memory and 1/0 were incorporated in one
module for the EXORciser system. For each MPU, this will
eliminate some of the data bus interface, since the ACIA,
RAM, and ROM data lines may be wired directly to the
respective MPU. In addition, by placing both A and B
sides of the memory and 1/0 on one module, the address
decoding redundancy may be eliminated.

Table I shows the address decoding necessary to
uniquely decode each component (ACIA, PIA, RAM and
ROM) as to its bus address. This addressing is enabled
with a signal called FCXX, where address bits A I0 to
AI5 are at a logic I level. Also, in the enabling of each
component is the clock's ¢I or· ¢2 signal, defining which
MPU is talking to the bus.

The first two machine cycles after an MPU has been
reset, the ROM is enabled and the RAM at the restart
vector address is disabled. This offset is added to the ROM
so the restart may vector to the proper address. After the
first two cycles, the ROM is then addressed in its normal
memory location (Figure 13).

The ROM also contains the control character necessary
to program the ACIA. EXbug programs the ACIA
according to the speed of the terminal, so when a tele-
typewriter is connected (I 10 baud), the ACIA is
programmed for I start bit, 8 data bits, and 2 stop bits.
Otherwise, the ACIA is programmed for I start bit, 8 data
bits, and I stop bit. To indicate when a teletypewriter is
connected, the TTY input line is grounded (Figure 14).

The TTY and terminal interface is shown in Figure 14.
This circuit supports a 20 mA loop for TTY interface
and a standard RS-232C terminal interface. Included is
a bit rate generator to supply both ACIAs with the proper
baud rate for the teletype or terminal connected.



EXORciser Bus

Address AO-A15 AO-A15

3-State

Buffers RIW
6 RIW

(BT97) VMA'

+5 V RIW

A15

A14
MC3015

Al3

A12

A11

A10

VMA'

3·State

Buffers
VMA' VMA

(BT97)

+5 V

E

X VMAEXT

SA A +5 V
1K

MC3002

MC3002 SA

SA S

TABLE 1
Address Decoding

(Address Bits A10 to A15 = 1)

Device Addresses A9 A8 A7 A6 AS A4 A3 A2 Al AD

RAM 1 $FF80 - $FFFF 1 - 1 X X X X X X X
RAM 2 $FFOO - $FF7F 1 - 0 X X X X X X X

ROM $FCFC - $FCFF 0 - - - - - 1 1 X X
PIA $FCF8 - $FCFB 0 - - - - - 1 0 X X

ACIA $FCF4 - $FCFS 0 - - - - - 0 - - X

Where: 1 ~ High Enable
D = Low Enable
X = Address/Register Select
- ::>: Don't Care



Bidirectional

3-5 tate
Buffers

Bidirectional
3-5t8te
Buffers

A few modifications to the basic EXORciser system
were needed for the system to operate properly.

First, the MPU module supplied in the EXORciser
must be removed. This is obvious, since the dual-processor
system contains both of the MPUs for the system.

Second, U20 (MC7473) on the Debug Module
must be removed and a short inserted between pins
13 and 11. This will disable the power-up/restart
sequence of the module.

The system as shown has utilized the following features
of dual processing.

I. Share common ROM. Both processors share the
common EXbug program ROM.

2. Dedicated block of memory. Both processors have
exclusively at the same addresses an ACIA, RAM, and
ROM.

3. One bus structure. This system shows how a one bus
dual-processor system may be implemented. This also
includes only one set of power supplies.

4. One clock circuit. This system uses one clock which
eliminates duplication of hardware.

5. Both processors. operate at I MHz. Except when
executing the EXbug control program, both processors
operate at I MHz doubling the overall system throughput.
In this system, the EXbug program is used only for
loading programs and program debugging. Once the
dual-processor system's software has been debugged, the
EXbug program is needed only to load the programs
and initialize program execution.

After the modifications to the basic EXORciser were
completed, the dual processor module was inserted into
the EXORci~er, terminals connected, and powered up.
Both MPUs, automatically reset, started execution of the
EXbug progam. A short program was executed in the
common user memory to insure both processors operate
at the I MHz speed.



A

M'C' =r M'C' :5MC6800 MC6800 0- 07

00-07 00-07 00-07
~07~

~ AO-A6 <== ~A! AO-A6 M:A
'" ~".J-- - A 14 LMC3011 MC3005

<t<t ~~ ~ A13 I~ ~ CS3 ----!::2 ~ CS3 ~~:; CSO ~ ~ co:; CSO ~ ~ A12 ~
:;<t ~ <O<t ~ TUa: CS1 - f--- ~a: CS1 - -
:;

CS5 ~ :; CS5
---.£ - -- f----

CS2 - - f--- CS2 - -
CS4=f

CS4

~
+1 V

R/W ~ RIW ~ Q-<S- / FCXX
0- /

00-07 f07
/l- MemOrv>- C

R
0: Memory

00-07~7 Clock Ready

FCXX T
-

AO-A6(=
- ~ 'p-- +5V

AO-A6 ~A6 ~A6V-
Mc3002

;;<t CS3 ~5V ;;co CS3 ~5V
~N ~ _N ~~:; CSO ~ FCXX ~:; CSO ~:;<t CS1 ~ - >-- :;<t CS1 ~ - -ua: ---±!.. <1>11 ua: -..!3.:; CS5 - :; CS5 - -----4

A9\ ')r-
CS4

-E..
~ MC3002 CS4 ----!::2 ~

CS2

~
CS2 =££ MC3002

R/W ~ R/W ----=--'\

- -
~MC3011

00-07 ~7 00-07 $7
A2l

CSO
..;!:..5 V .::...5V R/W

CSO~<t CS1 - - -I- ~'" CS1 - - -co<t ~ co<t ~ MC7473<0- CS3 ~ <0- CS3 ~uu UU:;<t RS ~ ~ :;<t RS ~ ~ > J Qf--- J Q
~ ~ "'RIW ~ RIW ~ +

E~ E~
C C- -- - -

,fK R O-K R 0

~D7 ~7
I80-87 80-87

'I Y

~<C~ A4
T+5V ~mi A4 T+5V

~

-:;0~:;o A3 "'Oa: A3 ---~O(( A1 ~a:~ A1 Reset 8COC:~ A1 A1

AO
AO AO

AO

CE CE

Address Bus

I I
I

MC7473 I
- f---J Q- I- J Q

'- C '-c <1>1 <1>2

,fK R
O-K

R 0

~30021 I

A



~
RB
F7 110

F9 300

F131200

Rx

OCO
«
U CTS«

Tx Clk

Rx Clk

RTS

A2
(PROMI

+5 V

Baud Select

~Jumper6------.. Clock

I
I
I
I
I
I IL --.J

4N33
-12 V

+ 12 V

620

N.C.

+12 V..,
I
I
I
I
I
I
I
I
I
I

_J
4N33

Dl
+12 V-,

I
I
I
I
I
I
I

I I
IL --.J

4N33



AN-783

SYNCHRONIZING TWD .MOTOROLA MC6802s
ON ONE BUS

Prepared by
James Farrell
NMOS Microcomputer Applications

The Motorola MC6802 Microprocessor is an extremely
versatile system tool in many applications. One applica-
tion that has presented some difficulty has been synchro-
nizing two MC6802's on the same data bus. This applica-
tion allows each MPU to operate during the half-cycle of
¢2 (E) that the other MPU is disabled. This permits the
added computing power of two MPU's while maintaining
the system costs of one data bus. Furthermore, there is no
time sacrificed since the half-cycle used would normally
be "dead time" on the bus.

Normally, the Xtal and Extal inputs would have
a 4 MHz crystal attached or a 4 MHz TTL signal going
directly into the Extal TTL input (pin 39). The MPU,
internally, divides the incoming frequency by four and
derives the external "E" output from its internally gen-
erated ¢2. Synchronizing cannot be accomplished if each
MPU has its own crystal source. The "E" outputs will
be asynchronous. If both MC6802s are driven directly
from the same fIequency source the enable (E) outputs
may be 00, 900, 1800, or 2700 apart in phasing. There
is no synchronizing input pin on the part.

Three problems are inherent in construction of a cost
effective Dual MC6802 system:
1. Developing a low cost frequency source to drive the

MC6802's external inputs.
2. Phasing the "E" outputs of the MC6802's to be 1800

apart reliably before the start-up reset is disabled.
3. Insuring the internal propagation delays (sometimes

called "slewing") are nearly identical to avoid over-
lapping of the "E" outputs when they'are high.

The NAND gates labeled "A" and "B" on Figure I are
used as an extremely low cost frequency source. This ap-
proach is reliable and always initializes. The frequency

output is subject to the Temperature Coefficient and tol-
erance build-up of the parts used.

The MC6802's performance will not be degraded by
this small frequency change, but it may be important in
the rest of the system'. If a better frequency SOUfC'eis
needed-lower drift or tighter frequency tolerance-many
standard circuits are available.

The NAND gates labeled "c" and "D" in Figure I func-
tion as a Phase Locked Loop and "D" synchronizes the
phases of the enable outputs to be 1800 apart. Upon ini-
tialization, NAND gate "c" compares the state of the
MC6802's enable outputs. If they are in contention (i.e.,
both outputs are high at the same time) gate "c" disables
the 'oscillator frequency entering the Extal input to
MC6802 unit #2. Gate "c" stops disabling gate "D" when
MPU's #1 and #2 "E" outputs are 1800 out of phase (i.e.,
in synchronization-see Figure II). The worst case of
synchronization will take 3Jls to accomplish with a 4MHz
input frequency (12 cycles of the input clock).

In order to avoid contentions once the MPU's are in
synchronization, it is necessary to assure that the internal
propagation delays (slew) are equal. There are two major
factors controlling this propagation delay (Figure II). The
most .obvious is the package. The inherent body and lead
frame difference between the plastic and ceramic packages
offer different body capacitances to the chip. Since this is
a consistent value, no problem will be encountered if the
same package is used in both positions. Changes in the
chip design will also cause a timing change. It is the nature
of the state of the art in the NMOS IC business that the
chip will be changed as time goes on. This problem can be
avoided by using parts with matching date codes, thereby
avoiding using two "different" MC6802's.



--l rMC6802 In'ornal P,opaga'ion Dolay

E, --0-.4vX- 1 \ 1

__ I--{__I \_-
I ~r---- Contention
I Disable Pulse

111

(When E1. Ell are in sync)

10
(4 MHz)



AN-787

AN M6800 CLOCK SYSTEM THAT HANDLES DMA
AND MEMORY REFRESH CYCLE STEALING

Prepared by
Bob Ferguson
Computer Systems Engineering

Dynamic memory and three-state cycle stealing for Direct Memory
Access· transfers require a clock generator and priority logic to maintain
proper refresh times of the dynamic MPU and dynamic memory. The
design presented here demonstrates use of the MC6875 clock generator
with an MC6800 MPU.

INTRODUCTION
Microprocessors are rapidly reaching areas where high

speed. data transfers using a Direct Memory Access Con-
troller are necessary and yet to be cost effecrive systems,
they must also have dynamic memory. One method of
providing a means of stealing cycles from the MPU, for
DMA transfers, refreshing memory through cycle stealing,
and also providing refresh to an MC6800 dynamic MPU
after each cycle stolen, is presented here.

The two key ingredients are the MC6875 clock chip
designed for use with the M6800 MPUs, and a priority
logic design incorpora ting Motorola's Low Power Schot tky
parts to control the priority of cycle stealing requests to
the MC6875. The circuit also guarantees refresh to the
MPU after each cycle steal byfore granting the next
cycle steal.

MC6875 CLOCK CHIP
The MC6875 is a two phase clock generator/driver

incorporating Schottky monolithic construction. It is
intended to supply the non-overlapping ¢! and ¢2
signals required by the M6800 MPU system. In addition to
supplying the system ¢ I and ¢2 requirements, it also
provides two free running oscillators, one at twice the
MPU clock rate (2 X fo) and the second with four times
the MPU clock ra te (4 X fo). These are useful as system
synchronization signals (see Figure 4).

The MC6875 clock chip permits cycle stealing from
the MC6800 by holding its MPU ¢l output high, its
MPU ¢2 and Bus ¢2 outputs low, during a cycle steal
Grant. Memory ¢2 continues to run during the Grant,
allOWing memory to be refreshed or DMA transfers to
be done during this time. The Grant output and clock

stretching is the result of a Refresh/DMA Request input
to the MC6875 from thc requesting area desiring service.
(See Figures 1,2, and 3.)

Figure 2 shows the timing relationship for a dynamic
memory refresh cycle steal. When the refresh logic issues
a request for refresh to the MC6875 clock chip, it should
be done 25 ns prior to the rising edge of 2 X fo. One
means of accomplishing this is to use the rising edge of
Memory Clock. This allows time enough for setup and at
the same time eliminates the need of special logic. Grant
is issued by the MC6875 at the beginning of the next
cycle following a request input from the Priority Logic.
¢ I is stretched high during the Grant time plus one half
cycle, while Bus ¢2 and MPU ¢2 are stretched low. Should
a Refresh Request arrive at the Priority Logic while a
DMA Grant is going on, the input latch will hold the
request. (See Figure 4, U18.)



4 X fo

2XfO~

MEM CL~SORL ~

REF REa N"
I ~

REF GRANT S _I _

Q) SHOWN •••. SEo ON I6EMCWIY CLOCKo REFRESH 1$ RELUSEOON lHIE RIECElPl OF(;RAHl OR ••.FlIER lHIE lR ••.•..• N<i 1E0G1E

Of'MEMOtlYCLOCK

Figure 3 shows the timing of a OMA Controller
(MC6844) OMA Request and OMA Grant in the three-
state control (TSC) steal mode. OMA Request is timed by
the OMAC. Note that the OMA Request does not go high
again with the receipt of Grant by the OMAC. Rather the
OMA Request remains low until the OMAC issues the fX
STB output. This strobe pulse indicates when a OMA
transfer is occurring. The Tx STB time period is when the
address valid (VMA) and three-state control (TSC) signals
are placed on the system bus. Tx STB also provides the
chip select signal, and selects the predetermined address
to be input to the peripheral part. (See Figure 5.)

FIGURE 3 - MC6875 Timing: DMA (MC68441

Three·State Steal Mode

HOOKUP
The MC6875 may be operated with a series resonant

crystal having an internal impedance of 35 -60 n, with
an LRC network, or an RC network. In the event a crystal
is used, some crystals may require a capacitor in parallel
with them. The size necessary would be between 15 to 30
pF. The purpose is to act as a damper so the clock chip
does not start at the second or third harmonic of the
crystal (Figure 4, point I).

A power on reset function is built into the MC6875
to enable the M6800 MPU to trap to its power-up vector
address. The Power On Reset input should have a capacitor
to ground as its only input. Using any type of switching
input would result in the loss of memory contents should
a Refresh Request be present with the Power On Reset
input low. This results because the MC6875 will not
service requests for cycle stealing during the time the
input is low (Figure 4, point 2).

The two MPU clock outputs rpl and rp2 may require a
resistor in series with them to the input of the MC6800.
This allows for damping. The Bus rp2 and the Memory
Clock rp2 outputs may also require a resistor in series with
their outputs to the load. These should all be in the
10 to 30 ohm range (Figure 4, point 3).

PRIORITY LOGIC
The Priority Logic was developed to enable the user to

refresh dynamic memory with the MC6875 as well as do
OMA transfers using a cycle steal method. Since the
MC6875 services only one request input, a method of
handling more than one request and establishing a priority
of one over the other was necessary. The MPU must also
be refreshed every 4.5 /lS; and therefore, a means of
allowing at least I cycle through to the MPU is necessary
after each cycle stolen.

The Priority Logic functions as an extension of the
MC6875. If only one operation (memory refresh or
OMA transfer) is to be done, the logic is not necessary
for operation of the MC6875.

LOGIC OPERATION
A Memory Refresh Request needs to have priority over

a OMA Request. This is accomplished by the R-S latch
output disabling the OMA Request input (UI8-8 to
U21-11; Figure 4, point 4). This would then allow U19-6
to go high and replace U20·3 as the input to OMA/Ref
Req gate (U2l-A). C3 acts to eliminate any glitch during
this transition. However, once a OMA/Ref Grant has been
given by the MC6875, the requesting side (OMA or
memory) will disable the other until the cycle stolen
is completed (Figure 4, point 5). Refresh Request input
from a dynamic memory board is usually only a pulse
except when the MC3480 is used. Therefore, a latch
(U 18) is provided to hold the request in the event a OMA
Request is being serviced.

Two J-K flip-flops are used to allow one cycle of MPU
rp I and rp2 to be completed in the MPU to refresh its
dynamic registers before granting the next request to steal
a cycle. The flip-flops are clocked by Bus rp2 which is
stretched low during a cycle steal. When the request line



%~

~~::~

";glJ ~ ~
:~>:or I i > •~~ .• : g-.

T ~ ! s ~

~ '-~ :. ~«~~. -~
~ ~ Q ~
t ~

~(~"-0 ~ t~" .

g
~0

~S br,
,

;. ~
< ,<

~ l-t> J:1. Q ~ I • - ~~.
" ~

S B Z ~ 8 Ii ~ Uz .. ..•

~
"c
.~ <l:

~
:;:
c~
2" ~~ :;

C "tl
0, :;:~ "-

"-
:l.J--.;;, c c..
:;:r- 0
I. ..•~ 0 w

~~
,

a:~ :l
~ S!e ...
.~

I~ li
u

•

Q •

~

8
0

a

•• 0.. :;
i ,.• . ~ ~ ~ ~ ~ " ~ ~ ~ • ~ • 1 ~ l I~ Ii ~

= ~ 0 • 0 ~ c • • 2 ~ ~ ~ ~ , . . i
L.--.--

. J



L~~~,---------,
I ~:!' :~

M~, -:J= : u

>------l> t I:.
OJ...• . l:.- , '"'"oJ tl5-li.~

~ .•,
t:fl [.

ill ~.~
~

d ..., : 1:... : ., ~, "-==---r:il-:.. , ,'" ox.ro 't§= <0-

r: h OJ>~~ '"."
'~

••
0- h ~•..• 'S= ' '" ~t hi. ;;

:;
'" '- --f:----j ""

~ - "'" ., .., o.J _

I~!I~~

~~!s~~ ~

~~
" .r 0,\-. ~

~~1Il,5l'. : ~f .! ~ ~
~~? st

~ :: •• II' ., ••••'" _ ~ = " •••.• fl N ':>'_" .....•. ",N

.JIiJIl;II~~I~~ U ~ilq ~JI'I!lJ~I~ 1<Ilj~ i

~------------------~~._--------- . -------

~m



goes high for the DMA side or the latch is reset for the
memory side, the K input of the respective nip-nop
will go high (Figure 4, point 6). The nip-nop will not
change until the Bus </>2has had time to produce, a pulse
of normal duration. Once done the logic for request
inputs is enabled (Figure 4, point 7). Contiguous TSC
transfer requests are not permitted by this design from
a requesting device, nor does the MC6844 perform TSC
steal transfers in a contiguous manner.

SUMMARY
This paper has shown that the MC6875 may be utilized

by many devices using cycle steal transfers or refresh. The
MC6844 DMA controller has four channels for DMA
operation. With the addition of this part to the system,
two noppy disk systems and a high speed data channel
utilizing the MC6854 ADLC for bit oriented protocols
could be part of the same system. Further, four more
DMA channels could be added by increasing the priority

logic by one more stage. Such a system is unlikely, but
still it is possible. The MPU board, as it was designed,
was for use 'in Motorola Microsystems EXORciser, a
multi-board system. Because of this, three-state buffers
and drivers were added to the MPU board and the
ADLC-DMA board. Should the designer wish to leave
off these extra parts, all but the three-state buffers for
the DMA address lines may be removed and retain the two
cycle loss of MPU time. The three-state function of the
MC6844 takes up to 700 ns to become effective after
Tx STB has gone high. Therefore, the ability to immedi-
ately begin MPU operations is impaired. Should the
designer choose to leave off the MC6889 buffers, provi-
sion to keep the DMA Request input low at the priority
logic for one additional cycle would be required. This
would keep the MPU </>1,</>2and Bus </>2clocks stretched
while the DMA address lines reach the high-impedance
mode. However, this would result in three cycles of
MPU time for each TSC steal operation.

REFERENCES

Bookout, Steve, "M6800 Systems Utilizing the MC6875
Clock Generator/Driver ," AN-775, Motorola Semiconduc-
tor Products Inc.

MC6875 Data Sheet, Motorola Semiconductor Products
Inc.

MC6844 Data Sheet, Motorola Semiconductor Products
Inc.

"M6800 EXORciser User's Guide," Motorola Semicon-
ductor Products Inc.



AN-797

MC6801/03 PORT EXPANSION
Prepared by

Arnold J. Morales
Application Engineer

MC6801 IMC6803 PORT EXPANSION
The liD capabilities of the MC6801/03 can be easily

expanded. In effect, the number of liD ports available can
be increased to accomodate user needs with simple
designs utilizing relatively inexpensive parts.

This application note describes several methods of port
expansion.

MC6801/03 EXPANDED MULTIPLEXED
MODE PORT EXPANSION

Figure 1 illustrates several methods for increasing the
liD capability of the MC6801/03 in the expanded
multiplexed modes." All these methods utilize ICs
interfaced to the data bus.

Figure 1a shows a means of using the SN74lS374 as a
latched input port. A strobe from a remote peripheral or
MPU is used to latch data into the lS374. The
MC6801 103 can read the latched contents of the lS374
by pulling O.E. low utilizing E·I/O Select as shown. When
not selected the LS374 is held in a high-impedance state,
thus eliminating data bus contention.

The SN74LS374 can also be used as a latched output
port, as shown in Figure 1b. Data from the MC6801 103 is
latched into the LS374 on the falling edge of E when liD
Select is high. Latched data can be continuo~
presented to the remote peripheral or MPU by tying DE
low, as shown, or can be gated by the remote p~heral
by an appropriate "liD Select" logic control of O.E.

An unlatched input port can be designed using a'
SN74LS244, as shown in Figure 1c. The octal three-state
buffer presents data to the data bus with E·I/O Select and
is particularly suited for MPU read of switches using
polling. Once again, when not "selected," this peripheral
is held in a high-impedance state, thus eliminating bus
contention on the data bus.

A more straightforward approach to port expansion is
illustrated in Figure 1d. Here an MC6821 is used to yield a
net gain of two handshaking bidirectional ports. The
MC6801/03 is compatible with all 6800 family
peripherals, including the ~C6821. Programming,
pinout, and interface information for the MC6821 is
provided in its data sheet, readily available from Motorola
field offices and distributors.

"The MC6803 is limited to expanded multiplexed (modes
2 and 3) operation.

MC6801/03 SCI PORT EXPANSION
Port expansion is possible using the MC6801 103 SCI

(Serial Communications Interface) operated in the
standard NRZ format. This format consists of a start bit
(low). eight data bits, and one stop bit (high). When no data
is being sent the line is held high, indicating an idle line.

All the SCI port expansion schemes described in this
application note utilize the SCI clock brought out
externally from the MC6801/03 as provided by a
software option.

SCI PORT OUTPUT EXPANSION
Figure 2 shows a means of expanding the SCI to 16 sets

of 4-bit nibbles yielding 64 liD output lines.
The key element of this circuit is the start-bit

recognition system. The serial bit stream is inverted
before reaching the SN74LS 164 serial-in, parallel-out
shift register. An idle line, therefore, loads the shift
register and the two LS74's (U2, U3) with zeros. The
SN74LS 154 decoder is consequently disabled with E
high, keeping its outputs high. During this time no
clocking is provided to the SN74LS175's, and their data
outputs are unchanged.

Data transmitted out of the SCI is preceded by a start bit.
This low start bit is inverted and clocked through the
LS164 and the lS74's as a high. One-half clock time after
the start bit is clocked into FIF U2, it is clocked into FIF
U3. At this time the eight SCI data bits are in the LS 164.
The LS 154 is enabled and decodes the four SLB's of the
data (transmitted first). The four MSB's of the SCI data
byte are liD output data and are tied to all LS 175's with
appropriate buffering.

Decoding by the LS 154 clocks the addressed 175,
latching in the data.

One-half SCI clock time later, the LS 164 is cleared by
driving the MR pin low. FIF U2 is also cleared. The system
is now ready for another SCI data byte. If no more data is
transmitted, 1's are transmitted indicating an idle line and
output data remains unchanged.

Figure 3 illustrates a scheme for expanding the SCI port
to an 8-bit output port.



Strobe Inputs Outputs ·ff'''''Ci'~ .---------
lJ '61,J 121 91 61 51 21

Port A Port B
5V

CP LS374 I CP 11

I IHlS374

o~

Me682,
15E 1 lS244

E 1/0 Select- TIE E . 110 Select-

a~91'T5
12 9 6 5 2 boI81'7114 13 8 7 4 3 -= Co do

071 I DO
07
06 1 1 r
05

04

03

02

01

4J :r DO

38 1 .---~- AOIDO
P20 P30

- P21 Al
P3I

~I- P22 P32 lS373 t---

- P23 A3
P33 t---

M

- P24 P34
A4

~t---
AS

P35 t---
M A6
~ P36 t---

A7/D7 A7
i5 P37 LE I---
ill 39 "lif
u AS

" A8- Pl0 P40

- P12 A9
P41

- P13 P42 AIO -liD select conSIsts of address decoding

A11 whIch wIll chip select these port eltpanSlon
'- P'4 P43 ,,~ deVIces

P44 AI2 ='",- PIS cf~
- P16 P45 A13

- P17 P46 A14

,- P18 P47 A15



Data Out

3 11 14

00 Q2 Q3
U4+5 WI

SN74LS175

DO D1 D2 D3 CLK
4 5 12 13 9

~SCICIOCk
, I' I I IEm ; , I I Bit 9.0ut of SCI
I I I I I I: rm I I I Bit 9 Clocked Into LS164
r I I I I

I r:l : Stop Bit Clocked Into U2
I I I I I::I:l Stop Bit Clocked Into U3

Data Latched -/' I • I

Into LS175
Clear U2. LS164 'U 19

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ SN74LS175

+5 V +5 V
3 4 5 6 4 F/F1 10 F/F2

SCI QO Q1 Q2 Q3 2 SD 5 12 SO
Out A D Q D Q

9

P24 U3
2

+5 V B SN74LS164 U1 SN74LS74 U2 SN74LS74

SCI Clock 8 3 11 8
P22 CP CP CP Strobe

MR CLR CLR

9 13
+5 V



I
I
I
I
I
I I I

Enable LS377 J •
Latch LS377--.J

Clear LS164

LJLSULJ
: :: I
~ I

I , I

~

~
I • I

~
I

11 SN74LS377 t
CP U2

DO D1 D2 D3 D4 D5 D6 D7
3 4 7 8 13 14 17 18

3 4 5 6 10 11 12 13

'5 8 QO Q1 Q2 Q3 Q4 Q5 Q6 Q7
CP

0", 1 9
~~ A SN74LS164 MR
Ql 2 U1(J) 8

+5 V +5 V

1 F/F1 13 F/F2

2 ~ 12 9
D D Q Strobe

SN74LS74 SN74LS74
3 U3 6 11 U4

CP rr CP
SO SO

4 10

+5 V +5 V



Once again, the SCI bit stream is inverted and an idle
line clocks zeros (lows) into the LS 164 and LS74's. In this
idle state the SN74LS377 octal "D" F/F is disabled with
E high so no new data can be latched in, and the MR pin of
the LS 164 is held high, enabling clocking of serial input
data.

When SCI data is transmitted the start bit is inverted
and clocked through the LS 164 as a one (high). When the
start bit is clocked into the first F/F (U3), the LS377 is
enabled. One-half SCI clock time later, the eight data bits
in the LS164 are latched into the LS377. Atthe same time
the start bit is clocked into the second F/F (U4) and its 0
output, with appropriate propagation delay, goes low,
pulling LS 164 MR low, thus resetting it to all zeros. Atthis
time the system is ready for a new SCI data byte. If the SCI
line goes idle (no new SCI data bytes), the LS377 output
remains unchanged.

The output of the LS377 is inverted. Non-inverted
outputs can be effected by simply complementing data for
MC6801/03 SCI transmission, using the appropriate
"complement" op code.

SCI PORT INPUT EXPANSION
Figure 4 illustrates a parallel-to-serial interface,

designed to input keyboard ASCII characters and clock the
data serially into the MC6801 /03 SCI port.

The SN74LS165 "serial in" line is tied high so that
during an idle period (no keyboard data) 1's are clocked
through the LS165 and F/F U4 into the SCI. The SClthus
sees an idle line. F/F U1 and F/F U2 are cleared at this
time.

When a key is punched the keyboard strobe clocks a
high into F/F U1. This high is clocked into F/F U2 on the
falling edge ofthe SCI clock. When the SCI clock next goes
high, F/FU1 and F/FU4 are cleared and LS165 (U3) P/L
is driven low, latching the keyboard data. The output of
F/F U4, a low, is the start bit. U2 is driven low on the next
high-to-low SCI clock transition.

Data is now clocked into the SCI by the SCI clock. Ones
(highs) are clocked into the SCI after the eight data bits are
clocked in, indicating an idle line. At this time the
interface is ready for more data.

Care must be taken to insure that "repeat" characters
are not sent by the keyboard while characters are being
clocked into the SCI.

MC6801 PORT 3 OUTPUT
EXPANSION WITH HANDSHAKING

Port 3 of the MC6801 operated in the single chip mode
can be easily expanded using SN74LS377 octal D flip-
flops. Figure 5 illustrates one method of expanding port 3
to two 8-bit output ports with handshaking.

The "D" inputs of each LS377 are tied to port 3. Port 4
bit 0 (P40) is used to select one of the LS377s and deselect
the other by controlling the respective Einputs.

When data is written to port 3, the port 3 strobe (OS3)
clocks both LS377's. Only the selected LS377, however,
will latch in the data. Nand gates are used to generate the
appropriate strobe, OS3A or OS38.

Further expansion is possible using two or more port 4
outputs for LS377 selection. Software initialization must
include setting bit 4 in the Port 3 Control/Status register
(SOF). so that the OS3 strobe is generated by a write to
port 3.

MC6801 PORT 3 INPUT
EXPANSION WITH HANDSHAKING

Input expansion of port 3 is illustrated in Figure 6 with
the MC6801 operated in the single chip mode.

Initially, F/F U3 and U4 are set. When data is strobed
into one of the LS374's, one of the LS74 flip-flops is also
strobed, clocking its 0 output low. When either LS374 is
strobed, the IS3 pin of the MC6801 is driven low, setting
the IS3 flag in the Port 3 Control/Status Register. Setting
the IS3 IR01 Enable bit in the Port 3 Control/Status
Register enables the IS3 flag to generate an IRO 1
interrupt, vectoring the MPU to a routine for servicing
port 3. '

When data is strobed into port A, F/F U4 is clocked and
its 0 output goes low, enabling the output of U1 and
making the output of U2 high impedance. When data is
strobed into port 8 the 0 output of F/FU4 remains high,
enabling the output of U2 and making the output of U1 a
high impedance. The 0 output of F/FU4 is also tied to port
4 bit 0, programmed as an I/O input.

The MC6801 software responds to, the IS3 flag by
polling port 4 bit 0 to determine which port has data. The
software then reads port 3 data, thus generating an OS3
strobe which sets F/F U3 and U4. The system is now
ready for new data.

Software initilization must include initializing the Port 3
Control/Status Register (SOF).The IS3 interrupt enable
bit (bit 6) may be set if desired. The Output Strobe Select
bit (bit 4), cleared during reset, must remain cleared so
that the OS3 strobe is generated by an MPU read of port 3.
The latch enable bit (bit 3), also cleared during reset, must
remain cleared so the port 3 latches remain transparent.
Port 3 latching is external in this circuit.

Initialization should also include a read of port 3 to set
F/F U3 and U4.

Measures must be taken to insure that data is not
strobed into one port while data in another port is being
processed. One approach is to inhibit peripheral writes to
the port while the output of U5 is low, indicating that port
3 servicing is in progress. Further arbitration logic must
be included if the possibility exists of data being strobed
into both ports simultaneously.



Keyboard Data

I - \
KYBO 07 DO
Strobe

+5 V +5 V +5 V +5 V +5 V

4 10 6 5 4 3 14 13 12 11 4 P23

2 m5 5 12 SO 9 10 P7 PO 9 2 Sl5 SCllnput
0 0 0 0 Serial In 07 0 0

5
lS74 lS74 74lS165 lS74

U1 U2 U3 U4
3 11 3

ClK ClK ClK
rot"" trn ClK1 m ClK 2 CLR

13 2 15 1
--'
ex> +5 V =0



1
30 07 18 ~ 19

07 Q7 07
31 06 17 16

MC6801 32 05 14 15
33 04 13 12Port

3 34 03 8 LS377 9
35 02 7 6
36 01 4 5
37 DO 3 2 DODO QO

11 CLK

~
~ P40

1
18 ~ 19 07
17 16
14 15
13 12
8 LS377 9
7 6
4 5
3 2 DO

11 CLK



11 I S
30 D7 19 07 CP D7 18
31 D6 16 17 ,
32 D5 15 U1 14
33 D4 12 13

PorI3 34 D3 9 lS374 8
35 D2 6 7, 36 Dl 5 4

MC6801 37 DO 2 DO 300 BE ~
P40 - 11

IS3 39 4>OS3 ~
1 I

19 DE 18 -~07 D7
16 17
15 U2 14

, 12 13
9 lS374 8
6 7
5 4
2 300 C.P. DO

111
,I

Sro
r- ------ - - - - - - - - -To Per
I
I 5 2.:. \.:J- a D ~- U3 1 -lS74 ern 1--5 V

3
ClK '"---SIr

9 12a U4 -:::-
13lS74 ClR -5V
11so ClK -SIr

14,10



AN-798

A LOW-COST TERMINAL
USING THE MC6801

Prepared by:
ARNOLD J. MORALES
Applications Engineer

An efficient low-cost terminal is now possible using an
MC6801 Microcomputer, an MC6847 Video Oisplay
Generator (VOG), an MC1372 RF Modulator, and a televi-
sion set.

The MC6801 is well suited for application as a terminal
controller. Its four ports, on-chip programmable timer,
ROM, RAM, and SCI (Serial Communications Interface)
comprise all the essentials for controlling a terminal.

The four ports allow for easy keyboard and mode-select
switch interface while still retaining full 64K byte address
capability. The programmable timer is well-suited for cursor
and bell timing, and the SCI needs only RS-232 interface buf-
fers for use by the terminal. The on-board ROM is 2 K bytes,
allowing plenty of "software room" beyond the 500 bytes
necessary for basic terminal operation. The on-chip RAM is
128 bytes, suitable for program stack and scratch-pad
memory.

The MC6847 VOG and the MC1372 RF Modulator make
possible the use of a conventional, unmodified television as a
monitor. The MCI372 interfaces directly with the television
75 ohm antenna terminals.

These Motorola devices form the nucleus of the terminal
described in this application note. The terminal uses a total
of only 15 devices. This number can be reduced to 13 by us-
ing transistors for the RS-232 interface.

DESCRIPTION
The terminal provides the user with the choice of two data

formats: Industry Standard Mark/Space (NRZ)* and Bi-
phase. As shown in Figure I, each format consists of a start
bit (low), eight data bits, and one stop bit (high).

Most users prefer the NRZ format which is a universal
standard. The Bi-phase format, however, has advantages
that will be useful in many applications; it is more immune to
noise and can tolerate a bit-rate drift of up to 25"70.

Four Baud rates per MPU operating frequency are soft-
ware selectable, as shown in Figure 2. Baud rates not listed
can be generated by selecting a crystal to give the desired
Baud rate or by using an external clock to drive the SCI, an
MC6801 option.

Baud rate, format, and SCI clock source options are con-
trolled by the Rate and Mode Control Register in the
MC680l, as shown in Figure 2. For simplicity, user control
of this register is determined by a set of four DIP switches
(So-S3) which are set by the user in the same format as called
for by the register. Other options, paging or scrolling and full
or half duplex, are also selected by DIP switches (S4-S5).
These switches are continually polled by software and can be
changed "on the fly."

The terminal recognizes most widely-used control
characters, including:

Line Feed (LF)
Carriage Return (CR)
Backspace (BS)
Bell (BEL)
Clear Screen (SUB)
Cursor ·Forward (FF)
Cursor Up (VT)

The cursor blinks and is non-destructive; that is, it can be
moved over any displayed character without changing the
character. The cursor will simply blink over the character,
with the character appearing each time the cursor is "off."

The display format is controlled by the MC6847 VOG
which displays a complement of 64 6-bit ASCII characters in
a 32 (across) by 16 (down) format.



4fo_ 2.4576 MHz 4.0 MHz 4.9152 MHz
SSl:SS0 E 614.4 kHz 1.0 MHz 1.2288 MHz

0 0 +16 26 I's/38.400 Baud 16 I's/62.500 Baud 13.0 I's/76.BOO Baud

0 ·1 +12B 20B I's/4.BOO Baud 12B I's/7812.5 Baud 104.2 I's/9.BOO 8aud
1 0 + 1024 1.67 ms/BOO Baud 1.024 ms/976.6 Baud 833.3 I'sl 1.200 Baud
1 1 +4096 6.67 ms/150 Baud 4.096 ms/244.1 Baud 3.33 ms/300 Baud

CC1:CCO Fonnat
Clock Port 2

Source Bit 2

00 Bi-Phase Internal Not Used

01 NRZ Internal Not Used

10 NRZ Internal Output

11 NRZ External Input



ASSEMBLY OF THE TERMINAL
The MC680 I can be configured to operate in three basic

modes: single chip mode (single chip microcomputer), ex-
panded non-multiplexed mode (256 byte external address
capability), and expanded multiplexed mode (64K byte exter-
nal address capability). Several expanded multiplexed modes
give the user choices of combinations of on-chip or external
RAM, ROM, and interrupt vectors. Table I shows a sum-
mary of these operating modes.

The terminal presented in this article uses an MC6801
operated in Mode 2. This mode configures the MCV for 128
bytes of on-chip RAM, external ROM, external interrupt
vectors, and uses an MCM2708 EPROM for easy software
development. Fully developed software can be "masked" in-
to the MC6801 on-ehip ROM. The MCV can then be
operated in expanded multiplexed Mode 6, which uses the
on-ehip ROM and RAM, with only an MC6801 mode select
design change. As an alternative, the MC68701, with its on-
chip 2K EPROM, can be used for development. An MC6803
can be used instead of an MC6801 in terminals using an ex-
ternal EPROM or ROM.

The MC6801 has four ports. In the expanded multiplexed
modes, Port I is used for general I/O, Port 2 for mode selec-
tion and SCI/Timer I/O or for general I/O, Port 3 for
multiplexed data and lower order addresses (AO/DO-A7/07),
and Port 4 for higher order addresses (A8-AI5).

Port 2 has only five pins associated with it, as shown in the
schematic of Figure 3. Pins 8 (P20), 9 (P21), and 10 (P22) of
Port 2 are dual purpose pins. On the rising edge of RESET,
the MC6801 latches the logical state of these pins as the up-
per three bits of the Port 2 register. These are read-only bits,
and have no pins directly associated with them. They are the
"mode control" bits and their states determine the operating
mode of the MCV. The mode select voltages are applied to
pins 8, 9, and 10 through pull-up resistors so that immediate-
ly after RESET, pin 8 can be used for the Timer input, pin 9
for the Timer output, and pin 10 for the SCI clock input (if
used).

Pins II and 12 of Port 2 are used by the SCI. MCI488 and
MCI489 line drivers are used as the RS-232 interface. The
onboard SCI controls all serial communications, serving the
function of a VART.

Seven pins of I/O Port I are used for keyboard ASCII in-
put. The Timer is used to latch the keyboard strobe.

The keyboard must generate a strobe at least 2 MCV cycles
in duration with each keyboard entry. This strobe is tied to
pin 10, the Timer input. An input edge detector tied to this
pin sets a flag (Input Capture Flag) in the MCV Timer Con-
trol/Status Register each time a key is depressed. The soft-
ware polls this flag for keyboard servicing.

A simple bell circuitry using two NANO gates is used to
generate a 4 kHz tone. Software gates the bell using the MCV
Timer output, pin 9.

The terminal operating mode switches are read through an
MC74LS244 octal three-state driver at address S3800. A sim-
ple switch and pull-up arrangement is used for mode selec-
tion.

The display circuitry consists of the MC6847 Video
Display Generator, the MCI372 Modulator, two MCM2114
RAMs, and associated circuitry. The VOG is operated in the
Alphanumeric Internal mode to display characters in a 32
(across) by 16 (down) format and in the Semigraphics 4 mode
to display the cursor. Both interlaced (MC6847Y) and non-
interlaced (MC6847) versions of the VOG are available.

The VOG is clocked by the MC1372 at a 3.58 MHz color-
burst frequency. It reads data sequentially from display
RAM and, in this terminal, uses an on-chip character
generator to produce the alphanumeric displays. Two
MCM2114s are used as the display RAM. Only 512 bytes of
display RAM are needed for the Alphanumeric and
Semigraphic 4 modes, so only nine VDG address lines are us-
ed. A tenth address line (A9), held high by the VOG, is con-
nected to the MCM2114s to ensure proper address decoding.

The MCV also has access to the display RAM in order to
change displayed characters. To avoid contention for the
display RAM the MS pin of the VOG is pulled low whenever
the MCV accesses the RAM, forcing the VOG address port
to a high impedance. To avoid a noisy display during MCV
writes to the RAM, the MCV reads the state of HS, which
goes low during horizontal retrace, through Port I bit 7
(pin 20). The MCV will write to the display RAM only dur-
ing horizontal retrace when US is low.

Mode P22 P21 P20 ROM RAM
Interrupt Bus Operating
Vectors Mode Mode

7 H H H I. I I I Single Chip

6 H H L I I I Mux Multiplexed

5 H L H I I I NMux Non Multiplexed

4 H L L I I I I Single Chip Test

3 L H H E E E Mux MultiplexedlNo RAM or ROM

2 L H L E I E Mux Multiplexedl RAM

1 L L H I I E Mux Multiplexedl RAM and ROM

0 L L L I I I Mux Multiplexed Test

Legend:
I - Internal

E - External
Mux - Multiplexed

NMUX - Non-Multiplexed
L - Logic "0"
H - Logic ••, ..



"'W
20

9 00
,

" "" "
" SN74LS245 D2

\4 04
03

32

DO J O~NV 'CC.
DO'

500}
600J,

DD9

'DDS

" 02 2
DD6

" 03 07<0
DO'

v.n 10 0 34 S/li:, 22
DAO

" ' 23 DAI

2'
DA2

{

DOn

"
" "
~ 16

! 17

"D'"
" 20

NOTE: Close 55 for scrolling, open for paging.
Close 54 for half duplex, open for full duplex.
See Figure 2 for the positions of SO-54.



The YDG outputs chrominance (4)A, 4>B,Y) and chroma
bias (CHB) to the MCI372 Modulator which generates com-
posite video for the television. The Modulator is clocked by a
3.58 MHz crystal and its TTL compatible clock output
(pin I) is used to drive the YDG.

CI is used to adjust the clock frequency; RI is used to ad-
just the clock duty cycle.

SOFTWARE
The software initializes the MC680l, services characters

from the RS-232 communication link and from the
keyboard, controls character display, and controls the bell.

INITIALIZATION
The software first configures Port I, used to read the

keyboard, as a data input port by clearing the Port I Data
Direction Register. It then clears the Timer Control/Status
Register. This disables all Timer interrupts and programs the
Timer Input Capture Flag to become set whenever a high-to-
low transition is applied to the Timer input pin. This pin is
tied to the keyboard strobe.

The software then enables the SCI transmitter and receiver
and programs Port 2 for Titner and SCI I/O. It then reads
the terminal mode switches and jumps to subroutine
CHGWO, which loads the mode word into STATWO, a
scratch-pad register, for later comparison.

The display RAM consists of 512 bytes located in ad-
dresses $2000 through $2IFF. For scrolling purposes the soft-
ware loads display RAM locations $2200 through $2220 with
ASCII "blanks." It then jumps to subroutine BLANK,
which clears the screen, then loads the index register with
$2000. The index register is used as a screen pointer and
$2000 is the first screen location.

MAIN PROGRAM
The main program is essentially a loop which writes the

cursor, branches to subroutine TIMER which controls the
terminal, erases the cursor, then branches back to TIMER.

Since the terminal interprets only 6-bit ASCII, data bit
seven in the display RAM is left free for use as a YDG con-
trol bit and is used by this terminal to control S/A for
displaying the cursor. When S/A is low the YDG is in the
Alphanumeric Internal mode and will display ASCII
characters. When S/A is high the YDG is in the Semigraphics
4 mode and will display a color block in one of eight colors.
The software used in this terminal selects a green cursor by
writing $80 into the display RAM location pointed to by the
index register.

Subroutine TIMER first checks for changes in the terminal
operating mode by jumping to subroutine CHKSTA.
CHKST A reads the switches and compares their settings to
the last setting stored in register STATWO. If switch selec-
tions have changed, CHKST A will load a new value into
STATWO and reprogram the SCI. Otherwise, TIMER con-
tinues by loading register TEMPX with a value ($7FF) which
controls cursor duration. This value will be decremented to
zero at which time the cursor will be removed. With each
decrement the keyboard and SCI are serviced by subroutines
CHKC and SERRX.

The cursor is removed by replacing it with the contents of
SAYCHR, a register that stores the character in the location
pointed to by the index register (screen pointer). TIMER is
used once again to provide delay.

Subroutine CHKC services the keyboard by first checking
the Timer Input Capture Flag for the presence of a keyboard
strobe. If the. flag is not set, the program returns to
subroutine TIMER. If the flag is set, CHKC clears the flag
and transmits the keyboard character out of the serial port.
CHKC then reads STATWO and tests for full duplex selec-
tion. If the mode is half duplex, the character is displayed by
subroutine DISPL. If the mode is full duplex, no character is
displayed at this time but will be displayed by subroutine
SERRX, which services the SCI.

CHKC then jumps to subroutine ENDSCN to test for end
of screen and pages or scrolls if necessary according to the
user mode selection.

Subroutine SERRX services SCI input characters by
testing the Receiver Data Register Full flag in the
Transmit/Receive Control and Status Register. If no
character is present, the program returns to TIMER. If a
character is present, it is displayed by DISPL. The program
then jumps to ENDSCN to test for end of screen, then
returns to TIMER.

Figure 4, the program flowchart, offers a detailed outline
of the program. Figure 5 contains the program listing.

FURTHER DEVELOPMENT OF THE TERMINAL
The terminal can be further developed to meet many user

requirements with few hardware and software changes. Two
improvements are particularly worth considering: interrupt
drive and graphics capability.

INTERRUPT DRIVEN 'TERMINAL
A completely interrupt -driven terminal is possible with

very few changes in the software. Polling of the Timer Input
Capture Flag is used to detect the presence of keyboard
characters. Polling of the SCI Receiver Data Register Full
Flag is used to detect the presence of characters received
from the serial link. The MC6801 can be progra~med to
generate a vectored interrupt when each of these flags is set,
eliminating the need for polling.

The input capture interrupt is enabled by setting bit 4 in
the Timer Control and Status Register. The vector for this in-
terrupt is at $FFF6. The SCI interrupt is enabled by setting
bit 4 in the Transmit/Receive Control and Status Register.
This interrupt vector is at $FFFO.

Polling of the mode-select switches can be eliminated by
reading the switches once during initialization.

COLOR GRAPHICS
The capability for graphics is designed into the YDG. All

that is needed is an addressable latch to control the YDG
mode pins, more display RAM, and software development.

Table 2 contains a detailed description of the YDG
operating modes. The column labeled "YDG PINS" lists all
the YDG mode control pins. The terminal presented in this
article operates only in the Alphanumeric Internal (internal
character generator) and Semigraphics 4 modes. Therefore,



only the pins labeled SIX and MS are used, with the other
control pins tied to ground. By tying these unused pins to an
addressable latch under software control the terminal can be
placed in the graphics modes, and the alphanumeric displays
can be inverted.

The column labeled "COMMENTS" gives a description
of each mode. Of particular importance in these descriptions
is the RAM necessary for each of these modes. As the display
density increases (color control of smaller areas), the RAM
required increases. The densest modes (Color Graphics Six
and Resolution Graphics Six) require 6 K bytes of RAM.

Data in the display RAM controls the display. In the
alphanumeric modes the data is interpreted by the VDG as
six-bit ASCII code. In the graphics modes the data controls

the color of each display'element. The VDG can display up to
eight colors, excluding black. However, the number of colors
selectable varies according to the mode of operation as
described in Table 2.

The VDG operating modes can be changed "on the fly" if
the mode is changed during HS on the proper line count.
Therefore, displays combining graphics and alphanumerics'
are relatively easy. A screen line counter, an addressable
latch for VDG mode control, and software are all that is re-
quired.

Software for displaying charts and graphs have already
been written for demonstration purposes by Motorola, and
"3D" graphics (displays in perspective) are being developed.



Check Mode
SW Status

IJSR CHKSTAI

Check for KYBD
Character

(BRA CHKCI

Check for Serial
I/O Input

IJSR SERRXl

Read
Status
Switch



Display
Char

IJSR Displl

Check For
End of SCRN

USR ENDSCNI

Check for End
of SCRN

USR ENDSCNI









Load ASCII
Blank In

SAVCHR

Load Displ
Char in

SAVCHR





*THIS PROG DISPLAYS AND XMITS KYBD CHAR,
*RECEIVES AND DISPLAYS SER INPUT CHAR,
*SCROLLS, BLINKS CURSOR, LINEFEEDS, MOVES
*CURSOR FWD, BACKSPACES CURSOR, MOVES CURSOR UP,
*CARRIAGE RETURNS, GIVES USER CHOICE OF FOUR
*SERIAL I/O FORMATS AND A CHOICE OF HALF OR
*FULL DUPLEX,RINGS BELL,GIVES
*USER CHOICE OF SCROLLING OR PAGING·
*A.J.MORALES MAR2,79

00001
00002
00003
00004
00005
00006
00007
00008
00009

00011
00012
00013A FCOO
00014
00015
00016
00017
00018
00019

ZOl
DMBTRM
SFCOO
SOOFF
SOOFE
$OOFC
$OOFA
$1800
$00F7

OPT
NAM
ORG

A SAVCHR EQU
A STATWO EQU
A TEMPX EQU
A TEMPX2 EQU
A SWITCH EQU
A STACK EQU

DOFF
OOFE
OOFC
OOFA
1800
DOn

STORE CHAR UNDER CURSOR
STORES TERMINAL OPERATION MODE
X-REGISTER SCRATCH PAD
X-REGISTER SCRATCH PAD
ADDR FOR SWITCH READ

00023A
00024A
00025A
00026A
00027A
00028A
00029A
00030A
00031A
00032A
00033
00034A
00035A
00036A
00037A
00038A
00039A
00040A
00041A

FCOO 8E
FC03 86
FC05 97
FC07 97
FC09 86
FCOB 97
FCOD 86
FCOF 97
FC11 B6
FC14 BD

00F7 A
00 A
00 A
08 A
OA A
11 A
12 A
01 A
1800 A
FD18 A

#STACK
#$00
$00
$08
#$OA
$11
#$12
$01
SWITCH
CHGWO

EDNDSCRN
#$2200
#$20
SAVCHR
O,X

LDS
LDAA
STAA
STAA
LDAA
STAA
LDAA
STAA
LDAA
JSR

AFTER
LDX
LDAA
STAA
STAA
INX
CPX
BNE
BSR

PORT 1 READ
PROGRAM PTM

PORT 2 DDR
CHECK SWITCH STATUS
LOAD TERM. MODE IN STATWO

IS BLANKED FOR SCROLL PURPOSES
FC17 CE
FC1A 86
FC1C 97
FC1E A7
FC20 08
FC21 8C
FC24 26
FC26 8D

2200 A
20 A
FF A
00 A FILL

#$2220
FILL
BLANK

2220 A
F8 FClE
48 FC70

00045
00046A
00047A
00048A
00049
00050A
00051A
00052A
00053A
00054
00055
00056
00057A
00058A

*WRITE
A WRITEC
A

FC36

CURSOR
LDAA
STAA
BSR

*ERASE CURSOR
96 FF A ERASEC LDAA SAVCHR
A7 00 A STAA O,X
8D 02 FC36 BSR TIMER
20 F2 FC28 BRA WRITEC

*TIMER ROUTINE PROVIDES TIMING FOR CURSOR BLINK,
*CHECKS FOR INPUT FROM KYBD AND SERIAL I/O, AND
*CHECKS FOR OPERATOR CHANGES OF STATUS.

FC36 BD FD10 A TIMER JSR CHKSTA CHECK FOR TRM MODE CHANGES
FC39 3C PSHX

FC28 86 80
FC2A A7 00
FC2C 8D 08

#$80
O,X
TIMER

FC2E
FC30
FC32
FC34



PAGE 002 DMBTRM

00059A FC3A CE 07FF A LDX *S07FF TIMER DELAY PARAMETER
00060A FC3D 20 OE FC4D MORE BRA CHKC CHECK FOR INPUT FROM KYBD
00061A FC3F DF FC A CONT STX TEMPX
00062A FC41 38 PULX
00063A FC42 BD FD03 A JSR SERRX CHECK FOR SERIAL INPUT
00064A FC45 3C PSHX
00065A FC46 DE FC A LDX TEMPX
00066A FC48 09 DEX
00067A FC49 26 F2 FC3D BNE MORE FINISHED TIMING?
00068A FC4B 38 PULX
00069A FC4C 39 RTS
00070 *CHECK FOR INPUT FROM KYBD
00071A FC4D 96 08 A CHKC LDAA S08 TEST FOR STROBE VIA ICF ON PTM
00072A FC4F 2B 02 FC53 BMI YESC
00073A FC51 20 EC FC3F BRA CONT CONTINUE TIMER ROUTINE
00074 *THIS ROUTINE SERVICES CHAR FROM KYBD
00075A FC53 38 YESC PULX
00076A FC54 96 OD A LDAA SOD RESET ICF
00077A FC56 96 02 A LDAA S02 KYBD ASCII
00078A FC58 97 13 A STAA S13
00079A FC5A D6 FE A LDAB STATWO
00080A FC5C C4 10 A ANnB #S10
00081A FC5E 27 03 FC63 REQ FULLD TEST FOR FULL DUPLEX
00082A FC60 BD FDID A JSR DISPL
00083A FC63 8D 02 FC67 FULLD BSR ENDSCN
00084A FC65 20 CF FC36 BRA TIMER
00085 *TEST FOR LAST SCREEN LOC AND MAKE SCROLL DECISION
00086A FC67 8C 2200 A ENDSCN CPX #S2200 LAST SCRN LOC FILLED?
00087A FC6A 27 01 FC6D BEQ SCROL2
00088A FC6C 39 RTS
00089A FC6D 8D 71 FCEO SCROL2 BSR SCROLL
00090A FC6F 39 RTS
00091 *THIS ROUTINE BLANKS ENTIRE SCREEN
00092 *AND SERVICES INCOMING SERIAL CHAR
00093 *DURING THE ROUTINE
00094A FC70 86 20 A BLANK LDAA #S20
00095A FC72 97 FF A STAA SAVCHR
00096A FC74 CE 2000 A LDX Jl$2000
00097A FC77 DF FC A STX TEMPX
00098A FC79 A7 00 A MORSCR STAA O,X
00099A FC7B 08 INX
00100A FC7C 8C 2200 A CPX #S2200 END OF SCREEN?
00101A FC7F 26 07 FC88 BNE SERTST CHECK FOR INPUT SER CHAR
00102A FC81 DE FC A LDX TEMPX
00103A FC83 A6 00 A LDAA O,X
00104A FC85 97 FF A STAA SAVCHR
00105A FC87 39 RTS
00106A FC88 D6 11 A SERTST LDAB Sl1
00107A FC8A 2A ED FC79 BPL MORSCR MORE BLNKING IF NO SER CHAR
00108A FC8C 3C PSHX
00109A FC8D DE FC A LDX TEMPX
OOl1OA FC8F D6 12 A LD,p,B S12
OOl1lA FC91 C4 7F A ANDB #S7F
00112A FC93 37 PSHB
00113A FC94 C4 60 A ANDB #S60
00114A FC96 27 09 FCAI REQ CONTRL BRA IF CONTROL CHAR
00115A FC98 33 PULB
00116A FC99 E7 00 A STAB O,X

Figure S. Program Listing (Continued)



PAGE 003 DMBTRM

001l7A FC9B 08 INX
001l8A FC9C DF FC A STX TEMPX
001l9A FC9E 38 PULX
00120A FC9F 20 D8 FC79 BRA MORSCR
00121A FCAI 33 CONTRL PULB
00122A FCA2 Cl 08 A CMPB #$08 TEST FOR BACKSPACE
00123A FCM 27 OF FCB5 BEQ BACKS2
00124A FCA6 Cl OC A CMPB #$OC TEST FOR CURSOR FWD
00125A FCA8 27 .15 FCBF BEQ FWDC2
00126A FCAA Cl OA A CMPB #$OA TEST FOR LINE FEED
00127A FCAC 27 16 FCC4 BEQ LINEF2
0012SA FCAE ClOD A CMPB #$OD TEST FOR CARRIAGE RETURN
00129A FCBO 27 19 FCCB BEQ CARET2
00l30A FCB2 38 GOBACK PULX
00l31A FCB3 20 C4 FC79 BRA MORSCR
OOl32A FCB5 8C 2000 ·A BACKS2 CPX #$2000
00l33A FCB8 27 F8 FCB2 BEQ GOBACK
00l34A FCBA 09 DEX
00l35A FCBB DF FC A STX TEMPX
00l36A FCBD 20 F3 FCB2 BRA GOBACK
00137A FCBF 08 FWDC2 INX
00l38A FCCO DF FC A STX TEMPX
00l39A FCC2 20 EE FCB2 BRA GOBACK
00140A FCC4 C6 20 A LINEF2 LDAB #$20
00141A FCC6 3A ABX
00142A FCC7 DF FC A STX TEMPX
00143A FCC9 20 E7 FCB2 BRA GOBACK
00144A FCCB 8C 2000 A CARET2 CPX #$2000
00145A FCCE 27 E2 FCB2 BEQ GOBACK
00146A FCDO 3C PSHX
00147A FCDI DF FA A STX TEMPX2
OO148A FCD3 DC FA A LDn TEMPX2
00149A FCD5 C4 1F A ANDB #$1F
00150A FCD7 26 03 FCDC BNE MASS
00151A FCD9 38 PULX
00152A FCDA 20 n6 FCF!2 BRA GOBACK
00153A FCDC 38 MAS8 PULX
00154A FcnD 09 DEX
00155A FCDE 20 EB FCCB BRA CARET2
00156A FCEO D6 FE A SCROLL LDAB STA'IWO
00157A FCE2 C4 20 A ANDB #$20
00158A FCE4 27 8A FC70 BEQ BLANK
00159A FCE6 CE 2000 A LDX #$2000
00160 *THE FOLLOWING LOOP SYNCHS SCROLL TO HORIZ
00161 *SYNCH FROM VDG TO MINIMIZE NOISE ON SCREEN
00162 *DURING WRITE TO DISPLAY RAM
00163A FCE9 D6 02 A NOTYET LDAB $02 PORTl I/O
00164A FCEB C4 80 A ANDB #$80 ISOLATE H SYNCH
00165A FCED 27 FA FCE9 BEQ NOTYET WAIT FOR HIGH
00166A FCEF D6 02 A SAND4 LDAB $02
00167A Fcn C4 80 A ANDB #$80
00168A FCF3 26 FA FCEF BNE SAND4 WAIT FOR LOW
00169A FCF5 A6 20 A LDAA 32,X
00170A Fcn A7 00 A STAA O,X
00l71A FCF9 08 INX
00172A FCFA 8C 2200 A CPX #$2200
00173A FCFD 26 EA FCE9 BNE NOTYET
00174A FCFF CE 21EO A LDX #$21EO SCRNPTR TO 1ST LOC,LAST LINE

Figure 5. Prognm Listing (Continued)



PAGE 004 DMBTRM

00175A FD02 39 RTS
00176 *CHECK FOR SERIAL INPUT
00177A FD03 96 11 A SERRX LDAA S11 TX/RX CONTR STATUS REG
0017BA FD05 2B 01 FDOB BMI SERDIS TEST FOR BIT 7 (ICF)
00179A FD07 39 RTS
001BOA FDOB 96 12 A SERDIS LDAA S12 RECEIVER REGISTER
001BIA FDOA BD 11 FDID BSR DISPL
001B2A FDOC BD FC67 A JSR ENDSCN
001B3A FDOF 39 RTS
o 01B4 *HERE STATUS SWITCHES ARE CHECKED. CALLING AD DR
o 01B 5 *S3BOO SELECTS NO MEMORY. STATUS SWITCHES
o 01B 6 *ARE READ VIA LS244 LATCH
001B7A FDI0 B6 IBOO A CHKSTA LDAA SWITCH
001BBA FD13 91 FE A CMPA STATWO HAVE SWITCHES CHANGED?
001B9A FD15 26 01 FDIB BNE CHGWO
00190A FD17 39 RTS
00191 *CHANGE CONTROL WORD IN STATWO
00192A FDIB 97 FE A CHGWO STAA STATWO
00193A FDIA 97 10 A STAA S10 SERIAL MODE CONTROL REG
00194A FDIC 39 RTS
00195 *THE DISPLAY ROUTINE FIRST CHECKS FOR CONTRL
00196 *CHAR. IF CONTRL CHAR, CHAR IS TESTED FOR
00197 *ACTION; OTHERWISE CHAR IS DISPLAYED.
0019BA FDID B4 7F A DISPL ANDA JlS7F
00199A FDIF 36 PSHA
00200A FD20 B4 60 A ANDA #S60
00201A FD22 27 12 FD36 BEQ CNTRLC TEST FOR CONTROL CHAR
00202A FD24 32 PULA
00203 *WAIT'FOR HORIZONTAL SYNCH
00204A FD25 D6 02 A SAND2 LDAB S02
00205A FD27 C4 BO A ANDB JlSBO
00206A FD29 27 FA FD25 BEQ SAND2
00207A FD2B D6 02 A SAND3 LDAB S02
0020BA FD2D C4 80 A ANDB #S80
00209A FD2F 26 FA FD2B BNE SAND3
00210A FD31 A7 00 A STAA O,X
00211A FD33 OB INX
00212A FD34 20 4C FD82 BRA SANDI
00213 *THE FOLLOWING ROUTINE DECODES CONTROL CHAR
00214A FD36 32 CNTRLC PULA
00215A FD37 81 OA A CMPA #SOA TEST FOR LINE FEED
00216A FD39 27 27 FD62 BEQ LINEF
00217A FD3B 81 OD A CMPA #SOD TEST FOR CARRIAGE RETURN
00218A FD3D 27 3A FD79 BEQ CARRET
00219A FD3F 81 08 A CMPA #S08 TEST FOR BACKSPACE
00220A FD41 27 5C FD9F BEQ BACKSP
00221A FD43 81 07 A CMPA #S07 TEST FOR BELL
00222A FD45 26 07 FD4E BNE CLRSCR
00223A FD47 96 08 A LDAA S08
00224A FD49 C4 01 A ANDR #SOl
00225A FD4B 27 SF FDAC BEQ BELL IS BELL ALREADY ON?
00226A FD4D 39 RTS
00227A FD4E 81 lA A CLRSCR CMPA #SlA TEST FOR CLEAR SCREEN
00228A FD50 26 07 FD59 BNE MORECH
00229A FD52 C6 20 A LDAB #S20
00230A FD54 D7 FF A STAB SAVCHR
00231A FD56 7E FC70 A JMP BLANK
00232A FD59 81 OC A MORECH CMPA #SOC TEST FOR CURSOR FWD

Figure 5. Program Listing (Continued)



PAGE 005 DMBTRM

00233A FD5B 27 5B FDB8 BEQ FWDC
00234A FD5D 81 OB A CMPA #$OB TEST FOR UP CURSOR
00235A FD5F 27 67 FDC8 BEQ UPCUR
00236A FD61 39 RTS DEFAULT BACK
00237A FD62 D6 FF A LINEF LDAB SAVCHR
00238A FD64 E7 00 A STAB O,X
00239A FD66 C6 20 A LDAB #$20
00240A FD68 3A ABX INCREMENT SCRNPTR 1 LINE
00241A FD69 DF FC A STX TEMPX
00242A FD6B DC FC A LDD TEMPX
00243A FD6D 81 22 A CMPA #$22 SCRNPTR OFF SCREEN?
00244A FD6F 26 11 FD82 BNE SANDI
00245A FD71 8D 24 FD97 BSR SCROLl IF SCRNPTR OFF SCRN,SCROLL
00246A FD73 DC FC A LDD TEMPX
00247A FD75 C4 IF A ANDB #$lF GET HORIZ POS OF SCRNPTR
00248A FD77 3A ABX
00249A FD78 39 RTS
00250A FD79 D6 FF A CARRET LDAB SAVCHR
00251A FD7B E7 00 A STAB O,X
00252A FD7D 8C 2000 A MAS5 CPX #$2000 ·SCRNPTR ALREADY AT LIMIT?
00253A FD80 26 05 FD87 BNE MAS3
00254 *SANDI STORES CHAR UNDER CURSOR
00255A FD82 E6 00 A SANDI LDAB O,X
00256A FD84 D7 FF A STAB SAVCHR
00257A FD86 39 RTS
00258A FD87 3C MAS3 PSHX
00259A FD88 DF FC A STX TEMPX
00260A FD8A DC FC A LDD TEMPX
00261A FD8C C4 IF A ANDB #$lF SCRNPTR AT 1ST LINE LOC?
00262A FD8E 26 03 FD93 BNE MAS4
00263A FD90 38 PULX
00264A FD91 20 EF FD82 BRA SANDI

.00265A FD93 38 MAS4 PULX
00266A FD94 09 DEX DECREMENT SCRNPTR
00267A FD95 20 E6 FD7D BRA MAS5 TEST SCRNPTR LOC AGAIN
00268A FD97 C6 20 A SCROLl LDAB #$20
00269A FD99 D7 FF A STAB SAVCHR
00270A FD9B BD FCEO A JSR SCROLL
00271A FD9E 39 RTS
00272A FD9F 8C 2000 A BACKSP CPX #$2000
00273A FDA2 26 01 FDA5 BNE MAS2
00274A FDA4 39 RTS
00275A FDA5 D6 FF A MAS2 LDAB SAVCHR
00276A FDA7 E7 00 A STAB a,x
00277A FDA9 09 DEX
00278A FDAA 20 D6 FD82 BRA SANDI
00279A FDAC 86 01 A BELL LDAA #$01
00280A FDAE 97 08 A STAA $08 SET OLVL HIGH NEXT COMPARE
a0281A FDBO BD FC36 A ,TSR TIMER PROVIDES BELL DURATION
00282A FDB3 86 00 A LDAA #$00
00283A FDB5 97 08 A STAA $08 SET OLVL LOW NEXT COMPARE
00284A FDB7 39 RTS
00285A FDB8 D6 FF A FWDC LDAB SAVCHR
00286A FDBA E7 00 A STAB O,X
00287A FDBC 8C 21FF A CPX #$2lFF END OF SCREEN?
00288A FDBF 26 04 FDC5 BNE MAS6
00289A FDCl BD FCED A JSR SCROLL
00290A FDC4 09 DEX

Figure 5. Program Listing (Continued)



....... ~.•..........•.•
00294A FDCA E7 00 A STAB O,X
00295A FDCC DF FC A STX TEMPX
00296A FDCE DC FC A LDD TEMPX
00297A FDDO 83 0020 A SUBD #$20 MOVE SCRNPTR UP 1 LINE
00298A FDD3 DD FC A STD TEMPX
00299A FDD5 DE FC A LDX TEMPX
00300A FDD7 47 ASRA
00301A FDD8 81 10 A CMPA i$10 SCRNPTR OFF SCREEN?
00302A FDDA 26 02 FDDE BNE LIMIT
00303A FDDC 20 A4 FD82 BRA SANDI
00304 *LIMIT RESTORES SCRNPTR TO TOP LINE WHEN
00305 *ATTEMPT IS MADE TO MOVE CURSOR OFF
00306 *SCRN VIA UPCUR
00307A FDDE DF FC A LIMIT STX TEMPX
00308A FDEO DC FC A LDD TEMPX
00309A FDE2 C3 0020 A ADDD i$20
00310A FDE5 DD FC A STD TEMPX
00311A FDE7 DE FC A LDX TEMPX
00312A FDE9 20 97 FD82 BRA SANDI
00313 END
TOTAL ERRORS 00000

FCB5 BACKS2
FD9F BACKSP
FDAC BELL
FC70 BLANK
FCCB CARET2
FD79 CARRET
FD18 CHGWO
FC4D CHKC
FD10 CHKSTA
FD4E CLRSCR
FD36 CNTRLC
FC3F CONT
FCA1 CONTRL
FD1D DISPL
FC67 ENDSCN
FC2E ERASEC
FClE FILL
FC63 FULLD
FDB8 FWDC
FCBF FWDC2
FCB2 GOBACK
FDDE LIMIT
FD62 LINEF
FCC4 LINEF2
FDA5 MAS2
FD8"7 MAS3
FD93 MAS4
FD7D MAS5
FDC5 MAS6
FCDC MAS8
FC3D MORE

00123 00132*
00220 00272*
00225' 00279*
00041 00094*00158 00231
00129 00144*00155
00218 00250*
00032 00189 00192*
00060 00071*
00057 00187*
00222 00227*
00201 00214*
00061*00073
00114 00121*
00082 00181 00198*
00083 00086*00182
00050*
00037*00040
00081 00083*
00233 00285*
00125 00137*
00130*00133 00136 00139 00143 00145 00152
00302 00307*
00216 00237*
00127 00140*
00273 00275*
00253 00258*
00262 00265*
00252*00267
00288 00291*
00150 00153*
00060*00067



PAGE 007 DMBTRM

FD59 MORECH 00228 00232*
FC79 MORSCR 00098*00107 00120 00131
FCE9 NOTYET 00163*00165 00173
FD82 SANDI 00212 00244 00255*00264 00278 00292 00303 00312
FD25 SAND2 00204*00206
FD2B SAND3 00207*00209
FCEF SAND4 00166*00168
DOFF SAVCHR 00014*00036 00050 00095 00104 00230 00237 00250 00256 00269 00275

00285 00293
FD97 SCROLl 00245 00268*
FC6D SCROL2 00087 00089*
FCEO SCROLL 00089 00156*00270 00289
FD08 SERDIS 00178 00180*
FD03 SERRX 00063 00177*
FC88 SERTST 00101 00106*
00F7 STACK 00019*00023
OOFE STA'IWO 00015*00079 00156 00188 00192
1800 SWITCH 00018*00031 00187
OOFC TEMPX 00016*00061 00065 00097 00102 00109 00118 00135 00138 00142 00241

00242 00246 00259 00260 00295 00296 00298 00299 00307 00308 00310
00311

OOFA TEMPX2 00017*00147 00148
FC36 TIMER 00048 00052 00057*00084 00281
FDC8 UPCUR 00235 00293*
FC28 WRITEC 00046*00053
FC53 YESC 00072 00075*



VDG Pint C•• , TV Sc, •• n

" GI SIA EXT/IN GM> G"' GMIl CSS ,NV Cn-racle! Colo, Background BOfd••. Displey Mode Deuil
VDG Data Bus CommenD

0
0 Green Black

Black
32Cha,aclers

fi
The ALPHANUMERIC INTERNAL mode uses an .n1ernal cha,acte,

, 0 0 0 , , , , Black G,een p@,row genefato, (wh,ch COnla,ns lhe lollow,ng love dOl by seven dOl0 Orange Black 16 Characte, rows chara~H!rS ,@ABCDEFGHIJKLMNOf>QRSTUVWXYZ, , Black O'ang\! Black I I I I I I I I I 1\III_Sf> 1"'$%&'1 )·.,-,0123456789.<~>' Tr'es •• 0'1rD ASCII CO<!eleaves two b,ts free and lhese mav toe e'le,nally con·- -..- netled to ,he mode pons IGIA. SIA, El(TIiN'l', GM2. GM1, GMO

e.,ra ASUI Code
CSS or INVI

lnlernal AlpnanumerK~

0 0 G'een BlaCk Black 32 CharaClel~ The ALPHANUMERIC EXTERNAL mode uses an e,le,nal characler, 0 0 , , , , , Black Green pel row 1+-'--..1
gene,alor as well asarow ccunlei Tnus. customcharacte, lonlS0', 0 O,ange Black Black 16 CharaCter rows l8, Black Orange I I I I I I I I I
graph,c Wmbolse,sw,th UP '0 256 dlfferen, 8, t2dol "charaClefS
may be d.splayed

1 F One Row 01
Cusl0mCnaraCle,S-

,. C2 C' co Color
0 , , , Black

64 D,sp1ay el~men1S 1'44"'4"
The SEMIGRAf'HICS FOUR mode uses an ,nlernal"Coa'se graphot;S

, 0 0 0 Gfeen

'rB]
generalor on wh,d,a rectangle lelght dots by twel'.edolsl,sd,,,·ded

, 0 0 , Yellow
perrow

6 L3 L2 I H+++H'ol
,nlO lOur equal parts Tnelum,nanceofeachpar1,sdelerm,nellbya

, 0 , 0 , , , , , , 0 , 0 BI"e Black
32rowsot D.solay t L ,One

co"espontllng b.! on theVDG aal1 b"S The color ot illumonaled parts

, 0 , , ''''
,sdett'rmlnedby Ih,eeb'ts

, , 0 0 B"II
elements, , 0 , Cyan i ' -0 l,,~,", ~.lta

, , , 0 Magenla, , , , Orange,. e, CO Color

0 , , Biack ~~
The SEMIGRAPHIC SIX mode <Ss,m,lar 10 tne SEM~GRAPHIC fOuR, 0 0 Green

6<l D.sp1ay elements
"'O<lew.ththelollow,ngd,flerenCf>S Tnee,gnltlotby Iwelvedolrec, 0 , YellOW largle,sdly.dedlnl0s •• eoualparts Color,sc!ele,m,nec!tJv :hetwO

0 , , 0 Blu~ E1:ac.
pe"o·" '5 " le,le+lwl'31'21"H ,ema,,,,ngb'ts, 0 , , , , , , , , , Red - f-

, °
, , Black 48,ows ot D,Splay ,

'3 '2, 0 0 Buff elemenlS -1--\0",, 0 , Cyan . ...:.2..~ ~1p.'T\en', , 0 Magenta, , , Oranae

" CO olor0 0 Green The COLOR GRAPHICS ONE mode Use5 a maXImum 011024 b,les 010 , YeH\lw Green &l O<sp,ay e~mentS

~i
c!,splay RAM'" whtCh one pa" 01 b'l~ speolot's one p,clu'e elemenl

° , 0 BI"e pe' 'OW Ie, leoIe,leoIe, I Co I c, IcoI, , , , 0 ° 0 , , , ,,,
E3 E2 El EO 3, 0 0 Bu!! Buff 64 rows of D'SOI~y

0 , Cvan e'emenlS T, 0 "Iagen,a, , )range,. Colo, 12BO,sP'ayelemenls 13~ i The RESOLUTION GIlAPHICS ONE mode uses a ma.,mum of 1024
0 0 Black Green pe,/ow 1,,1++"'1+,1'01, , , , 0 0 , , , Green

oytesOI (llsplay RAM ,n wh,cn one o't specd'es one P·clu'eelp.ment

, 0 Black 64'ows:.>f D'SPlay ,+01,+++>1 ,,1'013
, Bufl 8utt clemenls T

0
SalTle cola' a, Gleil~

12e O,splav (>l(>"'ents --l3~ 1 lhe COLOR GRAPHICS TWO mode uses a maXImum ot 2048 I)yt(>s, , , , 0 , 0 , Colo,G'lphoc, per 'ow 1++1,013 le'H+oHecle'leol old,splayRAM,nwt\.cno'">epaorolb,tsspec,loesonep.clureelemenI
0_

54 'ows 01 a,splay,
Buff elemenlS T

0 !>ame COlorU
128 D,splay elements

12" ,+ lne RESOLUTION GRAPHICS TWO mQ(Je uses a ma.m"m 01 \536
G'een per row 1+++H'21"H, , , , 0 , , , RMOlul,O" I I I I I

oytesol display RAM .nwh,cnoneb,tspec.I,(>sonep,cfu,eelement

G,aphocfO...., 96 rows 01 D,splay II,
8u!! elementS " coT

Same color if Green
128 D,splay elemenlS

1Irn+ lne COLOR GRAPHICS THREE mode "ses a maXl",um 01 YJ72 Diles0 Pt'rrow Ie, H e,1coIe,1 Co Ie, IcoI, , , , , 0 0 , COlo,Graph,c, 01 d'Splav RAM ,n wh<c~ "ne oa" of byleS sPt'C,!res one ptC'ulep.'e

00' 96 rows 01 O,splay ment, e"f! elementS E3 Eof

0 Same colo' u Green
t2tl D.splayelemenls -121) lne RESOLUT'ON GRA?HIC~ THREE. mode uses a ma ••mum 01
perrow 1 1"I"HwH'2Hcol, , , , , 0 , , R"50lut'on i i i ,;T 3072bylesotd,splay RAM ,nwh<chc·neb"soec,I'es(lnep.ctu'ee'(>

, Grach<uOne 192 'ows of D.sp1ay

"
~o,

Bufl elemems

0 Same col(lr as Green
12BO,splayelemenls Thl' COLOR GRAPHICS SIX mode uses a ma"m"m ot 6144 bY'es of

, , , , , , 0 , ColorG'apl>ocs per rOw ~2~ 1 l+oH+,le+H d,~plaY RAM ,n whKn one pa" 01 O,ls spec.l,es one p,clure element

0" 192 'ows of D,sP'ay ~r,
Buff ~emenlS

0 Samllcolo, a, Green
256 D.sPlayelemenls

1tmmt
The RESOLUTION GRAPHICS SIX mode uses a ma"m"m nl 6144

, , , , , , , , l'Ies<>uhOn per 'ow 1+,H"H'2H'01 bylesotd,splay RAM .nwh,choneO<lspec,t<esoneprctu'ee.er1en·

, GraphocsOne 192,owsof Dlspiay L7 Lo;
Buff elemenlS



AN799

APPLICATION PROTOTYPE BOARD (APB)
FOR MC6801/MC6803/MC68701 MCUs

Prepared By
David Ruhberg

Applications Engineer

INTRODUCTION
Now that cost effective single-chip MCUs are introduced,

a similar cost effective design is required for their evaluation.
The MC6801 MCU Family Application Prototype Board
(APB) is a printed circuit board meeting these requirements
and may be fabricated from the artwork provided in Appen-
dix A. Fabrication of the APB will allow evaluation of the
MC6801 Family of MCUs and custom programmed MC6801
versions. The wirewrap allows the user to construct and
finalize a prototype for PC board fabrication. The existing
artwork may then be used as a nucleus to reduce layout time.

GENERAL APPLICATIONS
After assembling the APB, it can be used for evaluation of

Motorola's MC6801 L I, MC6803, ,MC6803NR, and
MC68701 Microcomputer/Microprocessors, plus custom

programmed versions of the MC6801. All of the basic ad-
dress decoding, logic support, etc., is an integral part of the
completed APB; the only changes or modifications required
are a result of user expansion. Figure I shows the basic com-
ponents used with the APB.

The printed circuit board is made up of two separate areas;
a printed circuit area and a wirewrap area. Once the board is
fabricated, the printed circuit area bypasses the prototype
"wirewrap stage," and eliminates the associated wirewrap
mistakes. This area provides connection and mounting space
for the components, shown in Figure 2. The wirewrap area
can be used for mounting and/or connecting additional
devices such as buffers, memory, decoders, etc.

As an elementary software development system, the com-
pleted APB contains the necessary hardware to accomodate

I Port 1 EPROM
2kx8

MCU

I Port 3 MPU

I Port 4

-
P •a I Mode IR SelectT 2 k x 8

RAM
2 -l IRS-232

-

User
Optional
Decoding
(RAM. ROM. Etc)



the monitor ROM features in LILbu~ . Thus, the APB
together with LILbug provides features which allow the user
to: (I) Develop and edit software programs; (2) Hardware
trace through the user's program; (3) Insert, display, and
remove breakpoints in the program; and (4) Provide punch,
load, and verify commands for software I/O. To utilize the
ROM features in LILbug, the MC680lLl MCU must be us-
ed.

The APB provides an RS-232 full-duplex interface to pro-
vide the connection between a terminal and the MCU Serial
Communication Interface (SCI). The punch, load, and verify
are convenient to use when the terminal is equipped with
magnetic tape capabilities. The APB circuit board is only
4" x 6.25" (4" x 4.125" if the wirewrap area is eliminated).
Therefore, in addition to its use as a software/hardware
development tool, its compact size allows it to fit into many
application environments. Figure 3 provides a view of the
completed APB. Mounting holes are provided at the four
corners of the APB board.

SERIAL COMMUNICATION INTERFACE
One of the most useful features of the APB is its adapt-

ability to interface with various serial I/O devices. Two ex-
amples of these I/O devices are a terminal and a memory
tape system.

To communicate with the APB a user-supplied data ter-
minal is generally required. The APB "powers up" expecting
a data terminal set for 300 baud and full-duplex operation.
The interface necessary to convert the serial I/O TTL levels
to RS-232 levels is provided by the circuit that uses QI, Q2
and Q3, shown in Figure 2. The APB end of the cable con-
necting the APB to the data terminal must be an 8-pin male
DIP plug. The input to this circuitry is through pin "b" on
the Port 2 socket (see Figure 2). The output signals leave
through pin "a" on the Port 2 socket.

The APB utilizes an RS-232 interface to provide a conve-
nient method of accessing tape. When the terminal has a tape

system (e.g., a Silent 7oo/w Dual Digital Tape Drivers), the
RS-232 interface may be used and no additional hardware is
needed. The information format used by the on-board
monitor (LILbug) is the SI-S9 which is the same as that used
in EXbu~ . An example of this is shown in Figure 4. The
first two digits provide the identification (ID), S I the Data
Records, and S9 for the Data Trailer. The next two digits in
the row comain the length of the data string (L) and the next
four digits contain the hex address (ADD). The data string
then follows, and the last two digits contain a check sum of
the data in the row. When using LILbug, the user has the op-
tion of redefining its I/O table such that the input and/or
output is user-defined. Refer to "LILbug Monitor for the
MC6801Ll" (not part of this Application Note) for more in-
formation.

For any given input frequency (4fo), the serial I/O pon
will operate at one of four programmable baud rates. The
four baud rates are determined by the input frequency (4fo).
Of the four available baud rates, the particular one used is
obtained by writing the appropriate bits into the rate and
mode control register. Details can be found in the "MC6801
Advance Information Sheet" (not included as part of this
Application Note). The MCU will run at one-f9urth of the
input frequency (fo or E). The particular baud rate is derived
by dividing the E clock by 16, 128, 1024 or 4096. Two ex-
amples of input frequency selection are shown below. An ex-
ternal baud rate clock may be supplied as described in the
"MC6801 Advance Information Sheet."

Input E
Example Freq. MHz MHz E/16 E/4096

2.4576 0.6144 38.4k 150

4.9152" 1.2288 76.8 k 300

Mode Pin 10 Pin 9 Pin 8
ROM RAM

Interrupt Bus Operating
S4c S4b S4a Vectors Mode Mode

7 H H H I I I I Single Chip

6 H H L I I I MUXI61 Multiplexed/ Partial Decodel51

5 H L H I I I NMUXI61 Non-Multiplexed/Partial Decodel51

4 H L L 1121 Illl I I Single Chip Test

3 L H H E E E MUX Multipiexed/No RAM or ROMI41

2 L H L E I E MUX Multiolexed/ RAMI41

1 L L H I I E MUX Multiplexed/RAM and ROMI41

0 L L L I I 1131 MUX Multiplexed Testl41

Legend:
I - Internal
E - External
MUX - Multiplexed

Notes:
III Internal RAM is addressed at $XX80
121 Internal ROM is disabled
131 RESET vector IS external for 2 cycles after RESET goes high
141 Addresses associated With Ports 3 and 4 are considered external In Modes 0, 1,2,

and 3
151 Addresses associated with Port 3 are conSidered external In Modes 5 and 6
161 Port 4 default is user data input; address output is optional by writing to Port 4

Data Direction Register

NMUX - Non-Multiplexed
L - Logic "0" ISwitch Closed!
H - Logic "1" ISwitch Openl



."~t"
RS lOkf ~A4 10k

.".L 010t21 N'i~ Is.., .., "22 P47 "... 23 P46
... '.".A" ,.

'" '" "
A" " '"

u' '" "'" "A" " ", MC'." '" "o ~(Al~ A" " '" '" "o 0- A' 28

'"o 0- AS 28
"0

o o-~ ." IASI

:lOf "
J8

'" ". "o 0-
" D> Xl PlJ "o 0-- 1.-:; :: '" '" "

O~ ~
u' " DO " ". '" 9

74LS373 " '" " '" ·o P40IAtll ~ ". 1m •" '" J3
P3'

8C2 ~;:::~ . 03 "POll 4 ~ '33 E"
~

,
D' " '32 ' u",r AO ,

. D' " '", 00 " 'Xll~~"D" "Y ~
~~ 1· ""fRq;::-f-o 00 D'

N ~~
a ~ OpX) 'DOI
(j)

,I'''" ", ill A"

U" , CS2
A' 22

00<"." 5 C51
AS 2J

74lSU9 rn .. ,
G

A8 ,
Y'

AS ,.. .
,,1 AJ 5

G . -- A' 5
3'l18;F .. ,

u» " US/ME
AO ,

0«"." " 11$1910
14L$1)9

" ()14/8/C

~

" D'

" DO

" '"
" '"" 03

" D'

" D'· 00~l."
"

NoS3

N01UM<l~I , ~

~

~

lU7b

5.~A'4ue.:OU7C8iiss

A'S 74LS04 1 iF

1 2 :I Ul. 3

7'LSJ2

u,tJ
74lS31

'"\O>~

T2N3906

t------

~
~' '.390'

R8 10.
-12v

t",
*lN914

,,7 .,v ,,9·5V

" "" WE ~A9 ~ ·21 V
D' " ~
DO " ~A8 ~ ~ _I,ll

D5 "
~A7 ~ ~

'" " U6 ~"8

'" " u" ~
reo"",MCM2114

~AS MCM:ll1' ~-2...-....- "4 " Wi ~
~A3 ~
~A2 ~

,.--!-<J Cs
--.!....-.; Al .

CS
~

"··B~'~AO s~
'"

~ .f
- "tegu'

.7 ," ,,7 Vf!l <Top
VI~'"

" "'0 SV c.",o
03

L...---;-;< WE ~""9 ~W( ~ ta" AS ~ ~
D' " ::it=:,.7 ~ OOl.r

D' " ~ ~
00 " U5

~A8 ~ ~
~AS U' ~

MCM211 • ...2........." .•.• MCM2114 ~
~A3 ~
~A2 2-.S
~A\ ~

~ Cs
-'---' AO . Cs

~
~

2.,

cso cs; ~



C NO NC

S2E£3

R7 ~ 10 k

C~.P pF..•

O+12V 0-12V 0
Regulator + 5 V

VRI A-12V

_5~GND

C~ ~Ol'F

C~ ~7 pF

Y1 Crystal

I-iD~1
CRl-3 lN914--I<} IR1-R41-1Ok

CR3 ...,.,..

*CR2 ...,.,..R4* ...,.,..R3
CR1 ...,.,..R2

EO~3 RlO Rl

1N914'CD ...,.,..

-£>+-CR4 S 3.3 k

d

R11 ~
3.3 k~

RS ~
10k~

c ~~.~ k

CEaE

S 01

P11 14

P12 P~rtp13 13

P15 12

P17 11
10

NMj9
iRQS

10k...,.,..
R5

ssI+ + +1
iiTF

U9

74LS373

Port
A15

'"'1
4 A14

:! '"
§

~
A13

u
~

A12

::;;
u

All

::;; Al0

A9

AS

CS3 0rnO



S11301008E0132FE0137C603960AA1022705095A59
S 1 1 1 01 1026 F 6 3 E 8001 197 EO 1'0016 8AO 1 3339 F 0
S10C013380100405013953455400
S9030000FC

TIMER
All of the MC68011701 timer functions are provided via

the Port 2 socket (see Figure 3). The timer runs at the same
rate as E (one fourth the input frequency). The timer rate will
be either 1.288 MHz or 0.6144 MHz depending on which in-
put frequency is chosen in the above examples. For further
details. see the section for the programmable timer in the cur-
rent "MC6801 Advance Information Sheet."

MODES
The mode in which the APB operates is determined by the

state of switches S4a. S4b. and S4c. Table I shows the
various states in which the APB may be configured. It is im-
portant to understand that anyone of the eight modes may
be obtained by setting the appropriate switches and then
resetting the processor.

PORTS
There are four I/O ports on the MC68011701. ap-

propriately labeled PIX. P2X. P3X, and P4X. where X de-
notes the bit number in eac\l port. All ports have eight bits
except port 2, which has five bits.

Port I: In aU modes. Port I is always a parallel I/O port and
accessed through the Port I socket on the lower left
side of the board. The NMI and IRQ lines are also
available on this socket.

Port 2: Port 2 in all modes can be configured as I/O or pro-
vide access to the serial communications interface
and timer.

Port 3: Port 3 performs various functions depending upon
the operating mode selected.
Single Chip Mode (4 and 7) - Parallel I/O port and
is controlled by its associated Data Direction
Register.
Expanded Non-Multiplexed Mode (5) - In this
mode. Port 3 becomes a bi-directional data bus
(00-07). Data is available on the right side of the
socket.
Expanded Multiplexed Mode (0. 1.2.3. and 6) - In
this mode, Port 3 becomes both the data bus (DO-07)
and lower bits of the address bus (AO-A7). Data is
available on the right side of the socket along with
the lower address lines on the left side of the socket.

Port 4: The function of Port 4 is also dependent upon the
operating mode selected.
Expanded Non-Multiplexed Mode (5) - In this
mode, Port 4 contains independently optional (bit by
bit) address lines.
Expanded Multiplexed Mode (6) - Only in this
multiplexed mode, Port 4 contains independently op-
tional (bit by bit) acldress lines.
Expanded Multiplexed Modes (0. 1,2. and 3) - Port
4 functions only as address lines A8-AI5.

DECODING AND ADDITIONAL MEMORY
In addition to the internal ROM/EPROM found in the

MC6801lMC68701. the APB provides 2 k bytes of external
EPROM (TMS2716 only) space at U4. which can be used for
PRObug'!' (a monitor program written to program the
MC68701) and user defined routines. When using the
MC68011701 in normal operation, switch S5 must be in the
B/F position. In the B/F position, memory spaces
$BOOO-$BFFFand $FOOO-$FFFFare images of each oth·er.
Furthermore, $BOOO-$B7FFand $B800-$BFFF are images of
each other; and likewise. $FOOO-$F7FFand $F800-$FFFF are
also images of each other. This allows the external EPROM
to supply vectors to the processor in modes I. 2, and 3; since
$BFFE and $BFFF respond to $FFFE and $FFFF, respec-
tively. in these modes. However. even though the ROM is
selected for other addresses in the range $F8(lQ-$FFFF. the
processor ignores the external data bus in mode I. In modes 2
and 3. the processor ignores the internal ROM (detaches it
from the data bus). The reason for this decoding procedure is
to allow the external EPROM/ROM to be located at
$BOOO-$BFFFand also to be activated when the restart inter-
rupt vector is sought at $FFFE-$FFFF.

The lower eleven address lines provide the addresses re-
quired to access individual RAM/EPROM locations. The
upper address lines have been partially decoded with a
74LS139 to select between on-board RAM, ROM, and other
various user defined functions. The B decoder is used to par-
tially decode the most significant hex digit in each address.
On the schematic. each output of this decoder is labeled with
the most-significant digit of the code that will send each
respective line active low. Selected for further decoding of
the on-board RAM is the 317/B/F line which is then ORed
with Al5 (8 to F) to allow a 3 or 7 to enable the second
decoder, A. The A decoder is used to select I k blocks of
RAM ($3000 to $3FFF or $7000 to $7FFF). The incomplete
decoding here addresses both $3XXX and $7XXX at the
same time since $3XXX is an image of $7XXX. Therefore,
funher decoding will typically be needed before both address
spaces are used independently. Chip select CSOis decoded to
select U5 and U6 when the third digit in the four digit hex ad-
dress is between 0 and 3 (e.g .• $30XX. $33XX. etc.); CSI is
decoded to select U9 and U 10when the third digit is between
4 and 7 ($34XX. $37XX); CS2 is decoded to select optional
additional MCM2114s when the third digit is between 8 and
B ($38XX. $~BXX); and CS3 is decoded to select optional
additional MCM2114s when the third digit is between C and
F ($3CXX. $3FXX).
The on-board RAM can be expanded from 2 k to 4 k by
simply making the same connections to the additional RAM

, as made with the existing RAM (location described above)
except connecting the chip selects to CS2 and CS3. The other
three partially decoded lines from the B decoder are provided
for the user. This can be used as is or further decoded
depending upon user requirements. Each of the user accessi-
ble decode lines (e.g .• the three above, plus CS2 and CS3) are
brought out to unused holes near the U3 (74LS139) on the
PC board to provide easier access (see Figure 4). '



There are three positions marked on the APB which in-
dicate where power is to be supplied for normal operation.
The user must supply filtered + 5 V, + 12 V and - 12 V.
(Since the negative voltage supply is necessary for the RS-232
interface, no significant advantage is gained by using
+ 5 V only EPROMs.) The worst-case current consumption
is 5 V/790 mA, + 12 V/20 mA and - 12 V/60 mA. The
+ 5 V supply is used by alllCs on the APB. The + 12 V and
-12 V supplies are used by the TMS2716 EPROM and the
RS-232 output driver transistor.

A wirewrap area is provided to add other M6800 family
peripherals to the basic APB system. The user is then permit-
ted to construct his target MC6801-based system. To
facilitate ease of construction in the wirewrape \lrea, the ad-
dress lines Ao-AI5 and data lines Do-D7 are available adja-
cent to the wirewrap area. These signals are available as pins
of two DIP sockets, preferably wirewrap sockets, when ex-
ternal parts are emplo'yed in the wirewrap area. In the single
chip mode, DIP headers may be used to connect to parallel
Ports 3 and 4.

SPECIFIC OPERATION
The APB operates with the standard MC680l, MC6801 Ll,

MC6803, MC6803NR, and the MC68701. TQe MC6801 con-
tains an enhanced MC6800 processor, 2 k of internal mask-
programmed ROM, 128 bytes of RAM, a 16-bit timer and a
serial I/O section. The MC6801 Ll is similar, except the
mask-programmed ROM is programmed with a debug
monitor called LILbug. The MC6803 is similar to the
MC680l, except there is no internal masked-programmed
ROM. The MC6803NR has no RAM. The MC68701 is
similar to the MC680l, except the internal ROM is electrical-
ly programmable, alterable, and ultra-violet erasable (see
Figure 5).

MC6801L1 MICROPROCESSOR
To facilitate debugging and development of applications

software, the user may elect to use the MC680lLl processor
which contains the monitor LILbug. All modes listed in
Table I are available on the MC680lLl.

The APB allows use of the hardware trace function of
LILbug by closure of S4d. Switch S4d connects the output
level of the internal timer to the non-mask able interrupt of
the MC6801. LILbug then .provides the programming
necessary to implement a trace through specified RAM or
ROM memory locations. This capability allows the user to
single-step through programs that are ROM-based. The
Memory Map of various modes utilizing the MC680lLl on
the APB Board is presented in Figure 6.

MC6803 and EPROM
Since the MC6803 has no on-chip ROM available to the

user, the only useable modes are those that access external
ROM to pick up its restart vectors. These modes are:

a) The MULTIPLEXED/RAM (mode 2)
b) The MULTIPLEXED/NO RAM or ROM (mode 3)

The Memory Map for the MC6803 is shown in Figure 7.
For the case of the MC6803NR, the mode should be set to

the MULTIPLEXED/NO RAM or ROM mode (mode 3).
The Memory Map is similar to that shown in Figure 7 except
all on-chip RAM address space is replaced with user
definable space.

MC68701 and PRObug
When using the MC68701 with the APB, all modes are the

same, as shown in Table I, except mode 0 is used in the on-
chip EPROM programming mode.

In order to program the MC6870l, the user must supply
well-filtered +21 Vdc. However, before the +21 Visactual-
ly utilized by the internal MC68701 EPROM, the user must
place switch Sl in the closed position.

For illustrative purposes, it is assumed the user will make
use of the PRObug software available in external ROM.
After inserting the PRObug ROM into the external
ROM/EPROM socket (U4), the internal EPROM can be
programmed. In order to use PRObug to program the inter-
nal EPROM of the MC6870l, switch S5 must be in the B
position. This position allows the external ROM to respond
only to $BOOO-$BFFF.This is necessary in the programming
mode of the MC68701 since the ROM should not be selected
during processor output of image address $FOOD-$FFFF.
PRObug may still be used since the MC68701 processor puts
out the restart addresses $BFFE and $BFFF after reset when
in the programming mode.

After programming is complete, the external
ROM/EPROM (PRO bug) may be replaced with another
ROM/EPROM to utilize the same addresses. The Memory
Map for the MC68701 is shown in Figure 8.

More details about the PRObug software are provided in
the "PRObug Preliminary Programming Monitor" (not part
of this Application Note).

ASSEMBLY
The APB can be assembled using the part Idcation detail of

Figure 3. No special instructions are necessary.

CONCLUSION
Although the completed APB is a small board

(4" x 6.25"), it nonetheless possesses a high degree of ver-
satility with respect to performance, configuration and ap-
plication. The APB lends itself for use as both a small size
debug system and a final version applications
microprocessor-based system. Since size is of paramount im-
portance in many applications, the advantage of LSI is
defeated if used on a larger printed circuit board.

REFERENCES (All are Motorola documents)
MC6801 Advance Information
LILbug - A Monitor for the MC6801
PRO bug - Preliminary Programming Monitor for the

MC68701



Expanded Non-MultIplexed

P20

~ Expanded Multiplexed

~O" TIN

~ S,n910 Ch,p

~

I TOUT P21N~
1/0 SCLK P220

D7 A7ID7 I/O

"-
1/0 RX P23

P37

MUX

0

P3E D6 A6/D6 I/O

" -'1/0 TX P24

A5/D5 110 ~P35 D5

0P34 D4 A4/D4 1/0 "-
0P33 D3 A31D3 I/O

"P32 D2 A2/D2 I/O

Dl Al/Dl I/OP31

P30 DO AO/DO I/O

SC2 R/W R/W 1m
SCI iOS AS IS3

f\:)~
0

~O" ""A7 A15 1/0

~

I/O Pll

P47

A6 A14 O"§ Address

1/0 P12

P46

I/O :::
:;;

I/O P13

P45 A5 A13

~
(;A4 A12 1/0 "-

110 P14

P44

g
A3 All I/O g

• 1/0 P15

P43

J
A2 AlO 1/0

L
~ I/O P16

P42

Al A9 1/0

1/0 P17

P41

P4Q AD AS 1/0

I II
RAM I I 2048 x SVDD Standby-+!

ROM
Notes 1,2

I Standbyl I L-
N~te~ot on the MC6B03 or MC6803NA

2· EPROM on the MC88701

3: Not on MC6803NR

MC6801 SINGLE CHIP MICROCOMPUTERFIGURE 5 -

-' It;;
o <Il <!. I;; I:E 10 :;l

~~~~wz~a:


Expanded MUX
Mode 101 Mode 161

$OC'OO $OC'OO

Internal Internal
RegIsters Registers

$001F $001F

sooao sooao
Internal Internal

RAM RAM

SOOFF SOOFF

S7000
External

S72.Ff.. - - - - - I..
RAM

External
EPROM/ROM

Fix)ln;r;~--
ROM

ILilbugl

Internal
ROM

ILilbugl

3000
S37FF External

S3~F~ -R~~ - - -I..
S7000

ExternalS7LE':... _
RAM ••

SBOOO
ExternalSBlft:.... _

EPROM/ROM
SBFFF

Expanded
Non MUX
Mode 151

SOC'OO

Internal
Registers

SOOlF
t-

unu;able

sooao
Internal

RAM

SOOFF

S0200

Unusable

SFSOO
Internal

ROM ILilbugl
SFFFF

Single
Chip

Mode 171

SOC'OO

Internal
Registers

S001F

~
unU;ble

sooao
Internal

RAM

SOOFF

Unusable

$FSOO
Internal

ROM ILilbugl
SFFFF

[7'J7'7;l User
l(L'LLL1 Definable

6803
Expanded MUX

Mode 121
ooסס$

$8000 External
$87FF-----

External

flff _

EPROM/ROM

FFFF

·Optional Additional RAM
··These follow each other (not fully decodedl

6803NR
Expanded MUX

Mode 131

$7000
External$7zt':.. _

RAM

$8000 External
BZ£:F _

EPROM/ROM
$BFFF

$FZfE.. _
EPROM/ROM

V7777i1 User
~Definable

Mode 101 Expanded MUX
(See Note Belowl Mode 161

ooסס$ ooסס$

Internal Internal
Registers RegIsters

$001F $001F

rolO $008()
Internal Internal

RAM RAM

$OOFF $OOFF

*Optional AddItional RAM
• *These follow each other (not fully decoded)

NOle: Processor Reslart VeClOrs are SBFFE, SBFFF

3000
External

$31Fl_ ------
}*

$7000
External$7Z£f.. _

$7000
S77FF External

$BOOO PRObug
$B~ _

$BOOO External
$B7FF------

EPROM/ROM
$BFFF

$FBOO Internal
ROM/EPROM

$FFFF

Expanded
Non MUX
Mode 151

ooסס$

Internal
Registers

001F

unulab,e

$rolO
Internal

RAM
$OOFF

$0200

Unusable

$FBOO
Internal
EPROM

$FFFF

Single
Chip

Mode 171
ooסס$

Internal
Registers

$OOlF

unutble

$rolO
Internal

RAM

OOFF

Unusable

$FBOO
Internal
EPROM

$FFFF

rJ777JI User
~Definable

Quantity Ref. Desig. Value/ Description Quantity Ref. Desig. Value/Description

Capacitors Motorola ICs
2 C1. C2 27 pF 1 U1 74LS373
1 C3 50 ~F 135-50 volts 1 1 U2 MC6801-11701/03
7 C4-C10 0.1 ~F or 0.01 ~F 1 U3 74LS139

1 U4 TMS2716
Resistors (1/4 wi U5. U6, MCM2114-454 U9, UlO8 Rl-R8 10 kohms

3 R9-Rl1 3.3 kohms
11 U7 74LS32

1 R12 10 ohms 1 U8 74LS04

Diodes and Transistors Switches

4 CR1-CR4 lN914 2 S1, S5 SPOT Slide Switch
1 01 2N3906 1 S2 SPDT Momentary Switch
2 02, 03 2N3904 IC&K 812·1CI

1 S4 4PST DIP (8 Pin)
ReQulator

1 VRl MC79L05CP DIP Socket
1 40 Pin

Crystal 1 20 Pin

1 Y1 4.9152 MHz 1 24 Pin
4 18 Pin
2 14 Pin
4 16 Pin
1 8 Pin

APPENDIX A
This appendix provides a copy of the 1:1 artwork furnished with the Application Note to allow a user to com-

necessary to fabricate a printed circuit board (PCB) for the plete the APB.
APB Application Prototype Board. In addition, a parts list is

NOTE
Permission is hereby granted by Motorola Inc.,
MOS Integrated Circuits Division, in Austin,
Texas for use of this artwork in any manner.

0 000 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ·0 0 0 0

0 0 0 0 0 0 0 0 0 ·0 0 0

0 0 0 ·0 0 0 0 0 0 0 0 0

0 0 0 ·0 0 0 0 0 0 0 0 0 0

• 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ·• 0 0 0 0 0 0 0 0 •
0 0 0 0 0 ·0 0 0 ·0 0 ·0 0 0 0 0 0 0 • 0 0 0 0 0 ·0
0 0 ·0 0 0 ·0 • • 0 0 ·0 0 ·0 0 0 ·0 0 0 0 0 0

00 0 0 ·0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ·• 0 0 0 0 0

0 0 0 0 0 0 0 ·0 0 • 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 • 0 0 0 ·0 0

0 0 0 0 0 0 ·0 0 0 0 0 0

0 0 0 0 0 ·0 • 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 • • 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 • 0 0

0 . 0 0 0 ·0 0 0 0 0 0 0

0 • ·0 0 0 ·0 0 ·0 0 0

0 0 ·0 0 0 • 0 • 0 • 0 0

0 0 0 0 0 ·0 0 0 0 0 0 0

0 0 ·0 0 0 0 0 0 ·• 0 0

0 0 0 0 0 • 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 • • 0 0. 0 0 ·0 • 0 0 0 0 0 0 0

0 0 0 0 0 0 • 0 0 0 • 0 0'

0 0 • 0 0 • 0 0 ·0 0 0 ·0 0 0 0 0 0 • 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ·
FIGURE A-l - COMPONENT SIDE ARTWORK

214

0 0············• ························• ·• ·····• ······• ·············• ··············• ···········• ··········• ·······• ········• ······• • ····• ·• • ·····•····• ·····• ·• ········• ·················• • ·• ···• ····• ·····• ··• ······• • ·····• ·• • ·······················• ··········• ···············• ·················• ·• ··············• ···•··• ·······• ·······································• • ·• ··········• ··············• • ···························• • ···• ······ 0

FIGURE A-2 - SOLDER SIDE ARTWORK

0 0 0

I: 00 00 0 00 00 0 0 0 0 000 ·• ····• ·····000 0 ··• ·········0 0 0 ·······• ····•0 0 000 0 0 000 000 0 0 ···• ·····• ···00 0 ··• ·····• ···•o 0 000000000000
00 0

0 0 0 ·············0:
0 0 0 0 • ······• • ···•0 0 o 0 0 00 00 0 0 ···• ·········00 0 ·• ·····• ····•

0
0 0 0 0 0 ·············0 0 0 0 0 0 ·······• ··• ··000000000000 0 0 0 00 0 0 0 0 ···• ·········0 0 00 00 0 00 ·············00 00 0 0 00 •• ·······• ·····00 0 0 •• 0 0 00 00 0 0 0 ·············0 0000

0
0 0 00 0 00 0 0 0 0 0 ··• ·····• ·• ··000 oaoo 0 0 0 0 0 0 o 0 0 0 0 ···• ·····• • ··000 oaOO 0

0 0 0 00 0 00
00

00 0 • • ···• ·• ····•000 ooaoo 0 00 0 00 0 00 0 0 0 ··········• • ·0 0 0 0 0 0 0 0 0
0
0 0 0 ···• ····• • ···000 00 00 0 0 0 0 00 0

00 0 0 ·······• ·····000 00 0 0 0 0 0 0 0 0 0
00 ·············000 0 0 0 0 0 00 0 0 00

00
00 ·············o 00 0 0 0 0 0 0 0 ·• ······• ····0 0 0 0 0 0 0 0 0 ·············0 0°0°0° 0 0 0 0 0 0 0 0 0 0 ·········• • ··0

0 0 0 o 0 0 0 0 0 0 0 ·• ··• ········00 0 0 0 00 000 0 0 0 00 0 ··• ··········0 0 0 0 0 000 0 0 0 0 : 0
0 • ············0 0 0 0 0 00 0 00 0 0 0 ·············o 0 0 0 0 0 0 0 0 00 0 o 0 0 0 ·• ··• • ·······0 0 0 0 00

0
00 0 0 0 0

0
0 0 ·············0 0 0 0 00 00 00 0 0 :0°0 0 0 ··• ··········0 °000 0

0
0 0 0 0 0 ·········• • ··000

0 0 I: ············0 0 ·········• ··0

AN-SOl

USING INPUTiOUTPUT MODULES IN
INDUSTRIAL CONTROL APPLICATIONS

Prepared by
Tom Hopkins

Systems Engineering

Utilization of microprocessors and MSI logic in industrial control
applications requires a reliable means of interfacing the logic to both
ac and dc levels while at the same time providing isolation between the
logic and power circuit. This application note discusses the use of
Motorola's series of input and output modules to accomplish that
interface.

One of the' major uses of microprocessors and MSI
circuitry in the industrial environment is in control ap-
plications. To deal with real-world applications, the sys-
tem designer must provide a means for the low-voltage
logic to work with the voltage and current levels of other
systems. The differences between the logic system and
the "real-world" systems define requirements for iso-
lation, power switching, level translation and noise im-
munity. In addition, the system designer must concern
himself with safety and serviceability of the system.

In many systems it is economical to modularize the
input and output devices and manufacture the modules
in large volume to realize the cost savings of large-scale
production. In addition, modularization offers other ad-
vantages, such as standardization, ease of maintenance
and troubleshooting, higher reliability, and lower design
cost.

Motorola's series of input/output modules provides

this modular means of interfacing the logic signals with
ac and dc loads.

ISOLATION
In the United States, the generally accepted standard

has been that of the Underwriters Laboratories, which
is that isolated systems must withstand 1000 volts plus
twice the working or line voltage. For a 240 Vac system
controlled by standard logic, the test for isolation would
be to apply 1480 Vac for one minute without inducing
an isolation failure. Thus, in the past, a 1500 Vac iso-
lation rating was acceptable for American systems.

As more equipment is being required to meet the more
stringent requirements of other countries, the 1500 Vac
isolation rating is becoming inadequate. Current design
practice is to meet the most stringent European require-
ment of 3750 Vac. Use of modules which meet this re-
quirement not only allows qualification under all known

requirements in multinational markets, but establishes a
clearly superior and safer product.

POWER SWITCHING
Motorola output modules are not intended to be the

final load handling devices in all systems. They do, how-
ever, have ratings adequate to handle many small loads
such as fractional horsepower motors, small heaters, so-
lenoid valves, and lamps. In addition, the modules are
capable of driving final load handling devices such as
motor starters.

SAFETY CONSIDERATIONS
One of the important safety considerations is how to

connect the output device to the wiring harness. Current
practice is evolving toward the elimination of screw ter-
minals on I/O modules. By using the plug-and-socket
type of connection, the module can be installed or re-
moved without working with hot wires. This can result
in a significant saving of maintenance time, since the
electrician no longer must lock out feeder circuits before
maintenance. Hence, the current practice of plugging the
module into a socketed mounting board and attaching the
wiring harness to the board using screw terminals is be-
coming universally accepted. This type of mounting also
has the advantage of making installation more con-
venient since the wiring can be done before the "elec-
tronics" is installed.

A second topic related to safety is that of fusing. Since
most fusing requirements reflect code-writing agencies'
concerns to "protect wire," fusing specifications are
often outgrowths of safe current levels for wire with re-
gard to heat generation. From the electronics point of
view. we are usually more concerned with protecting
electronic equipment than wire. Hence, the size, loca-
tion, and type of fuse is best selected by the system de-
signer. The Motorola mounting boards have provision
for a pigtail fuse to be installed in series with each mod-
ule and the field wiring. The standard boards have a
5-A fuse installed at the factory.

LOGIC INTERFACE
Once the decision to use I/O modules has been made,

the only remaining task for the system engineer is to in-
terface the module with the logic and the equipment. For
the most part. the interface with the equipment is quite
simple. since the module most generally goes in series
with the field device.

On the logic side. the interface to be used depends on
the type of logic used in the logic system. For TTL logic,
the interface is quite simple since a standard TTL output
will drive the output modules directly, as shown in Fig-

Output
Module

OAC5.0AC5A.

or DOCS

ure 2. This configuration may be used with standard
TTL, Schottky (S), low-power Schottky (LS), and high-
speed (H) series devices. Low-power TTL (L) may be
buffered with an LS device. Although the standard TTL
output configuration will drive the module, it may be
desirable to use open-collector devices for the output
module dri vers.

To interface the modules to MOS logic requires a bit
more circuitry. The most obvious interface is to buffer
the MOS with a TTL device. For most NMOS devices
such as the M6800 family, a standard TTL device may
be used. For CMOS operating at 5 volts, a low-power
Schottky device may be used as the buffer.

A second method of interfacing MOS devices to the
I/O modules is use of a simple saturating transistor, as
shown in Figure 3. Here the MOS device drives the base

02 Output Module

OAC5.0AC5A.
or ODeS ~

of an NPN transistor, which, in turn, drives the output
module. By changing the value of RI to 39 kfl, this con-
figuration may be used to interface CMOS operating at
15 volts with 15-voltlogic modules OACI5, OACI5A,
and ODCI5.

Interfacing input modules to logic is a simple matter.
Since the input modules are open-collector devices, the
only additional component necessary is a pullup resistor,
as shown in Figure 4.

Input Module

IAC5, lAeSA,

or IDCS

In all three illustrations, an indicator LED is added to
indicate the status of the device. If a mounting board
such as the MS 16 is used, both the indicator LED and
the 3.3 kfl resistor are installed on the board at the factory.

TYPICAL APPLICATION
The application of I/O modules in an industrial envi-

ronment can best be illustrated by working through a
case history. The example problem involves a mixing
tank in a batch processing plant. The tank involved,
shown in Figure S, is one of a number of similar tanks

in a plant that batch-processes liquids through a number
of mixing, stirring, and heating cycles. The original
plant was controlled by relay logic and had high oper-
ating cost due to direct operating labor and maintenance
expense. The goal of the conversion of the plant to a
distributed processor-based control system was to in-
crease flexibility while increasing reliability and reduc-
ing labor.

The conversion had to take place piecemeal to avoid
shutting down the entire,operation. Various pieces of
equipment were converted to solid-state control and re-
turned to service by plant engineering during periods
scheduled for maintenance. Since time and cost were
important factors, existing devices and wiring were used
whenever possible.

The particular tank for our example had the following
equipment:

I Stirring Motor

2 Liquid-Level
Sensors
Thermostat

Inle~Valves
(3)

temperature is above the maximum temperature for full
ratings, the output modules were derated, using the de-
rating curve shown in Figure 6. From the graph it was
found that the output modules had a current rating of
2. 18 A at 60° C. This rating was sufficient for all of the
equipment used in this application.

%-HP, 120 Vac, single
phase;
starter 120 Vac (cv 250 mA
DC solenoid operated;
24 Vdc @ 1.2 A
DC solenoid operated;
24 Vdc @ 2.0 A
200 W resistive-coil type;
120 Vac @ 1.7 A
SPST N.C. contacts

~
"$
~'2.18 --

~ 2.0

~
u
>-~
>-~
a
~ 10

~
«

"

The new electronics housing may have internal tem-
peratures up to 60°C maximum. Since the 60°C ambient

Since the input modules are not power-handling de-
vices, they do not have a derating factor and may be
used ovef the specified temperature range without
derating.

The microprocessor chosen for the application was an
MC6800. The outputs were to be controlled through an
MC6821 peripheral interface adapter. An SN74LS05
open-collector hex inverter was chosen to interface the

MC6821 and the output modules. The SN74LSOS drives
the output modules as shown in Figure I.

The logic outputs of the three input modules are con-
nected to peripheral input pins of the MC682 I as shown
in Figure 3.

The configuration for the wiring harness was fixed as
shown in Figure 7. The thermostat could have been used

24 Vdc

~
+

to furnish either a dc signal, an ac signal, or to directly
switch the S-volt supply. Switching of the S-volt supply
would have limited the flexibility of the system and so
was rejected. The ac signal was selected for the ther-
mostat because it resulted in the least amount of rewir-
ing, as it was previously used to switch ac relay signals.
For similar reasons, the level switches were wired to the
existing 24 Vdc "relay" supply, which was retained so
that the existing solenoid valves could be utilized.

The I/O modules were mounted on an MS 16 mounting
system. This system provides a complete means of con-
necting the 110 modules to the field wiring and the logic
system, while keeping the 110 modules outside of the
card cage which housed the microprocessor.

CONCLUSION
Motorola Input/Output modules can provide an eco-

nomical means of connecting logic control to the "real-
world" in many industrial applications. The use of this
modular approach not only provides the necessary iso-
lation but increases the. safety, reliability, and service-
ability of the system.

AN·807

SPECIAL CONSIDERATIONS IN USING THE
MC68011NTERRUPT CAPABILITIES

Prepared by
Clint Bauer

Systems Engineer
Motorola Automotive Electronic Systems

M6800 Microprocessor family components are used in
numerous real-time control applications, many of which use
external interrupt, timer and/or ACIA interface devices to·
increase system capability. The MC6801 microcomputer
brings all these capabilities together with ROM and RAM on
a single chip, while also providing a dramatically enhanced,
yet machine-code compatible version of the MC6800 pro-
cessor.

The MC6801 interrupt control methods are also enhanced,
but still retain the same philosophy of operation used by
other M6800 family components. The improvements increase
performance, but also make possible several application-
dependent constraints which merit consideration in certain
systems. It is hoped that the information contained in this
application note will aid the reader during his system design,
so that a similar education is not required at debug time. It is
assumed that the reader is familiar with basic operation of
the MC6801 as described in the MC6801 Data Sheet and/or
the MC6801 Manual. An optional review of MC6801 inter-
rupt operation is provided first, followed by a discussion of
important interrupt design constraints.

The MC6801 interrupt structure is similar to that available
in the MC6800. The principle difference is that the MC6801
has four additional interrupt vectors and handshake logic to
control them (see Figure I). MC6800 systems are able to sup-
port external circuits that offer this same capability, but nor-
mally do so by sharing the single IRQ line and interrupt vec-
tor. The additional MC6801 vectors allow more efficient in-
terrupt service by eliminating polling requirements for the
triple-function timer/counter (where quick response is
especially helpful), and reducing them elsewhere.

Having more vectors, MC6801 systems now offer a greater
probability thal-near simultaneous interrupts will occur. For
example, the three vector internal timer will often handle
multiple asynchronous events. Therefore, it is important that
the MC6801 system designer carefully observe the exact rules
concerning interrupt recognition, entry, and service. A
review of these rules is provided below.

Vector IMSB:LSB) Description
FFFE:FFFF Reset
FFFC:FFFD Non-Maskable Interrupt INMI)
FFFA:FFFB Software Interrupt ISWIl
FFF8:FFF9 flml Interrupt 1T1ml, ~ - Mode 7)
FFF6:FFF7 1RQ2/Timer Input Capture IICF)
FFF4:FFF5 mmlTimer Output Compare IOCFI
FFF2:FFF3 rnIDlTimer Overflow ITOFI
FFFO:FFFl rnIDlSCI IRDRF, ORFE, TOREI

FIGURE 1 - MC6801 INTERRUPT PRIORITY
AND VECTOR MEMORY MAP

a. All interrupt possibilities but two are disallowed, or
"masked" when the interrupt-mask bit I is set, Bit I in
the processor condition code register (CCR) is
automatically set during MC6801 Power-up/Reset.
The I-bit does not "mask" NMI (non-maskable interc
rupt). SWI (software interrupt) does not interrupt a
program but executes like any other machine code and
as such it is not maskable,

b. I-Bit behavior can be summarized as follows:
(I) Actions that set the I-bit do so immediately,
(2) Actions that clear the I-bit do so after one E cycle

delay.
Therefore, the CLI instruction can often be

placed one program step sooner than might other-
wise be thought. for the I-bit actually clears dur-
ing the first cycle of the instruction following
CLI.

c. Most MC6801 interrupts can be inhibited at a second
level. Specific control bits in several MC6801 registers
(see Figure 2) separately enable or disable the six inter-
rupt possibilities shown in Table I. All interrupt enable
bits are cleared (disabled) during MC6801 Power-
up/Reset. User programs can set or clear these bits, the
action taking place during E time of an MPU write cy-
cle to the specified register.

CI• ., NMI Reg }

I-Bit

From Processor
lHardware
Handshake

Return}

Interrupt "Initiate Interrupt;
Recognition

Logic To Processor

NMI
I i, jI IRQl } ,~oo

Input
Selection

I Ca ture
Code

Output Interrupt IT 0 Processod

I Compare Vector
Note: When noClear Req

I Timer Select
Interrupt requests

Overflow Logic

I
are present,

the serial 110 vector
IRQ2 iR52 is selected
Latch I

I
S-R FF I.. I •

Level, Edge, Level
or Time Controlled

Sensitive

Not meant to represent actual circuitry. "Initiate Interrupt" signal is answered with
handshake action that sets I-bit (upper right!. For IRQ1 and IRQ2 interrupts, a software
handshake is also necessary to prevent repeat service when I-bit is cleared. This second
handshake clears the appropriate interrupt request directly or must indirectly cause line
IRQ1 to return to its inactive state.

Interrupt Interrupt Interrupt
Fleg Bits Enable Bits

Input Strobe 3 IRQ1 IS3 FLAG IS3 IRQ1 ENABLE
Timer Input Capture ICF EICI
Timer Output Compare OCF EOCI
Timer Overflow TOF ETOI
Serial Receive RDRF/ORFE RIE
Serial Transmit TORE TIE

d. MC680I interrupts are requested when appropriate ac-
tions set particular flag bits (the flag bits are listed in
Table I). If the matching enable bit is set and the pro-
cessor I-bit i~ clear, the flag bit will "request" inter-
rupt service, as shown in Figure 3.

Activating the external IRQI pin sets a non-
machine-readable flag that remains latched as long as
the I-bit is clear. The negative edge of NMI also in-
fluences a certain flip-flop to request service, but is ser-
viced so quickly that there is no point in making its
state readable.

e. Interrupt request flags become set at the following
times:
IS3 FLAG: Directly clocked by the negative edge at

IS3 pin.

ICF: During E time that the timer capture ac-
tually occurs, which is two cycles after the
capture pin' edge.

OCF: During E time but one cycle after timer
compare occurs.

TOF: During E time that the timer counter
would read $FFFF.

RDRF: During E time that received data is latched
into buffer.

ORFE: During E time that an overrun or framing
error is detected.

TDRE: During E time that a data word is actually
transferred to the serial out shift register.

f. Once set, the interrupt flag bits are cleared during E
time of special memory accesses that occur after the
flag is "armed" for clearing: The NMI request flip-
flop is automatically cleared during the tenth cycle of
the interrupt entry sequence, as described later.

Flag Bit Arming Mechanism Bit Clearing ActIOn
IS3 Flag P3CSR read (at SF) P3DA TA read or write (at 561
ICF TCSR read (at 581 CAPREG read (at SDI
OCF TCSR read (at 581 CMPREG write (SB or SC)
TOF TCSR read (at 581 COUNTER read (at 59)
RDRF TRCSR read lat 5111 RDR read lat $121
ORFE TRCSR read lat $111 RDR read lat $121
TDRE TRCSR read lat $111 TDR write lat $131

Any Instruction-1
That Does Not _4~--------ADDD $80

Set Bitl

SFFFC I $FFFD I SFFFE

! I
i';;"'~ r Compare Reigster = SFFFE
"'"_ ~~ ComparisonI Matches

~Ed~e at Capture Input. I (jFFFF Capturedl

l:r--
m

-=--\\;-r-\ \-\ u-r~-u\----,\~-u-:-\l ~ ml

I
Free·Running corter

I
I
I

IR01
or IS3 FLAG.IS3 IRQl ENABLE

g. Regardless of how interrupts are caused, the end inter-
face between each interrupt request and the processor
is level controlled, as shown in Figure 2 (as the Inter-
rupt Vector Select Logic block). This feature gives an
MC6801 program more control over interrupt service
than is otherwise possible. For example, if the three
timer interrupts were enabled and their flags were to
simultaneously set, the input capture interrupt (having
the highest priority of the three) would be serviced
first. This service routine could temporarily inhibit
compare interrupt service by clearing bit EOCI, which
allows overflow interrupt service (normally the lower
priority) to occur when capture service is complete. If
the end interrupt request interface was latch rather
than level controlled, clearing bit EOCI in the example
would not prevent the compare interrupt from being
serviced before timer overflow.

Individual flag bits are separately latched, however.
In the example just given, bit OCF is temporarily in-
hibited but will indeed be serviced when the program
restores bit EOCI to its enable state.

h. Interrupt requests trigger interrupt service at times well
defined relative to the end of the instruction in pro-
gress, as shown in Figure 3.

i. After recognition, all interrupts are initiated by a
twelve-cycle interrupt entry sequence (see Figure 4).
The particular request that initiates the interrupt entry
sequence will normally be, but is not always, the same
one immediately serviced. Exceptions can occur where
two or more interrupts occur at nearly the same time,
because actual selection of which interrupt to service is
delayed until near the end of the resulting interrupt en-
try sequence. At the ninth cycle, a decision is made as
to whether NMI, IRQI, or IRQ2 will be serviced. If
IRQ2 is selected, the exact selection of which IRQ2 to
service is made during the tenth cycle. Requests not
selected remain pending but are masked (I-bit sets dur-
ing the tenth cycle), allowing the selected service
routine to proceed undisturbed. Some example pat-
terns of near-coincidental interrupt service are shown
in Figure 5.

j. Interrupt service is complete when the processor ex-
ecutes an RTf instruction. This ten cycle instruction
simply returns seven bytes from the stack to the pro-
cessor registers, restoring the. original machine state
present when the interrupt was serviced (assuming the
interrupt routine does not modify stack contents). In
particular, the original I-bit is restored. If it returns to
a logic "0", the IRQI and IRQ2latches of Figure 2 are
again enabled so that any pending request can be ser·
viced.

k. A eLl instruction can be executed during interrupt
service to allow prompt processor response to pending
IRQI or IRQ2 requests. The benefits gained by this are
sometimes offset by increased program complexity and
greater required stack depth. ---'

I. All interrupt service routines (except NMI and SWI)
should take action that removes its interrupt request
prior to executing an R TI instruction.

An IRQ2 or IS3 or IRQ I request is normally re-
moved by clearing the appropriate flag bit. As an alter-
native, the matching enable bit can be cleared. Exter-
nal hardware must remove any external IRQ I interrupt
requests, as this line is not directly controlled by the
processor. This is best handled by providing hand-
shake logic similar to that used internally to control the
IRQ2 requests. The MC6821 PIA and MC6846 RIOT
devices each provide an excellent IRQI interface,
though discrete logic designs will also work.

m. Interrupt service cycle times are well defined:

Cserv: Number of cycles taken away from non-
interrupt execution by interrupt execution.

Centry:

Cclrflg:

12 cycles to enter interrupt service.

4 to 9 cycles to clear interrupt request (zero
for NMI or SWI)

number of cycles to perform desired service.

10 cycles to execute RTI instruction.
CIRQ I, IRQ2 = Ctask + 26 to 31 cycles

CNID, SWI = Ctask + 22 cycles

m\\\\\\\\\ NMI

\\\\\\\\\\~ iROi or ~

~ \
}

---------12 CycleInterruptEntrySequence-------~

Anyof These
ConditionsWill

Cause Interrupt Service

L -f- I I I Fetch L
I-Inst. -Prepare--;----Store 7 Bytesto Stack- -- - -i i-selected-or-Service Routine-

j
__ Vector

l Endof Instruction.Since··InitiateInt...· SelectNMI '-.If IRQ2.Decide
isActive(Fig.21.EntrySequenceBeginS. IRQlor IRQ2 WhichOne

P'ocOsSOr'""'V Y:.- -
EX~ lDD $84 ~n~l~erruPt Request as Shown Below

(Just for an Example)

A. Isolated Interrupt !the "Normal" One)

i I I i I'"r-~1J.i. ~i~i~I _
L~Pinor

AnyiRCU ~ I
R/W Line

•.•••• ~ .- Set I Bit, Also I-Bit

Returns to "0" If
'\ •••.. I·Bit was Originally "0"

______ RTI ---<ol

B. Near Coincidental Interrupt Example

r--- ~ J_],---,I,-IR=D=R~F_O-R~I_EI •••••

LSSriail/O Interrupt (Low Priority I

C. Near" Miss" NMT Example

~
r 1--' .L _L _ '-_ ••I_IT_D_F_oE_T_D_Il ~

Timer Overflow Interrupt

Senal110 Service

load Sep81
1/0 Vector

JuSt Misses •
Overriding ,....AJ'l- L

Vector Selection'

DESIGN CONSTRAINTS OF THE
MC6801 INTERRUPT SYSTEM

The expanded interrupt system of the MC6801 offers im-
portant benefits when software is constructed to utilize it
properly. However, certain specific software practices should
be avoided because unexpected program behavior may
result. These practices are now described, along with alter-
natives that will aid in better achieving the desired results.

AVOID IRQ2 HANDSHAKE VIOLATIONS
MC6801 interrupt requests (except for NMI and SWI) are

cleared with a software handshake during interrupt service to
avoid repetitive service of the same interrupt. The program-
mer should avoid several improper procedures that can clear
these requests at the wrong time, or several difficulties may
occur that can cause unexpected system performance.

What happens if an IRQ2 request is somehow removed
prior to actual service (a handshake violation)? If the request
had not yet triggered an interrupt entry sequence, nothing
unusual takes place. If indeed triggered, however, the follow-
ing rule will apply: An IRQ2 interrupt entry sequence that
finds no request present during its tenth cycle will always
select the serial I/O vector for service. This mayor may not
be a problem if the original request was for serial I/O service.
On the other hand, programs that allow IRQ2 requests to be
cleared between interrupt sequence triggering and actual vec-
tor selection will service the serial I/O vector in lieu of that
desire<h-'Fwo methods exist that allow this to occur, which
are described below and then summarized in Table 2.

I. Clearing IRQ2 Enable Bits While I-bit is Clear - Pro-
grams are often structured such that mask-bit I is clear
during background or non-interrupt execution. Some
programs will also purposely clear the I-bit during in-
terrupt service routines. At either time, software that
clears an IRQ2 enable bit should be avoided because
the corresponding interrupt flag may have just become
set. Figure 6 shows that an IRQ2 interrupt only
momentarily requested can result in erroneous selec-
tion of the serial I/O vector. To prevent this, use in-

struction SEI to mask all interrupt requests for the
short time that it takes to clear the desired enable bit,
then clear the I-bit again with instruction CLI. The
SEI/CLI combination is unnecessary when the pro- .
grammer knows that the I-bit is already set, as is usual-
ly true within interrupt service routines that do not
themselves alter the I-bit.

2. Clearing Enabled IRQ2 Flag Bits while I-bit is Clear-
IRQ2 requests can also be removed by clearing the
interrupt-flag itself. Doing so just as the interrupt is to
be serviced should be avoided to prevent improper
serial I/O vector selection, as demonstrated in Figure
7a.

Two special cases of programming practice can also
generate this undesirable result. The double-byte read
instructions "LDD TCSR" ($8) and "LDD TRCSR"
($11) are used to arm and clear interrupt flags TOF,
RDRF, and ORFE. As such, they are excellent for use
as the software handshake needed during service of
these flags, but altogether improper any time their in-
terrupts are enabled and the I-bit is clear.

For example, TOF might set, arm, and clear within
the four cycles of "LDD TCSR" execution. Though
the request is removed, it is still able to'initiate an in-
terrupt entry sequence, resulting in erroneous service
of the serial I/O routine (see Figure 7b). Good pro-
gramming practice would clear interrupt flags only
during the appropriate service routine, which is the
best solution to this difficulty. "LDD TRCSR" can
similarly clear RDRF and/or ORFE while

'simultaneously initiating an interrupt sequence. Again,
the serial I/O vector is selected, which is seemingly
proper in this special case. However, the serial inter-
rupt service routine normally polls flags _RDRF,
ORFE, and TDRE to determine the actual interrupt
source. It is possible, then, that RDRF or ORFE ser-
vice be skipped due to improper flag-clearing.

Table 2 summarizes the several methods by which the
serial I/O vector may be improperly selected.

The Cause
Control or Flag

The Solution
Bits Affected

Clearing IRQ2 enable bit just as EICI Disable these enable bits only while
interrupt entry sequence begins. EOCI I-bit is set.

ETOI
TIE
RIE

Clearing IRQ2 flags just as interrupt All IRQ2 Flags Do not clear flags directly alter
entry sequence begins ell instruction.

TOF Execute these instructions only if
RDRF I·bit is set.
ORFE

LDD TCSR LDD TRCSR
LDX TCSR LDX TRCSR
ADDD TCSR ADDD TRCSR
SUBD TCSR SUBD TRCSR
CPX TCSR CPX TRCSR
LDS TCSR LDS TRCSR

AVOID IRQ! HANDSHAKE VIOLATIONS
IRQI requests are latched as long as the I-bit is clear (see

Figure 2) and will not cause improper selection of the serial
I/O vector. However, it is still wise to observe the precau-
tions described for IRQ2 to prevent any unexpected system
performance. For example, handshake violations can clear
IRQI request flags just as interrupt service is being initiated.
As with IRQ2, programmers should avoid clearing IRQI
flags during an instruction that follows CLI. Any of the
"LDD-type" violations described previously should also be
avoided any time the I-bit is clear, for IRQI flags can also
set, arm and clear during a single instruction. These viola-
tions allow IRQI service to take place, but prevent recogni-
tion of the calling flag during IRQ I polling.

Additionally, the MC6821 and MC6850 offer interrupt re-
quest flags that need not be "armed" before clearing - a
single memory access does the job. Therefore, limit these ac-
cesses to the appropriate service routine so that no request
'can be missed.
..-.-..:!Eereis no hardware oriented reason to avoid clearing
IRQI interrupt enable bits while the I-bit is clear. However, a
polling routine cannot reliably test both flag and enable bits
when this is the case.

Pulsing the external IRQ 1 line by any form of signal
generator without a handshake should normally be avoided.·
Edge triggered interrupt lines NMI, IS3, and Input Capture
are better used for such signals. Or,·an MC6821 or MC6846
can transform these into level-sensitive, handshake con-
trolled request signals which are more suitable for IRQ 1.

AVOID CLEARING THE I-BIT DURING NMI SERVICE
There is need to be cautious about clearing the I-bit during

NMI service because this interrupt can occur at virtually any
point in program execution. Some programs that use this
technique are likely to service occasional IRQ I or IRQ2 in-
terrupts twice per request.

Double service occurs whenever an I-bit clearing NMI ser-
vice routine is executed before the flag-clearing handshake of
an already entered IRQ I or IRQ2 service routine. For exam-
ple, Figure 8 shows that an NMi occurrence during a par-
ticular window of time prevents the quick handshake that
clears ICF. When NMI service executes instruction CLI, flag
ICF teams with enable bit EICI to again request capture ser-
vice. As shown, all routines will execute properly and to com-
pletion, including double service of the twice-called capture
routine.

Clearing the I-bit during other service routines will not
generate this situation, although doing so before clearing the
calling interrupt request is disastrous. The best way to avoid
any problem is to leave the I-bit set throughout NMI service.
Where this is undesirable, additional software can be added
to the NMI routine stack and compare it to all possibilities
that lead to double service. Where such is indicated, clearing
the I-bit should be skipped. If the I-bit must be cleared every
time, additional software should first clear the interrupt flag
scheduled for double service. Clearly, the benefits desired
when clearing the I-bit during NMI service are potentially
offset by the added software required to support this tech-
nique. For the same reasons, do not program an NMI inter-
rupt service routine to clear the I-bit record contained on its
stack. This would allow all portions of a program to be sub-
jected to I-bit clear execution, resulting in potential double
service of interrupts.

Serv. Problem
Progrem

LDAA TCSR
ANDA ISFB
STAA TCSR Clear ETOI

No-Problem
Program

r--~
L Vector

Selection

.-,
Because No
Request is

Present
--Wrong

Vector
is Selcted!

LDAA TCSR
ANDA ISFB
[ill]
STAA TCSR
[ill].

FIGURE 6
Programs that clear IRQ2 enable bits while
I-bit is clear risk improper vector selection.

Serial 1/0 '=Because No
Request is

Present

'----v---'"
Wrong

Vector is
Selectedl

TOF

(Vector
Selection

ICauses Interrupt Entry But Removes Requestl

COUNTR
Read Clears TOF

~ Vector
Selection

••
~Because No

Request is
Present

'---v--"
Wrong

Vector is
Selected!

FIGURE 7
Programs that clear "enabled" IRQ2 flag bits while

I-bit is clear risk improper vector selection.

Ser.

7; Problem Program
• ETOI bit is set

STAB $80
CLI

°l-blt clears in 1st cycle of
next instruction

LDO COUNTR clears TOF

7b Problem Program
°l-Bit is clear
• ETOI bit is set

ow \
STAB $001 or ~~tB $00

NOP
"Timer Overflow Interrupts
LOO COUNTR

No-Problem Program
Best Solution: Do not write code
that allows flag clearing outSIde
of Interrupt service routine!
Poor Alternatives:
1.•

SEI
LOO TCSR
CLI

~ Capture Interrupt Service Routine

~12 Cvcle Entrv SElQ.--+t-OAATCSR+ LDD CAPREG ~

"Capture Interrupt
• Service Routine

CAPTUR LDAA TCSR
LDD CAPREG

ICF ~ ~_I I-B;t I

tapture ReQuest' I:. -:
I·~ _ -I

L-. An NMI falling edge in this region will
cause NMI service after capture recognition

but before ICF is cleared.

"NMI Interrupt
• Service Routine
NMI

~
Select Vector Read Capture Vector

ICF---l(E1CI is Setl

~ Capture Request

~
Rest of Service; Ends Rest of NMI Service;

,With Rli Ends with ATI

I-Bit _

NMi Pin

FIGURES
Clearing I-bit durin~1 service can lead to

double service of IRQl or IRQ2 interrupt.

APPENDIX A
USING I~Ql AS AN INPUT PIN

If the circumstances are right, an 110 limited MC6801
system may be able to use the IRQ1 pin as an extra input.
Where no other interrupts are used, this can be accomplished
with the simple program of Figure A-I to clear RAM byte
IRQTST while also clearing the I-bit. The state of the IRQI
pin then determines whether IRQTST will be changed (inter-
rupt occurs) or remain constant (no interrupt occurs). The
background program discovers which is the case by simply
reading IRQTST. Notice that the processor has no control of
input pin ~ in this method, but can still perform the
necessary interrupt handshake by setting the I-bit record
stored on the stack. This prevents repeat service that would
otherwise tie up the processor as long as the ~ pin is held
low.

The same basic method can also be used when other inter-
rupts are to be serviced as well. The IRQ I pin is again tested
in the manner just described, but now routine IRQSRV must
also poll other interrupt requests in case they need service, as
shown in Figure A-2. If it is important that the various inter-
rupts be serviced promptly, the programmer can scatter CLI
instructions through his background software. This still
allows the IRQI pin to be used as an input, and also permits
normal service of all interrupts while IRQ I is high. Whenever
IRQI is low, IRQSRV becomes an alternate entry path for
other maskable interrupt requests.

0080 A IRQTST EQU $80 RAM BYTE AT $0080
*BACKGROUND PROGRAM, I-BIT IS SET.

2000 ORG $2000
2000 A BKGRND EQU *

*
*FIND OUT IF IRQl PIN IS HIGH OR LOW

2000 OE CLI I CLRS DURING NEXT INST.
2001 7F 0080 A CLR IRQTST WILL IT STAY ZERO?

*IF IRQl IS LOW, SERVICE OCCURS AT THIS MOMENT
2004 96 80 A LDAA IRQTST IS NOW #$FF IF IRQl IS LOW
2006 26 00 2008 BNE IRQLOW IRQl DID OCCUR

*IRQl PIN WAS HIGH
*

2008 A IRQLOW EQU * IRQl PIN WAS LOW
*

2008 7E 2000 A JMP BKGRND END OF BACKGROUND LOOP

*IRQl SERVICE ROUTINE
200B 73 0080 A IRQSRV COM IRQTST CHANGE IRQTST!
200E 30 TSX X;SP+l
200F A6 00 A LDAA O,X THE CCR BYTE ON STACK
2011 8A 10 A ORM #$10 SET I-BIT FOR RETURN
2013 A7 00 A STAA O,X
2015 3B RTI

*I-BIT IS SET TO PREVENT IRQl RESERVICE

FIGURE A-I
Using IRQ! as an input pin.

0080 A TCSR EQU $8 TIMER CIS REGISTER
0000 A CAPREG EQU $0 CAPTURE REGISTER
0011 A TRCSR EQU $11 TX/RX CiS REGISTER
0012 A RXBUF EQU $12 RECEIVE BUFFER
0080 A IRQTST EQU $80 RAM BYTE AT $0080

2000 ORG $2000
*IRQl SERVICE ROUTINE

2000 73 0080 A IRQSRV COM IRQTST CHANGE IRQTST!
2003 30 TSX X=SP+l
2004 A6 00 A LDAA O,X THE CCR BYTE ON STACK
2006 8A 10 A ORAA #$10 SET I-BIT FOR RETURN
2008 A7 00 A STAA O,X

*BEFORE RTI, SEE IF OTHER INTERRUPTS ARE PENDING
200A 96 08 A LDAA TCSR CHECK INPUT CAPTURE
200C 2B 09 2017 BMI TIMICI TIMER INPUT CAPTURE PENDING
200E DC 11 A LDD TRCSR CHECK SCI IRQ2 REQUESTS
2010 85 EO A BITA #$EO CHK RDRF, ORFE, TORE FLAGS
2012 26 08 201C BNE SCIIN2 SERVICE SCI INTERRUPT
2014 3B RTI EXIT:NO INTERRUPTS PENDING

*I-BIT IS SET TO PREVENT IRQl RESERVICE

2015 96 08 A TIMIC LDAA TCSR ARM ICF FOR CLEARING
2017 DC 00 A TIMICI LDD CAPREG . CLR ICF, GET CAPTURE DATA

*
2019 3B RTI

20lA DC 11 A SCIINT LDD TRCS ACCA=TRCS, ACCB=RXBUF
201C 48 SCIIN2 ASLA SORT OUT SCI FLAGS

*
2010 3B RTI

FIGURE A-l
Routine IRQSRV can also poll other interrupt

requests when using mQJ as an input.

AN-808

INTERFACING M6800 PERIPHERAL
DEVICES TO THE MC68000

ASYNCHRONOUSLY
Prepared by:

Arnold J. Morales
Microprocessor Applications Engineer

This application note describes a technique for interfacing
M6800 peripheral devices to a MC68000 microprocessor
using a four-chip TTL circuit. Any M6800 peripheral is easily
interfaced to the MC68000 using the M6800 peripheral con-
trol interface (E, VMA, VPA) that is designed into the
MC68000. However, when using this interface, the
peripheral must be driven by the MC68000 enable (E) signal.
The frequency of this clock is one-tenth of the MC68000
clock frequency with a 60/40 (6 clocks high, 4 clocks low) du-
ty cycle. Certain applications may require a clock frequency
other than the one-tenth sample that is readily available. An
application using a MC68B54 Advanced Data Link Con-
troller (ADLC) at a high data transfer rate could require an E
clock frequency of up to two megahertz because the data
transfer rate of the ADLC depends on the transmit and
receive clocks which are limited by the E clock frequency.

TIMING CONSIDERATIONS
Typical read and write timing for the MC68000 is shown in

Figure I. The relationship between the MC68000 timing and
the access timing for the interface circuit given in this ap-
plication is shown in Figure 2. The best case. timing has data
strobe occurring with the minimum setup time to allow
peripheral selection on the next falling edge of the E clock. In
the worst case timing, the data strobe did not occur in time to
allow peripheral selection on the next falling edge of E.
Therefore, a full E cycle has to occur and then the peripheral
selection is done on the falling edge of that full cycle. The
resulting cycle times for these best and worst cases and a
comparison between asynchronous and synchronous inter-
facing is summarized in Table I. .

-------~>-=============>-~~_~r-~_~---~_~r-
"'''--------------\~-- ~I

or=----,-\i\-\\\-\\I\ r-----~\-:i\-\\\ I
--~(. -~>------<~----~>-----1(~--------:>------<.---=========>-,ro,==>--<. . .. =====H~ ~>-

I
t

~al'
OTACle., Latch

DatI

I
t

Ch,p Select
Pe"phef<11

I
t......Si!o.erale

OTACK, Latch
Dlltl

I
t

~fale
OTACK. Latch

081<1

I
t

Ch'p Select
Pe"pheral

I
t

~.r~:ICh
Data

BLOCK DIAGRAM
Figure 3 is a block diagram of a circuit that allows M6800

peripherals, operating at any frequency within their
operating range, to be asynchronously interfaced to a
MC68000 processor. The data bus is driven by a pair of octal
transparent latches. The latch control circuitry uses M6800'
peripheral chip select and the R/W line of the MC68000 for
output enable and data direction information. The DTACK
signal from the DTACK generation circuit latches data into
the enabled octal latch whe~ipheral is deselected.

The peripheral select and DTACK generation circuit uses a
data strobe (either upper or lower) from the MC68000,
peripheral E, and a M6800 peripheral chip select signal to
select the peripheral and generate DTACK.

CIRCUIT OPERATION
Figure 4 is a schematic diagram of the interface circuitry.

Refer to this diagram during the following discussion. Initial-
ly flip flops UIA and UIB are cleared causing a high
DT ACK output setting U2 and U3 to a transparent mode.

Latch U2 is in the high-impedance state due to a high on the
output enable (OE) input. Latch U3 is enabled due to a low
on the OE input.

At the start of a M6800 peripheral access, latch U3 remains
enabled if the access is a MC68000 write. If the access is a
read, the high R/W and CS inputs to U4A cause U3 to go to
the high-impedance state and U2 to become enabled. The
peripheral is selected by a low chip select prime (~). Flip
flop UIA is clocked high on the first falling edge of E with
the system chip select (CS) and data strobe (DS) high. The Q
output ofUIA is applied to U4D, asserting CS'. Selecting the
peripheral at this time ensures that the peripheral has ade-
quate address setup time.

On the next falling edge of E. the Q output of UIB is
clocked low asserting DTACK and latching data into the
enabled latch. The asserted DTACK signal, inverted by U4D.
deselects the peripheral by causing CS' to go high. Flip flop
U I is cleared by DS going low when the access terminates.
Clearing UI also initializes the interface circuitry for the next
access.

Read Access Times Write Access Times
(MC68000 Cvclesl (MC68000 Cvcles)

Best Cass Worst Cass Best Cass Worst Cass

I Synchronous 9 I 18 9 I 18
I Asynchronous 8 I 11 9 I 12

DSoCS

55

Octal
Transparent

Latches

Peripheral
Select

and
DTACK Gen

Circuit

SAMPLE CIRCUIT
An example of this interface circuitry is given in the

following paragraphs. This example illustrates how the'
MC68000 can be interfaced to both a MC6854 Advanced
Data Link Controller (ADLC) and a MC6840 Programmable
Timer Module (PTM) at the same time. The circuit shown in
Figure 5 uses the two megahertz "B" version parts connected
to a MC68000 driven at eight megahertz. .

The base addresses for the peripherals in this example are
$18001 for the ADLC and $18801 for the PTM. When the
MC68000 tral\sfers bytes it asserts the upper data strobe for
even addresses and the lower data strobe for odd addresses.
The circuit in this example uses the lower data strobe;
therefore only odd MC68000 addresses are used. A memory
map of the example system is given in Figure 6.

Device SeledioD - A SN74LSI38 l-of-8 decoder (U5)
used as an address decoder is used in conjunction with a chip

select signal (CS') developed by U6E to select either the
ADLC or the PTM. The PTM requires two chip select in-
puts, one high and one low, to be selected. The low input is
provided by the 05 output of U5 while the high input is pro-
vided by an inverted sample of the CS'. developed by U6E.

To select the ADLC, the 05 output of U5 must be high
and the 0 I output must be low. The ANDing of 05 with the
high CS' developed by U6E generates the low chip select in-
put required by the ADLC.

Test Program - A flow chart of the test program is given
in Figure 7 and a listing is provided in Figure 8. Refer to these
figures during the following discussions. The flfst five lines
of code initiate operation of timer 3 in the PTM in the con-
tinuous mode, resulting in a square wave at the output of
timer 3, pin 6. The remaining lines of code are for testing the
ADLC. The test program is based on the loopback test pro-
gram given in Motorola publication MC6854UM (AD).

U3

D7 07

D6 06

D5 05

D4 04
Bus D3 03

D2 02

Dl 01

DO_ DO
OE LE

SN74LS373
U2

07 D7

06 D6

05 D5

04 D4

03 D3

02 D2

01 D1

00 DO
R/W~OO Vr:C ~OO 6E LE

~ U4A.r V-~

If.:TACK

SN74LSOO

~
CS'

VCC VCC

SN74LS112 b SN74LS112 ~.

DS-CS SD SD
Q NCJ Q J

U1A UIB
CP ,--<I CP

~K
Q ..f=""K Q -

CD CD DTACK
E

'(

T
~
DS I
VCC~

U3 U7

18 07 07 19 . 18 07 03 !...--
17

00 GO 16 19 00 ENABLE ~
14 05 05 15 2() 05 RIVi

~
1304 04" 2104 l3ll 15 B

MC6000Q
Data Bus 8 03 03 9 22 03 CSI

16 A

7
02 02 8 23 02 RSO ~1

• 01 01 5 24 D1 RSI
~2

309 002 2500 RS2
12

DE LE
1 11

SN]4LS373 MC6B5oI
U2 UB :bRXO

1907 D718 15 D7 TXO

16 06 0617 16 06 RXC ~L
1505 0514 l7 05 TXO

"04 0413 "04 =~,

903 03 8 19 03 RESET
L-c.

6 02 027 2() 02 E !.!..-!
501 01 •

21 D1 Rtw

~2 DO 3 "DO OS
9 C

~
3r;::S04 0' LE RSO ~1R/W 1 3

A 2 U4A./_
DE 13 6 12 1 11

RS1 ~2
V

I JOlACK

SN74LSl38 SN74lS00 SN74lS04
A16 U5

CO LNC • C'S' f?:. C~ 1 SN]4lS00
-AO

~~Al

m~

VCC VCC 11l:/"',O 05 2 U9AJ13 C

All-.. A'l 02 10 NC SN]4lS00 SN74LSl12 • SN74LS'12 10
~' " So Soillill...- Ei ~ lLNC 13 U4D 11 3 J 0

5 llJ
Q~

mL- E2 04 J.LNC UIA U18

~E3 155" 13 B
, 1

CP ----"< CP
VJ~.1i-NC $N74LS09

151~NC -!! K Q~ ~K Q~S3
"5T""ACK

C 7 2-;-* ~T VCCSN74LSOO "L5S 9

VCC10 U4C
B

The ADLC transmitter and receiver clock inputs (TxC,
RxC), are tied together and provided with a clock frequency
determined by the desired data transfer rate. The transmitter
output (TxD) is tied to the receiver input (RxD) to allow both
tlie transmitter and receiver to be tested at the same time. The
test consists of initializing the ADLC, transmitting a series of
data bytes, and then storing the data received in a memory
buffer based at address labled RECBUF.

The byte to be transmitted, labeled DATA, is located at
address $3000. This address is entered into MC68000 address
register AI, which will be used as the data pointer for data to
be transmitted. The program transmits the same data byte
128 times, a count established by the initial value in MC68000
data register DO. The program can be easily modified to
transmit a block of characters based at address $3000 by
changing the initial value in data register DO, and postin-

crementing address register A I after each character is
transmitted (line 72).

The main program is a looping, polling sequence. First,
the receiver is checked for the presence of a received
character by testing the receiver data available (RDA) flag in
the ADLC. If a character is present, it is stored in the receiv-
ed data buffer. The transmitter data register available
(TDRA) is then checked to determine whether the transmit-
ter is ready for another byte of data. If the transmitter is
ready, another data byte is transmitted. The program then
loops back to check the receiver again.

Before each character is transmitted, MC68000 data
register DO is decremented and tested. Termination of the
program is initiated when the correct number of characters
have been transmitted.

:::I~__~I}Program

:: 1 1 } Rx Buffer

:ll:J J } ADLC

:::: 1 1 } Timer

1
2
3
4
5
6
7
8
9

10
11
12 001000 13FC0082

00018801
13 001008 13FCOOOO

0001880D
14 001010 13FCOOOF

0001880F
15 001018 13FCOOOl

00018803
16 001020 13FCOOOO

00018801

00018801
00018803
0001880D
0001880F

17
18

20

22
23 00018000
24 00002000
25 00003000
26 00001500

28

30

* EQJATES
ADLC mu
RECVBF mu
Di\TA EQJ
ENDFffi mu

$18000
$2000
$3000
$1500

* EQJATES
W:::Rl3 EQJ $18801 W.C.R. 1,3
W:::R2 EQJ $18803 W.C.R. 2
MSBT3 EQJ $1880D M.S.B. BUFFER
LSBT3 EQJ $1880F L.S.B. TIMER 3

STARr MJVE.B #$82,W:::Rl3 INITIALIZE TIMER 3

MJVE.B #$00,MSBT3 M.S.B TIMER 3=00

MJVE.B #$OF,LSBT3 L.S.B.TIMER 3=OF

MJVE.B #$Ol,WCR2 ACCESS w.C.R.l

MJVE.B #$00,W:::Rl3 ENABLE TIMERS

NJPAGE

32 * INITIALIZE ADLC
33 001028 13FCOOCO

00018001 FIREUP MJVE.B #$CO,ADLC+l
34 001030 13FC0064

00018003 MJVE.B #$64 ,ADLC+3
35 001038 13FCOOCl

00018001 MJVE.B #$Cl,ADLC+l
36 001040 423900018003 CLR.B ADLC+3
37 001046 13FCOOIF

00018007 MJVE.B #$lF,ADLC+7

39
40 00104E 43F82000
41 001052 343C003F
42 001056 4299
43 001058 51CAFFFC

45
46 00105C 203COOOOOOFE
4J-D0I062 43F83000
48 001066 45F82000
49 00106A 423900018001
50 001070 42381500

* CLEAR MEMJRY RECEIVE BIDCK
LEA RECVBF ,Al
MJVE.W #($100/4)-1,D2

CLEAR .CLR.L (Al)+
OORA D2,CLEAR

* SETUP REGISTERS
MJVE.L #$FE,DO
LEA Di\TA,Al
LEA RECVBF ,A2
CLR.B ADLC+l
CLR.B ENDFffi

ADLC BASE ADDRESS
RECEIVER BUFFER
IJXAT OF Di\TA 'ID BE XM
ALL FINISHED FLAG

C.R. 1
C.R. 2
C.R. 1
C.R. 3
C.R. 4

IDA!) BUFFER PI'R
SIZE IS 256 BYTES
CLEAR NEXT w)RD, INCR
IillP UNI'IL lXlNE

SETUP aJUNT- 2 , XMIT
SETUP Di\TA ADDRESS
IDA!) BUFFER PTR
ENABLE RX, TX
SET FLAG FOR lUI' FINI

52
53 001074 61000038
54 001078 6100000C
55 00107C 4A381500
56 001080 67F2
57 001082 4E4F
58 001084 0000

* PRXESS TRANSMIT AND RECEIVE TASK TIIL ~E
PRXES BSR RECV ATI'EMPT RECEIVE

BSR SEND ATTEMPT 10 SEND
TST.B ENDFLG FINISHED?
BEQ PRXES I.CX)P IF rur FINISHED
TRAP 15 BREAKPOINT IoHEN FINIS
DC.W #0 BREAKPOINT <DOE

60 * ATTEMPT 10 TRANSMIT A CHARACTER
61 001086 08390006

00018001 SEND BTST.B #06,ADLC+l TDRA SET? XMIT READY?
62 00108E 67000014 BEQ RETUR'l
63 001092 OC40FFFF CMP #-l,DO ? LAST BYTE SENT?
64 001096 6700000C BEQ RETUR'l YES IGOORE SENDINS MJ
65 00109A 51C8000A OORA DO,MJRE <XJUNTIDoIN, BRl\NQi N:)
66 * PRXESS l.J\ST BYTE BY TE~INATINS TRANSMISSIOO
67 00109E 130100018007 MJVE.B (Al),ADLC+7 l.J\ST BYTE INID FRAME
68 0010M 4E75 RETUR'l RI'S RETURN 10 MAINLINE
69 * PRXESS NEXT BYTE 10 TRANSMIT (rur THE l.J\ST)
70 0010A6 130100018005 MORE MJVE.B (Al) ,ADLC+5 SEND NEXT BYTE 10 FRA
71 0010AC 4E75 RI'S RETUR'l 10 CAILER

73
74 0010AE 08390001

00018003
75 0010B6 66000008
76 0010BA 61000016
77 0010BE 4E75
78
79 0010CO 61000010
80 0010C4 13FC0064

00018003
81 0010CC 52381500
82 0010DO 4E75

RECV BTST.B #l,ADLC+3
BNE <DI'F~
BSR TRYINP
Rl'S

* END OF FRAME PRXESSINS
<DI'FRM BSR TRYINP

MJVE.B #$64,ADLC+3
ADD.B #1 ,ENDFLG
Rl'S

84
85 001002 08390000

00018001 TRYINP
86 0010D/\ 67C8
87 0010DC 14F900018005
88 0010E2 4E75

BI'ST.B #O,ADLC+l
BEQ RE'IURN
MJVE.B ADLC+5,(A2)+
Rl'S

90 END
91
92 *©

ADLC
FIREUP
MSBT3
RETURN
WCRl3

018000 CLEAR
001028 <DI'FRM
018800 PRXES
001OA4 SEND
018801 WCR2

001056 D/\TA
0010CO lBBT3
001074 RECV
001086 STARr
018803

003000 ENDFLG
01880F MJRE
0010AE RECVBF
001000 TRYINP

? FRAME RECEIVED
BRANQl IF 9J
ATI'EMPT INPUr OF NEXT
RETURN 10 MAINLINE

CLEAR TX,RX STATUS
FLAG RECEIVER ~
RETURN 10 MAINLINE

? INPUr BYTE READY, T
RETURN IF N:) BYTE
SIDRE BYTE
RETURN

001500
0010A6
002000
001002

AN-809

INTERFACING THE' MC68000
TO THE MC6846 RIOT

Prepared by
David Ruhberg

Microprocessor Applications Engineer

The MC6846 ROM I/O Timer (RIOT) provides several
versatile functions which the MC68000 may use with minimal
effort. The RIOT features a 2K by 8 mask-programmable
ROM, an 8-bit I/O port, and a 16-bit programmable timer/
counter, in one forty-pin package. The MC68000 has the op-
tion of addressing the RIOT singly or in pairs, depending on _
the desired bus width. The 8-bit bus can be used if the upper
and lower data strobes are used. Note that if a single RIOT is
used, the MC68000 will not be able to obtain executable code
from the ROM within the RIOT. This is due to the limitation
introduced by the width of the data bus on the RIOT.
Therefore, to effectively interface the ROM in the RIOT to
the MC68000, a 16-bit data bus is used in this application.
This configuration makes three 16-bit capabilities available /
to the MC68000. They are:

• 2K by 16 bits of mask-programmable ROM
• two parallel, 8-bit I/O ports, or one parallel, 16-bit

I/O port
• two 16-bit timers that can be used together or

independently

HARDWARE
The basic connections needed for the RIOT to function

with the MC68000 are: the lower ten address lines (AI-AIO),
the sixteen data lines (Do-DIS), and the R/W, trnSET, E,
and chip select signals. All of these may be obtained directly
from the MC68000 with the exception of the chip select
signals. As shown in Figure I, the eight high-order data lines
go to one RIOT and the eight low-order data lines go to the
other RIOT. All other connections between the RIOTs are
made in parallel. To obtain the chip select signals, some
decoding circuitry must be provided. The RIOT may be run
synchronously or asynchronously with the MC68000.

Syncbronous Operation - To run the RIOT synchronous-
Iy, some decoding circuitry must be used to provide a low in-
put to the VPA pin of the MC68000 when the RIOT is
selected. This synchronizes the MC68000 with E and
generates the VMA signal.

To use the synchronous output of the MC68000, the
decoding circuitry must also generate a VPA signal, in addi-
tion to the chip selects. This signal informs the MC68000 that
it is addressing a M6800 peripheral and synchronizes the pro-
cessor with the E clock. The VPA signal also causes VMA to
be generated which can be used for other M6800 peripherals.

Asyncbronous Operation - Operating the RIOTs asyn-
chronously with the MC68000 allows the processor to begin
executing the next instruction without waiting to synchronize
with the E clock. To operate asynchronously, the decoding
circuitry must generate a DTACK signal in addition to the
chip selects.

SAMPLE CIRCUIT
The sample circuit interfaces parallel RIOTs through the

MC68000 Design Module (MEX68KDM) data bus, as shown
in Figure 2. Since only sixteen address lines (AI-AI6) are
brought out on this bus, addressing from the MC68000 is in-
complete. Special attention should be given in addressing
these devices from the MC68000 since the AOaddress line on
the RIOT corresponds to the AI address line on the
MC68000.

The RIOT used in this sample circuit (MC6846P3 TVBug)
has the following characteristics. Having CSO high and CSI
low selects the ROM, while having CSO low and CSI high
selects the I/O Timer. Also, address lines A6 and AIO must
be high and lines A3, A4, and AS must be low for the I/O
Timer to be selected. The three least-significant address bits
are used to address the various I/O Timer control registers.
A memory map is given in Figure 3. Besides power and
ground, the E, CSO, CSI, RiW, RESET, and the ten address
lines are connected in parallel to the RIOTs.

As mentioned earlier, the address lines are obtained from
the limited address bus of the Design Module. Buffers are re-
quired to reduce noise on the bus lines. Bidirectional, three-
stateable buffers are used on the data lines so that data may
be transmitted to and received from the Module. The receive
enable (RE) signal will go low when R/W is low and the I/O

Timer chip select (CSI) is high. The driver enable (DE) signal
will go high when RlW is high and either chip select is high.

The decoding circuitry shown in Figure 4 generates the
chip select signals for synchronous operation. A high chip
select signal (CSO) is generated for the ROM at addresses
ooסס$1 through $lOFFF. The high chip select signal (CS1) is
generated for the I/O Timer registers at addresses $11880
through $1188F. The two chip select signals are NORed
together to generate the WA signal. Valid peripheral address
should be generated from an open collector gate or passed
through a three-stateable buffer tei permit a wire-ORed
signal.

For asynchronous operation, the VIO NOR gate used to
generate VPA is replaced with the TTL circuit shown in
Figure 5.

The seven-segment displays are used to show the contents
on the parallel I/O data registers in the RIOTs.

Address lines A4, AS, and A7 are decoded to allow soft-
ware manipulation of the timer contained in each RIOT.

SOFTWARE
The software needed for the MC68000 to use the RIOT is

straightforward. One point to keep in mind is that the

High Order D~ Lin~
Low Order Data Lines

I Decoding

IL _
I

_ -J

MC68000 addresses every eight bits, even though it executes
sixteen-bit instructions. This means that the least-significant
byte of an instruction is always located at an odd address,
and likewise the most-significant byte is always located at an
even address. Since the hardware writes to all sixteen bits at
once, the addresses for the control registers are located two
addresses apart (Le., PCR: 11882, DDR: 11884, etc.). In us-
ing the ROM, no preliminary software is necessary.
However, to use the I/O lines, the peripheral control register
must be initialized and the data direction register must be
configured before data may be transmitted to or received
from the peripheral data register.

The software for the sample circuit is given in Figure 6.
The I/O lines are connected to four, seven-segment displays
through MC14511 BCD-to-decimal decoders. The software
initializes the I/O lines (as outputs) and then outputs the first
ten bytes of each ROM. Since the decoders cannot decode
hexadecimal numbers greater than nine, the software sub.
tracts eight if the number is greater than nine. Then the code
is output to the display for operator inspection. This soft-
ware is included to give you an idea of the simplicity involved
in interfacing to these M6800 peripherals.

I/O Timer
Control

Registers

A12
CSO ROM

A13
A14
A15

A16

C51 I/O Timer

AS

/-
U3 ,

07 07

D6 D6

05 05

MC68000
04 0 Periphe

Data Bus 03 03 Oata B

02 02

01 01

"- 00 00 /at LE

SN74LS373

, U2
07 07f-

06 06~

05 05

04 04

03 03

02 02

01 01

00 00

VCC
SN74LSOO BE LE

SN74LSOO

A/IN
~

U4B
U4A

CS 1-
OTACK

~

~ U40 CS'

~:i' • VCC CS2
SN74LS112 ~~N74LSll2

:;0 :;0 CS1

J Q J Q NC

U1A U1B

CP ~ CP

~K Co Q ~K Co "6 ~
SN74LSOO -= If - rI U4C

}

To
AIOTs

1
2
3
4
5
6
7
8
9

10 001000 33FCOOOO
00011882

11 001008 33FCFFFF
00011884

12 001010 303C0009
13 *
14 *
15 *
16 *
17 *
18 *
19 *
20 *
21 * HEX 'TO reCIMAL 1-I)0IFICATION-
22 *
23 001014 227COOOI0000 CVRCHK
24 0010lA 3211 BYTEI
25 00101C 3401
26 00101E 0242000F
27 001022 OC420009
28 001026 6F000004
29 00102A 5142
30 00102C 3601
31 00102E 024300FO
32 001032 OC430090
33 001036 6F000006
34 00103A 04430080
35 00103E 8443
36 001040 3601
37 001042 02430FOO
38 001046 OC430900
39 00104A 6F000006
40 00104E 04430800
41 001052 8443
42 001054 2601
43 001056 02830000FOOO
44 00105C OC8300009000
45 001062 6F000006
46 001066 04438000
47 00106A 8443
48 00106C 33C200011886
49 001072 2E3C0003D090
50 001078 5387
51 00107A 6AFC
52 00107C 51C8FF9C
53

00001000 OR:; S1000
00010000 roMSTR mu S10000

*
00011882 PeR mu S11882

*
00011884 DOR mu S11884

*
00011886 POR mu S11886

*

1-I)VE.W
1-I)VE.W

#SFFFF,OOR
#SOA-l,DO

*STARl'IN3 ADOR.
OF '46 IDM

* '46 PERI PH.
CNl'R. REG.

*'46 Dl'.TADIR.
REGISTER

* '46 PERIPH.
Dl'.TAREG.

CONFIG. '46 DOR'S
SET NUMB. OF
W)Rffi FOCt1 IDM
'IO DISPIAY

* * *

1-I)VE.L
r-I)VE.w
1-I)VE.W
AND.W
GIP.W
BLE
SUB.W
1-I)VE.W
AND.W
GIP.W
BLE
SUB.W
OR.W
1-I)VE.W
AND.W
GIP.w
BLE
SUB.W
OR.W
1-I)VE.L
ANO.L
GIP.L
BLE
SUB.W
OR.W
1-I)VE.W
MJVE.L
SUB.L
BPL
IBRA

#roMSTR,Al
(Al) ,01
01,02
#SOOOF,02
#S0009,02
BYTE2 •
#S0008,02
01,D3
#SOOFO,03
#S0090,03
BYTE3
#S0080,03
03,02
01,03
#SOFOO,03
#S0900,03
BYTE4
#S0800,03
03,02
01,03
#SFOOO,03
#S9000,03
IXlNE
#S8000,03
03,02
02,POR

#250000,07
#1,07
OLY
DO,BYTEI

IF HEX OIGIT GT 9,
SUBTRACT 8
WAD IN SrR. ADOR.
FETCH WD. FM IDM
1-I)VE'TO SCTCH AREA
ISOLATE L.S. DIG.
CHCK IF NEEDS 1-1)0

IF !'VI',BRANCH
IF SO, SUET. 8
GET SECONO BYTE

'TO SCRATCH AREA
ANO REPEAT proc;

OISPYD Dl'.TA IN 02
WRITE Dl'.TA'TO PIA
OLY FOR 5 SEC

54
55
56 001080 4E4F
57 001082 0000 .
58
59
60
61
62

BYTE1
CVRCHK
PCR

00101A BYTE2
il01014 DDR
011882 PDR

TRAP
DC.W

* THE PIA ADRESSES ARE
*
*

00102C BYTE3
011884 DLY
011886 !Q1STR

$11882
$11884
$11886

PeR
DDR
'ill WRITE 'ill WE DISPL

00103E BYTE4
001078 OONE
010000

001052
00106A

AN·810

DUAL 16·BIT PORTS FOR THE MC68000
USING TWO MC6821S

Prepared by:
James McKenzie

Microprocessor Applications Engineering

The MC6821 Peripheral Interface Adapter (PIA) is a
4O-pin device having two 8-bit ports. Each port has its own
control register and may be configured as input or output on
a bit-by-bit basis.

Two PIAs may be configured on the MC68000
microprocessor bus to give two I6-bit ports. The ability of
the MC68000 to simultaneously access 16 bits of data at an
effective rate of up to two megahertz makes it ideal for pro-
cessing applications using state-of-the-art A/D or D/ A con-
verters. The MC68000 is also suited for applications involv-
ing advanced peripherals with parallel inputs or outputs and
a high data throughput rate.

ASYNCHRONOUS OPERATION
The schematic for the MC68000/MC6821 asynchronous

interface appears in Figure I. Typical timing diagrams ap-
pear in Figure 2. Edge connector designations for MC68000
signals correspond to the MEX68KDM Design Module bus
pin allocations (EXORciser bus). The asynchronous inter-
face is responsible for three major tasks:

• Detecting when the PIAs are being addressed
• Synchronizing the MC68000 bus cycle to the local

E clock
• Controlling data flow to and from the PIAs

Bus Buffering - Buffers VI, V2, V3, VI6, VI7, VI8, and
VI9 are all microprocessor bus buffers/drivers which make
this design compatible with the MEX68KDM Design
Module. Other buffering schemes may be more appropriate
in other applications. In particular, buffers V5, V6, V7 and
V8 will provide sufficient data bus buffering in a system
where the data bus is not inverted.

Address Decoding - The two PIAs are located at
$18000-$18007, as shown in the memory map given in Figure

3. The NOR of address lines A5-A9 (V9A) and address lines
Alo-AI4 (V9B) is ANDed with address line AI5 (VilA) and
AS {VII B) to yield chip select (CS). The test and set an
operand instruction (TAS) uses an indivisible read-modify-
write bus cycle. Therefore, VDS + LDS should be used in-
stead of AS in the address decoding if the user wishes to ex-
ecute this instruction on any of the PIA registers. If the TAS
instruction will not be executed at these locations, AS should
be used in the decoding network to allow the fastest possible
access times.

Address lines A 1 and A2, respectively, control register
selects RSOand RSI of both PIAs. Address lines A3 and A4
drive CSI and CSO, respectively, on each PIA. Other ad-
dressing schemes using more addressing lines are possible.
Only the functions of A I, A2, and CS are fixed.

Enable Synchronizer - Flip-flops VI3A and V13B syn-
chronize the MC68000 memory access cycle with enable (E)
which runs all M6800 family peripherals. Essentially, this cir-
cuit allows chip select to pass to the PIAs only when there is
adequate setup time before the next rising edge of E. Initial-
Iy, CS is low as the device is not selected. The next Q output
of VI3A is low and the Q output of VI3B is high because CS
drives the clear input of both flip flops. This keeps the output
of V 12Bhigh (CS to both PIAs) and the PIAs are deselected.
After the device is selected (CS goes high), the first falling
edge of E clocks theQ output of VI3A high which forces the
output of VI2B low, enabling both PIAs. This allows a full
half cycle of E for setup before the rising edge of E. At the
next falling edge of E, the Q output of VI3A is clocked low.
This removes CS2 from both PIAs (via V 12B), latches the
data present on the bus (V5, V6, V7, V8) and returns
DTACK to the MC68000 through an open-collector buffer
V4A). This terminates the MC68000 memory access cycle.

If a fifty percent duty cycle, two megahertz E signal is used
a best case access cycle time of 875 nanoseconds and a worst
case access cycle time of 1375 nanoseconds will be obtained.

lROA.IPIAll
lR08IP1A.l
IROAlPIA21
,R08IPIA.21

mm . 5

UI28

iii

00

54

ii5

51
01

e>.Y1c, Type

Ul. U2. UJ MCST97
u4 741509
U~. l)6. U~. va 74l5J7J
U9 7415260
Ul0 74lS04
U11 74l51l
U12 74lSOO
UIJ 745114
U14. Ul!'i MC68821
Ulf5. uP MC8T26
!JIB. UI9 MceT26

InputOevlCeDOflfl }
MPU Read Done ActIVe low
Dulput Dev1ce Done
MPU Wnte Done

}-,,,.

}_.-

\ ---11

_______ ~I
'----_I

18000
18001
18002
18003
18004
18005
18006
18007

Bus Buffers Enables - Gates UI2A and UIOD coordinate
the flow of data on the bidirectional data bus to and from the
PIAs. These gates form the Boolean equation R/WoCS (pin
3, UI2A) which gates the flow of data to and from the PIAs
on UI6, UI7, UI8, and U19. Data is allowed to flow from
the PIAs to the MC68000 bus through latches U5 and U7.
Also, the signal R/WoCS (pin 8, UIOD) allows data to pass
from the MC68000 bus to the PIAs through latches U6 and
U8. Latches U5, U6, U7, and U8 guarantee that valid data is
on the bus throughout the MC68000 cycle, not just when the
PIAs are selected.

SYNCHRONOUS OPERATION
The MC68000 can control M6800 synchronous parts

directly using the M6800 peripheral control bus. This bus
consists of enable (E), valid memory address (VMA), and
valid peripheral address (VPA). The two 16-bit ports may be
operated synchronously by replacing UB, UI2B, and U4A
of Figure I with the circuitry shown in Figure 4. Valid
peripheral address (VPA), a wire-ORed signal, is returned by
an open-collector NAND gate when the chip select is
detected. As the processor responds with VMA, the PIAs are
selected (pin 6, UI2B). Enable (E) is provided by the
MC68000 in this case and has the frequency of the system
clock divided by eight. The MC68000 must synchronize
VMA with E internally, so this method does not allow as fast
an access as the asynchronous interface.

SOFTWARE CONSIDERATIONS
Because the upper and lower data strobes (UDS, LDS) are

not used in address decoding, an individual PIA cannot be
accessed. However, word operations on the MC68000 must
begin access on an even address. Therefore, the user must
take care to address the registers of the PIA with an even ad-
dress. If individual access is desired, address line A3 could be
shifted into the address decoding network and LDS applied
to CSI of UI4 through an inverter. Likewise, UDS could
then be applied to CS I of U 15 through an inverter. This
would result in the memory map shown in Figure 5.

PERIPHERAL CONTROL LINES
The configuration and labeling of the peripheral control

lines (CAI, CA2, CBI, CB2) for the PIAs in Figure I is for a
16-bit input port (A sides of each PIA) and a 16-bit output
port (B sides) each programmed for handshake operation.
Any of the other configurations of these control lines is
possible. The most desirable configuration will depend on
the type of peripheral equipment being interfaced and its ap-
plication. A typical initialization routine for the configura-
tion shown in Figure I is given in Figure 6.

Note' When VMA is used. AS should be disconnected from the ES
decoding IFlgure 1. U11BI and that Input is tied active.

18000
i8001
18002
18003
18004
18005
18006
18007

Peripheral Data/DDRA IU151
Peripheral Data/DDRA IU141
CRA IU1~
CRA IU1~
Peripheral Data/DDRB IU151
Peripheral Data/DDRB IU141
CRB IU1~
CRB IU1~

MODES OF OPERATION
The PIAs may be operated in one of two basic modes,

polled or interrupt driven. Polling can cause excessive execu-
tion time overhead when more than just a few peripherals are
on the bus, so interrupts are usually an attractive alternative.
There are many ways to run an interrupt driven system,
especially on the MC68000 which has seven priority levels of
interrupt and can handle up tq 192 unique user interrupt vec-
tors. The MC68000/MC6821 interface yields four interrupt
request lines giving a high degree of versatility for interrup-
ting, regardless of the prioritizing scheme used or whether
the PIAs are configured as 8-bit ports, 16-bit ports or a com-
bination of both.

32-BIT PORTS
If address line Al is allowed to drive RSI and address line

A2 drives RSO, then the peripheral data registers for the two
PIAs will occupy fo~r consecutive locations of memory
beginning at $18000. This location may be used as a 32-bit in-
put or output port. Control register A would be located at
$18004 and control register B would be at $18006. Keep in
mind that these last two registers are each 16 bits wide, as
shown in Figure 7. The 32-bit port could be accessed with
long word attribute op codes such as:

MOVE.L $18000,DO

CONCLUSION
Two PIAs provide an excellent parallel I/O port for the

MC68000 and are easily interfaced to the standard asyn-
chronous bus. If B series parts are used, the PIAs may be ac-
cessed at effective nites of greater than 1.0 megahertz.

z
"'4
"

1

H

"
1.1.1

11
I. ;~
L3
l.'i

15
16
17
HI
14
:l()

Zl 0(101100

~~2 OIlOuOH

~'?:~3 1)00t. to

Z"l IJOO011;>

~?~J 1)(10020

~~6 1J\lOn;~13

:'?:7
:~Fl

1I11111t:ullll
tI [nlll :IIU'"
{I Ill) tHOt11l
O[tlll,Olll]':i
lIOII I,HOt):/
o LIII:IBOtl-'.
IIOt)[lflOOIJ
Ollilltj'~TF
()Oon/":i~"j
o (i(l O.•'5:~~,
(100111100(1
00(1"0111111

:~nF(:t1lJOfl
IInOlBOO,~

~nl"CO()(I{)

OOOlBoon

II0011;lOO;~
a3h,onoo

,1001.80U-:-1
::J3FCl-f-f+

11(\01800'+

«
ph",rA
f'[;{" ll:
OI>I';H
IJDh'f.·:

l:h:A
t:h'I;:
nTF.;A
lJ1J<I::
IN"'[T,~
IN] H:
HCllf.'~1
,'411Ih'f:

1,nC •• llt'N
I (U:~,~d:lI 11,1

1..1.")(.;:'1"111(-1
1 UI.1 .•..,T:l(J1'!

l,UC~) I'J/IN
I 111:(11 TI)I'J

!.FiS .41I
~)l·r--. ~.•ll
l-""'[!.IF 'II
Vo'"llJl- TI'
Ih~.1Ul rt I
')HI ll~ III

II,UOt)ll
'11:;[If)'{

'1.1,!:lill!l

'~lulll!'f
'1:-1HOii/
'I-'\f.:[nl."i

'Inti 00
'IFFE-'
'I .·IC..•~.'L,

III f'II" i "HH'.;l. ()t~ IF, W b (.!j rEF,: ?l
! II r'Ho'lYHFI~'r~,l D(.'!"1(" r.~[GTSTU(f.-:

1)1- O,'Yr{~ I) I ~':ECr ION f~Er;TSTEJ\' (',
'I~ I)(~TA UIh'l: CT rUN HFI.~XSTEFi' L:
Ill- U"INTF(OI f,1: G.I!:;ll:f~ (-\
(II UI'" 1h'(11 kr I.ThTU,~ J-;
It, .1 I HJF:-i ~i':; l.NPUl S
I" 1:.: i J I,J~!' A:-j I JiJn'u"~;
"HTTAl T:ZI rR,",
lrJlI 'I~i LeI t RI:
H'I:F'-i:-, [)l)h'H lHf.:nlJl;H Ih/.
nt.1 F':i!'. IAH,'I-: I HI,'(IIII .•H ,'f •.I'

AN·81S

COLOR GRAPHICS FOR THE MC68000
USING THE MC6847

Prepared by:
Rex Davis

Microprocessor Applications Engineer

Color graphics can be a valuable addition to a variety of
MC68000 applications. Typically, color graphics circuits are
expensive and complicated. These same color graphics cir-
cuits generally have limited capabilities and are very hard-
ware intensive. The MC6847 Video Display Oenerator
(VDG) offers a low cost, versatile, easy to use alternative.

The VDO creates a composite video signal according to in-
formation read from the display memory in the mode defin-
ed by the VDG control pins. The composite video signal can
be used to modulate the input of any commercially available
color or black and white television receiver. The VDO has 12
distinct display modes available and allows certain variations
within certain modes. All display modes and their variations
are controlled by the state of eight different VDO pins. The
eight display mode pins give the user the ability to combine
display modes within a single display frame, e.g.,
a1phanumerics and a compatible graphics mode.

The 16-bit data bus of the MC68000 can be used to give the
user full control of all VDO display modes on-the-fly. This
additional control over the VDO display modes, combined
with the ability of the MC68000 to manipulate data through
its extended arithmetic capabilities and its ability to move
blocks of data quickly and efficiently, gives the user the
capability to monitor and display changing data quickly and
efficiently as might be necessary in commercial, industrial, or
scientific applications. The MC68000/MC6847 interface
described in this application note, or a variation of it, could
be used in a typical application.

BASIC IMPLEMENTATION
Since the display information for the VDO is stored in

memory, the MC68000 can alter the display by changing the
contents of that memory. The MC68000/MC6847 interface
then becomes a shared-memory interface. The primary prob-
lem then becomes a matter of guaranteeing that memory is
accessed by only one device at a time. Figure I is a block
diagram of the MC68000/MC6847 interface.

The MC68000 is buffered from the display memory by
three-state buffers and transceivers which are active only
during a processor access of display memory. During a pro-
cessor access, the VDO address bus is forced to a high-

I

impedance state. Display memory is only 12 bits wide, and a
4-bit latch is used to capture data for some of the VDG con-
trol pins. Not all of the VOO display modes may be used in
the same frame without some additional attention by the
user; however, the latch could be replaced with an additional
6K by 4 bits of memory. A data transfer acknowledge
(DT ACK) signal is generated so that either fast or slow
memory can be efficiently used.

CIRCUIT DESCRIPTION
A schematic diagram of the MC68000/MC6847 interface is

given in Figure 2. The select circuitry is formed around two
SN74LSI38 l-of-8 decoders. If the MC68000 accesses any of
the 6K of memory, pin 8 of the SN74LS21 outputs a signal
which switches the display memory bus from the VOG to the
MC68000. First, the VDO address bus is put into a high-
impedance state. Next, SN74LS138-2 is deselected so that on-
ly the memory selected by the MC68000 is accessed. Finally,
the data and address buffers connect the MC68000 address
and data bus to the display memory. If the MC68000 is not
accessing memory, then the MC68000 is isolated from the
display memory by placing the data and address buffers in
the high-impedance state. Decoder SN74LS138-2 is selected
and accesses the display memory required by the VDG. The
VDO is then released to scan the memories (MCM2114) for
display information.

In order to guarantee that no incompatible display modes
are used within the same scan frame, only the last data write
to any even memory location can alter the latcfl; therefore,
the VOO will always read the same data from the SN74LS75
latch between MC68000 writes to the display memory.
However, the user could still adversely affect the display if
the MC68000 writes occurred within the VDG display scan.
The frame sync pin of the VDO is low when the VDO is not
in the active display window and could be used as an inter-
rupt or polled to determine when the MC68000 can safely
write to the display memory.

The DTACK signal is generated by the SN74LS95 shift
register and is necessary for the completion of any MC68000
display memory access. The shift register will add two addi-
tional wait states for each successive output; i.e., QI gives

two wait states, Q2 gives four wait states. Output QO will give
no wait states. Table I lists the two critical memory specifica-
tions: data setup time and access time and the shift register
output necessary to guarantee operation.

Typically, access tim.e is the more critical specification.
Output QI was chosen to be used with the MCM2114-30
(300 ns access time) memories used in this application
although faster or slower memories could have been used.
The speed of the display memory determines the rate at
which data can be moved into the display memory. Other
factors determining the speed of the data transfer are: the

method used to determine when the VDG is out of the active
display area; and the software routine used to move the data.

CONCLUSION
The MC68000/MC6847 interface described in this applica-

tion can be expanded or limited, according to the user's ap-
plication, with relative hardware ease. Any approach of
shared memory could be used as long as no bus conflicts
result. Even the simple approach taken in this application
results in a powerful, low cost color graphics system for the
MC68000.

AN·816

SOFTWARE REFRESHED MEMORY CARD
FOR THE MC68000

Prepared by:
Duane Graden

Microprocessor Applications Engineer

This application describes the hardware and software to
implement a software-refreshed, dynamic memory card for
use in an eight megahertz MC68000 system. This refresh ap-
proach consumes less than five percent of processor time.
The MCM4116 16K RAM was chosen for this design, but the
techniques discussed are applicable to the MCM6664 64K
RAM as well.

Refresh techniques fall into two categories, hardware and
software. Hardware refresh is more component intensive
with little or no overhead in program time, while software

. refresh has less hardware and more program overhead.
Hardware refresh means that the required circuitry must

refresh the dynamic RAM cell with little or no impact on ex-
ecution of instructions by the processor. Normally, this
means accessing the address bus during a dead part of the cy-
cle. Another drawback is the complex circuitry, usually re-
quiring the use of expensive delay lines.

Software refresh means that the processor must execute a
software routine to refresh dynamic memory. To accomplish
this, an interrupt service routine, such as the level seven inter-
rupt service routine on the MC68000, can be dedicated to
refresh the memory. Every time the interrupt is recognized, a
hardware enable allows the refresh routine to refresh the
dynamic RAM.

TIMING SIGNALS
Timing requirements of MCM4116 RAMs and the

MC68000 are easy to match because of the asynchronous
nature of the MC68000 bus structure. The MC68000 can wait
for the slowest RAM through the use of the data tra]lsfer
acknowledge (DT ACK) signal. As long as DTACK is
asserted a setup time before the falling edge of any clock
state (S4 or later), it will be recognized during that state.
Termination of the access is 1V, clock periods later. Figure 1
is a timing diagram for a read, write, and refresh operation.

The RAS and CAS signals are the row address and column
address multiplex control inputs, respectively, for the seven
memory address lines AI through A7. Since no chip select in-
puts are present with this dynamic memory, RAS is the active
low signal that starts a memory access cycle. When RAS
falls, the row address of the location to be accessed is latched
into memory. Similarly, the falling edge of CAS latches the
column address into memory.

The refresh cycle shown in Figure 1, is known as RAS-only
refresh. Row address select is 10\\" CAS is high, R/W does
not matter, and the row address of the row to be refreshed is
present on the seven address lines. Each row of memory re-
quires a refresh cycle to be performed every two milliseconds
for data to be retained. For the MCM4116 memory, there are
128 rows and, therefore 128 refresh cycles required every two
milliseconds.

HARDWARE DESCRIPTION
Figure 2 is the schematic diagram for a dynamic memory

card using MCM4116 memories. This card, when used with a
MC68000 system, provides 64K bytes of memory from 32K
to %K of the physical address map.

Memory decoding is done with the upper and lower data
strobes and address lines Al5 and A16. The data strobes
divide the memory into even and odd blocks, respectively.
The upper data strobe chip selects even bytes from 32K to
96K by activating a row address select upper (RASU) signal.
Address lines A 15 and A 16, through decoder U2 and gate
U4, decode whichever of the two banks of even memory
(RASIU or RAS2U) is selected. Similarly, the lower data
strobe activates a row address select lower (RASL) signal.

Column address select (CAS) is activated on the second
falling edge of the eight megahertz clock after RAS is
asserted by flip flop U9. Both RAS and CAS are turned off
when the data strobes are inactive. •

RAS

Mux

'"01
0)

CAS

Al-A16 -< >-< _
\ ---'1

>-< >:-
1 \ /

/ \ I
_---

~
I
I
I
I
I
I
I
I
I
I
I
I
I

K__ --->---<------>------
I

Row Address
Latched

'/ _---

\------/ \---_--1
I
~---_/
I

\ 1

/1111111111;

I
I
I

Column
Address
Latched

Multiplexed addresses for the dynamic memory are sup-
plied by multiplexers U7 and U8. The row address on address
lines A I through A7 is present on the memory address lines
until RAS is asserted. On the next rising edge of the eight
megahertz clock, the column address on address lines A8
through AI4 is on the mem~address lines. The multiplexed
address is valid only when RAS or CAS is present, making an
enable for the multiplexers unnecessary.

Memory refresh is controlled by UII, a MC6840 program-
mable timer module (PTM). Once programmed, the PTM
timer used (the PTM has three timers) causes a level seven in-
terrupt every 1.9 milliseconds (2 milliseconds - routine ex-
ecution time). This interrupt enables all four banks of
memory for simultaneous refresh.

Interrupts with M6800 type peripherals are handled with a
reference to the internal vector table. Figure 3 is a schematic
of the hardware used with the MC68000 to create a vectored
interrupt (level one to level seven). The level present on the
IPLO, IPLl, and IPL2 lines is checked against the interrupt
level of the processor. If it is higher than the internal level, an
interrupt sequence is·started. The function code outputs will
be high and address lines AI, A2, and A3 will be the vector
number of the interrupt being serviced (in this case, all high).
Now decoders U I and U3 (Figure I) decode the level seven
interrupt and generate valid peripheral address (VPA) to the
MC68000 through Ul3 and U9. The assertion of valid
peripheral address causes the internal vector table entry for
level seven to be fetched and used as the starting location of
the service routine. At the same time, UI2 and Ul3 enable all
RAS signals and disable CAS for refresh of the memories.

OPTIONAL RARDW ARE
One situation may occur with the memory card where data

might be lost. If the reset button is held closed too long, data
could be lost. To prevent this, the circuitry shown in Figure 4
can be added. This provides for a single E cycle reset which
will retain the integrity of the stored data.

When power is initially applied to the MC68000, a reset·
must occur for at least 100 milliseconds after the supply
voltage has reached 4.75 volts for proper power-up reset.
This means that a one shot or a resistor-capacitor combina-
tion should be used to hold the clear pin of the flip flops at or
below the logic low level (0.8 volts) for the required time. The
E signal will clock the 2-bit counter twice. This presets flip
flop U3, removing the system reset. On a non-power up reset,
the reset switch is closed, clocking a low into flip flop U3.
Gate U4 provides debounce of the reset switch, allowing only
one clock pulse into flip flop U3. Again, E will clock the
counter removing reset.

SOFTWARE
Row address select-only refresh is the refresh method used

in this application. It is accomplished by a hardware enable
(level seven interrupt) and 128 Naps for the service routine.

The level seven interrupt being low enables all four RAS
signals and disables CAS. Each Nap increments the address
bus to provide the 128 row addresses (0 to 127) needed for
refreshing all four banks of memory. Incrementing the ad-
dress bus accesses and refreshes that row.

However, this has one problem - reset. If a reset occurs
just prior to an interrupt for software refresh, data could be
lost due to a late or missing refresh cycle. This problem is
solved by locating the software refresh routine at the beginn-
ing of the reset code. A hardware enable for reset refresh
enables RAS-only refresh in the same way that the level seven
interrupt signal did for a normal refresh. In addition, the
refresh at reset must load the stack with a valid return ad-
dress, to return to when the return from interrupt (RTI) in-
struction is executed at the end of the refresh routine.
Figure 5 is a listing of this software with comments to docu-
ment the reset refresh.

Refresh is enabled at restart by UIO and U13. All RAS
signals are on and all CAS signals are off. Like a normal
refresh operation, CAS is enabled by the first access to
memory after the refresh routine. Software refresh with the
MC68000 is an efficient option to implement dynamic RAM
without costly delay lines. The application presented here has
only a five percent program time overhead.

+5

4
IRQ7

3

SN74LSl48

6

13 IRQ3

9 12 IRQ2
11 IRQ1

IPL2 23

IPL 1 24

IPLO 25

CLR
J Q

SN7473

2 Bit Counter
A B State
o 0 Initial
1 0 1st Count
o 1 2nd Count
o 0 Reset

Reset

SWiti

CLR
D Q

SN7474

DATARl EQU $18005
DATAR EQU $18007
CTRl EQU $18001
CTR2 EQU $18003

PEA FIREUP
*
*
*

MOVE SR,D
MOVE D1,-(SP)
MOVE,B #$FE,CTR2
MOVE,B #$09,DATARl
MOVE,B #$47,DATAR

MOVE,B #$7D,CTRl

!'UP
NOP
NOP

NOP
NOP
NOP
RI'E

FIREUP *******

* LOAD STACK WITH
* USER INITIALIZATION
* AND STATUS REGISTER

* INITIALIZE PTM TIMER

* LEVEL 7 INTERRUPT
* ENTRY POINT

*
*
** 128 !'UP'SFOR REFRESH
*
*
'I<

AN-817

ASYNCHRONOUS COMMUNICATIONS FOR
THE MC68000 USING THE MC6850

Prepared by:
Charles Melear

Microprocessor Applications Engineer

Interfacing the MC68S0 Asynchronous Communications
Interface Adapter (ACIA) to the MC68000 is easy due to the
fact that the MC68000 has a special cycle to handle M6800
peripherals. The ACIA data bus can be placed on either the
upper or lower eight bits of the MC68000 data bus with
equivalent results. Using the upper byte implies an even ad-
dress and use of the upper data strobe (UDS), and the lower
byte implies an odd address and the use of the lower data
strobe (LOS). In this application, the ACIA is placed on the
lower byte of the data bus.

INTERCONNECTIONS
Enable (E) and RlWare connected to the corresponding

pins of the MC68000. Several signals are generated to form
chip selects as shown in Figure 1. Valid memory address
(VMA) from the MC68000 is an active low signal (as opposed
to active high for the MC6800) as well as LDS. The NOR of
the two signals is used to develop CS 1. The address
$F3FFXX is generated by address lines A8 through A23 to
enable a SN74LSlS4 four-to-sixteen line selector. Address
lines A4 through A7 are used to generate a low output at 02
of the SN74LSIS4 to be used for CS2 of the ACIA. Address
line AI is used for the register select(RSlpin of the ACIA.
This puts the ACIA status register at address $F3FF21 and
the control register at address $F3FF23. If the ACIA has
been placed on the upper byte, the addresses would be
$F3FF20 and $F3FF22, respectively. To complete the circuit,
a signal called valid' peripheral address (VPA) must be
generated and returned to the MC68000 to indicate that a

M6800 cycle is being executed. The SN74LSIS4 has two ac-
tive low chip enable lines which are driven by the gates that
form address $F3FFXX from address lines A8 through A23.
Since the SN74LSIS4 always picks M6800 peripherals. the
two chip enable lines can be ORed to develop VPA. Since
more than 16 peripherals could exist, it is best to make the
device actually driving the VPA line an open collect6~ output
so that several gates can be wire ORed.

OPERATION
Operating the ACIA is relatively easy as shown in the flow

chart given in Figure 2. Once the control register is set up, the
status register is monitored for receive data register full
(RDRF) and transmit data register empty (TDRE) indica-
tions, as well as error signals and handshake lines. The hand-
shake lines such as request to send (RTS) , clear to send
(CTS), and data carrier detect (DCD) indicate which condi-
tions are present so that the MPU can ascertain when
transmission can occur. Once all conditions are ready.
transmission or reception or both can begin.

A sample program is given in Figure 3 that shows the
MC68000 receiving a ch'aracter from a terminal through the
ACIA and then echoing that character back to the terminal.
Essentially, the MC68000 checks to see that transmission and
reception can occur. The status register is polled until a
character is received. The character is read and then written
back to the ACIA for transmission to the terminal as soon as
the transmit data register is empty. Of course, any number of
subroutines or additional code could be executed before
looking for the next character from the ACIA.

MC6850

DO-D7
DO DCD

Dl
SN74LS02

RTSVMA D2

LDS
VMALDS

D3

D4 CTS

D5

D6 TxC
Clock

D7 RxC

CS1 TxD

VCC- CSO

CS2 RxD

A1 RS

E
IRQ

E
R/W R/W

G1 G2

0

2

3

4

A 5

B 6

C

D B

9

10

SN74LSl54 11

12

13

14

15

1
2
3
4
5
6
7
8 000000
9 000004

10 000008

00000000
00F'3F'F'00
00F'3F'F'00
00F'3F'F'02
00F'3F'F02
00020000
00000008
00020000
00000008
13FC0003

00F3FF'00
11 QOOOI0 13FC0051

00F'3F'F'00
12 000018 103900F3FF'00
13 00001E 0200007C
14 000022 66F4
15 000024 08390001

00F'3FFOO
16 00002C 66F6
17 00002E 103900F3F'F'02
18 000034 08390002

00F3F'F'00
19 OU003C 66F6
20 00003E 13COOOF3FF02
21 000044 6002
22

ORC $00000000
ACIASR EQU $00F3FFOO
ACIACR EQU $00F3FFOO
ACIADR EQU $00F3FF02
ACIATR EQU $00F3FF02
SYSTACK EQU $00020000
RESET EQU $00000008

OC.L SYSTACK
DC.L RESET

MOVE.S #$51,ACIACR INITIALIZE ACIA
EROOR ['VVE.8 ACIA.SR,oo GET STATUS
AND.B #$7C,00 MASK IRQ,TDRA,RDA
BNE ERROR ANY ERroRS?

READSl BI'ST #Ol,ACIASR
BHE READSl
MOVE.B ACIADR,oo READ QlARACTER

READS2 BTST lt02,ACIASR IS TOM SET?
BNE READS2 ImP IF'NO
t-UVE.8.00,ACIATR TI<ANSMIT rnARACTER
BRA ERROR S'l'ARI'CNER
END

ACIACR
ERR:lR
SYSTACK

F3FFOO ACIADR
000018 READSI
020000

F'3FF02 ACIASR
000024 READS2

F3FFOO ACIATR
000034 RESET

F3FFp2
000008

AN-818

SYNCHRONOUS 1/0 FOR THE MC68000
USING T'HE MC6852

Prepared by:
James McKenzie

Microprocessor Applications 'Engineering

The MC6852 Synchronous Serial Data Adapter (SSDA)
provides both a synchronous serial transmitter and syn-
chronous serial receiver in a single, 24-pin device. Syn-
chronous data communications is inherently more efficient
than asynchronous data communications because each
character need not be framed for error detection. Hence,

, synchronous data communications lends itself to higher data
rates and applications which are synchronous in nature, such
as serial communications between synchronous processors.

The SSDA is particularly well-suited for data communica-
tions applications involving byte-oriented protocols such as
Bisync. Both the SSDA transmitter and receiver are interfac-
ed to a single 8-bit bidirectional data bus. Data to be
transmitted is loaded from the MPV data bus into a 3-byte
FIFO on the SSDA. An 8-bit shift register is used to serially
transmit data from the last FIFO location; parity may also be
appended. Received data enters another 8-bit shift register
where parity may be checked. Data from the shift register
enters a 3-byte receiver FIFO which presents the data in
parallel form to the MPV bus.

The SSDA has five write-only registers which allow soft-
ware selection of variables such as transmit/receive word for-
mat, mode of synchronization, separa:te interrupt control
configuration for transmitter and receiver, individual soft-
ware reset for transmitter and receiver, and access to the
transmitter data FIFO. Two read-only registers allow access
to receiver data as well as a status register which has flags for
the transmitter/receiver interrupts, transmitter/receiver error
conditions and external sync control line status.

Any series product of the MC6852 may be interfaced to the
MC68000 as shown in Figure I. Typical timing diagrams for
this interface (B part only) appear in Figure 2.

ASYNCHRONOUS OPERATION
Address Buffering and Decoding - Buffers V I, V2 and

V3 buffer address lines A I through A 16, as well as AS and
R/W. This scheme is compatible with the MEX68KDM
Design Module. All pin numbers shown on the left side of
Figure I are for MEX68KDM/EXORciser bus pin alloca-
tions. Other forms of buffering/termination may be used to
suit the user's configuration. Gates V9, VIlA, VIOE, and
VII B decode the address lines for address block $18000 to
$ISOIF. The SSDA is located at $18009 (mirrored at $1800D)
and $1800B (mirrored at $1800F).

E Synchronization and RS Control - The continuous E
signal which M6800 family peripherals require for operation
will, in general, be asynchronous with MC68000 bus opera-
tion and, therefore, asynchronous with respect to chip select
(pin 6, VIIB). Flip-flop VI3 serves to synchronize E with the
chip select, supply chip select (CS) to synchronize the
peripheral part, and return DTACK to the asynchronous
MC68000. Chip select (pin 6, VI2B) is passed to the
peripheral on the first falling edge of E past the assertion of
CS (pin 6, V II B). This guarantees that there will always be
sufficient setup time for the synchronous peripheral. Data
transfer acknowledge (pin 8, VI3B) is returned and CS
removed from the peripheral on the next falling edge of E.
Chip select for the peripheral is inverted by VI·ex; and
NANDed with address line A3 (pin 8, V12C) to complete the
decoding and drive CS on the SSDA. Register select (RS) on
the SSDA is driven by address line AI.

Ul
Aol
A02
A03
A04
A05
A05

A07
AOO
A(f;J
Alo
All
A12

A13
Al'
A15
Al.
AS

R/W

iRQ

I\.l
(J)
(J)

DTACI<

DOO

6iii

6i52

003
Device Type

Ul. U2. U3 MC8T97
U' 74LS09
U5, U6 74LS373
U9 74LS260
Ulo 74LS04
Ull 74LSll
U12 74LSOO
U13 74LS114

U16, U17 MC8T26
U10 74LS74
U21 MC68B52

3 RX(K

4 TXCI(

7i'Fi"O

10
CS 11
RS

AX DATA 2

TX DATA 6

i5TR5

TUF 8

ffi 23

5CD 24

--(--------->-
\~ r_

R/WJ
E -.J

__r-

Clock

Al-A23 < >-
\ r-

R/W \ r
r-

es

15Tim< \ r-

Data Bus - The SSDA shown in Figure I is interfaced to
the lower eight bits of the MC68000 data bus. Buffers UI6
and U 17 are inverting bidirectional buffers which make the
interface compatible with the MEX68KDM Design Module.
They may be omitted in any system which does not have an
inverted data bus. In this case, U5 and U6 will provide suffi-
cient bus buffering. Latches U5 and U6 are transparent 8-bit
latches with three-state outputs which govern the flow of
data to and from the SSDA. Gates UI2A and UIOD ensure
that data is channeled toward the SSDA except when AS is
low, CS is high, and R/W is high which prevents contention
on the MC68000 bus itself. Data is latched on the rising edge
of CS (pin 6, U 12B) and held until the rising edge of
DTACK. This ensures that valid data is present on the
MC68000 bus until the completion of a memory read cycle
even though the synchronous peripheral may already be
deselected. The transparency of the latches allows adequate
data setup time on a memory cycle.

SYNCHRONOUS OPERATION
The SSDA may also be operated on the M6800 peripheral

control bus provided by the MC68000. This bus consists of
enable (E), valid memory address (VMA), and valid
peripheral address (VPA). If the user wishes to use this
feature of the MC68000, the circuitry of Figure 3 may be
substituted for U13, UI2B, and U4A of F.igure 1. Valid
peripheral address is returned to the MC68000 when chip
select is detected. An open-collector gate is used because

VPA is a wire ORed signal. When the processor repsonds
with VMA, the SSDA is selected. Enable (E) is derived from
the system clock and provided directly by the MC68000.
Therefore, if a clock frequency lower than eight megahertz is
used, it may be desirable to replace U20A with an indepen-
dent transmit/receive clock source to maintain high data
transfer rates on the SSDA.

In general, this interface is slower than the asynchronous
one.

PROGRAMMING THE SSDA
Figure 4 contains a typical initialization routine for the

SSDA transmitter/receiver circuit shown in Figure 1. In this
example., the SSDA is configured to transmit and receive
7-bit characters with odd parity. The transmitter is pro-
grammed to transmit sync code on underflow (transmitter
FIFO empty) so as not to lose synchronization. The receiver
is programmed to synchronize within two consecutive sync
codes and to remove all sync characters ($80 in this case) that
appear in the data stream. Interrupts from the receiver are
enabled while transmitter availability and error detection
must be checked by polling the status register.

CONCLUSION
The MC6852 is easily interfaced to the standard asyn-

chronous bus of the MC68000 or the more conventional
M6800 peripheral control bus. In either case, the MC6852 is a
useful part in applications calling for synchronous protocol.

:3
'I..\~.
7
EI
'l

I.Il
1:l
1".~
1:3
1.'t
1~:;
1.6
17
1.8
1 <I

I\)
;~Il

CD 21
<0 ~!2

Z~I
~!..q IHIOOOO

Z:=j IHI0 0 118

26 IlOOO10

27 IlOOOlB

28 000020

~!(7 IlOOO;!8

:30 IHI0 0 ~I(I

:31
~~;~
:3:l

OOOIlUOEl~1
o (HI00 llU:3
000 IHIO"la
o IlO lElllO'l
0001B00B
OIlO WllOE:
OOOlBOOB
o (HIHI(HI E:
000113009
OIlOHlllU":
OOOOOOE'!
0llUOOll6C
OOOIlOOOIl
0llOOOll80

OOOIlOOOIl
1.~IFCO 1113:3

000113009
l:3FC01l80

0001800B
1.3FCOllO:3

OOOl.B009
1:iFCOIl6C

OOOlBOOB
1.3FCOll'l::!·

00018009
1.~IFCOIlOO

U001BOOB
l~IFCO llE'I

000113009

:«
)(

...
lJl"EW;
C1pnl;~
UF'EN:3
CNTh:L:L
CNTfIl.2
CNTl'll.:3
TX
RX
STAT
~iYNC
ONE
T!-lO
THREE
CODE
)(

)(

)(

FmJ
EUU
F(lIJ
EUU
ECIIJ
EllU
EClIJ
EllU
ECIIJ
mu
EClIJ
EllU
FmJ
EOU

~'f1:3
$ll~l
1.'"1:3
$lElOO'l
1. l.l30 OB
'~HlIHIE:
1·1800B
$HIUU":
$18009
HElOU":
1.1''1
$6C
1.UO
'~130

[IF'ENS bYNC CODE !-liTH TX/HX flESET
OPENS CNTHlj WITH TX/RX I~EBF·r
DF'EN!; CNTI':L.:l WITH TX/I~X flEm:T
L.OCATIOel OF C(lNTI~OL REGn>TEI~ 1
UJCATUIN OF C()NTFlOl. HECIBTEH '2.
L.OCATIDN OF CONTI~OL I~EGn>TEI~ ~I
UJCATUIN OF TI~ANSMTTTER F:JFO
l.OCATIDN OF I~ECr::TVEI~ FIFO
LOCATTON OF !,TATIJS HEGl:STER
L.UCATIDN OF SYNC CODE fIEC.;IBTER
IN:J:TIAL.IZATION OF CNTRL.1
HHTTALTZATUIN OF CNrm.2
INTTIAL.IZATIDN OF CNTRL.~'
SYNCHflDNTZATHIN CODE

AN-819

PRIORITIZED INDIVIDUALLY VECTORED
INTERRUPTS FOR MULTIPLE PERIPHERAL

·SYSTEMS WITH THE MC68000

Prepared by:
Rex Davis

Microprocessor Applications Engineer

Commercial and industrial microprocessor systems
typically consists of a processor interfaced with some type of
peripherals which, most of the time, require service from the
processor. When a peripheral requires service, it flags the
processor with an interrupt request. The processor will deter-
mine if the interrupt is to be serviced by checking an interrupt
mask.

If the mask is not set, then the processor has an interrupt
service timing requirement which, along with the data rate
and interrupt frequency, can be used to determine the
relative priority of each of the peripherals in the system. If
two or more peripherals attempt to request service
simultaneously, the relative priority of each peripheral deter-
mines which peripheral receives service first. In order to
minimize the risk of violating timing requirements of lower
priority peripherals, the processor must quickly identify and
service the current highest priority interrupt. The address of
the service routine is contained in a vector; and every inter-
rupt source should have a unique vector for its service
routine.

MC68000 INTERRUPT STRUCTURE
Interrupt requests are input to the MC68000 through three

pins which represent seven levels of interrupt priority and a
quiescent state (no interrupt). The MC68000 status register
contains a three-bit mask which only enables interrupts of a
higher priority than the level represented in the three-bit
mask. The interrupt mask can be modified under software
control, thereby increasing user control of peripheral inter-

rupt requests. The user's hardware generates an interrupt re-
quest by encoding the peripheral interrupt into one of seven
interrupt priority levels and driving the interrupt request lines
with the three-bit representation of that priority level.

Figure I is a flow chart of the MC68000 interrupt process.
Interrupt requests are considered by the MC68000 to be
pending until the completion of the current instruction ex-
ecution. If, at that time, the priority of the pending interrupt
is less than or equal to the current processor priority
represented by the three-bit interrupt mask, then the next in-
struction is executed. If the priority of the pending interrupt
is greater than the processor priority, then interrupt excep-
tion processing begins. During interrupt exception process-
ing, the MC68000 places the level of interrupt priority on ad-
dress lines AI, A2, and A3. These lines can be used to quick-
ly determine which group of peripherals might have
generated the interrupt request. Simultaneously, the function
code outputs (FCO-FC2) are set to indicate an interrupt
acknowledge (lACK) which flags the user hardware that ex-
ception processing has begun. The MC68000 architecture
uses the first 1024 bytes of memory for vector storage.

Any exception to free-running operation, such as an inter-
rupt, has a vector stored at a unique location in the 1024byte
exception memory map. Exceptions other than interrupts, in-
clude reset, system errors, software traps, and
un implemented instruction emulators, as shown in Table I.
Since each vector, except reset, requires a 32-bit address,
four bytes are required to store each vector. Reset is a special
case which requires two 32-bit addresses or eight bytes of
memory.

Request Interrupt

I

Grant Interrupt

11 Compare interrupt level In status register
and walt for current Instruction to complete

21 Place Interrupt level on A 1, A2, and A3

3) Set R/W to read

4) Set functIon code to Interrupt acknowledge

5) Assert address strobe IAS)
6) Assert lower data strobe (LOS)

Provide Vector Number

1) Place Vector number on 00-07

2) Assert data transfer acknowledge (Dr ACK 1

ACQUIr d Vector Number

11 Latch vector number

2) Negate LOS

3) Negate AS

AS
UDS

LDS

Riw
Dr ACK \ 1
D8-D15 -----(:::::::::::::::::::::::::::::::)~----------------~ _

DO-D7 <:::::::::::::::::::::::::::::::> ~~~~~~_-_-_-.:-_FCO-2=:>--<::=)--J~-----------~ _~_-_-_-_-_-:.--_-_-_-_-_-_-_-
IPLO-2 \~ ~

Vector Address
Assignment

Numberlsl Dec Hex Space

0 0 000 SP Reset: Initial SSP
1 4 004 SP Reset: Initial PC
2 8 008 SO Bus Error
3 12 OOC SO Address Error
4 16 010 SO Illegal Instruction

5 20 014 SO Zero DIvide
6 24 018 SO CHK Instruction
7 28 01C SO TRAPV InstructIOn

8 32 020 SO Privilege Violation
9 36 024 SO Trace
10 40 028 SO line 1010 Emulator
11 44 02C SO Line 1111 Emulator

12' 48 030 SO (Unassigned, reserved)
13' 52 034 SO (Unassigned, reserved)
14' 56 038 SO (Unassigned, reserved)
15 60 03C SO Unlnitlallzed Interrupt Vector

16-23' 64 04C SO (Unassigned, reserved)
95 05F -

24 96 060 SO Spurious Interrupt
25 100 064 SO Levell Interrupt Autovector
26 104 068 SO Level 2 Interrupt Autovector
27 108 06C SO Level 3 Interrupt Autovector
28 112 070 SO Level 4 Interrupt Autovector
29 116 074 SO Level 5 Interrupt Autovector
30 120 078 SO Level 6 Interrupt Autovector
31 124 07C SO Level 7 Interrupt Autovector

32-47 128 080 SO TRAP Instruction Vectors
191 08F

48-63' 192 OCO SO (Unassigned, reserved)
255 OFF ~

64-255 256 100 SO User Interrupt Vectors
1023 3FF -

·Vector numbers 12 through 14, 16 through 23 and 48 through 63 are reserved for future enhancements
by Motorola No user peripheral devices should be assigned these numbers.

Table 1. Exception Vector Assignments

The exception vector map can be divided into 255 unique
vectors which can be represented by an eight-bit vector
number _The vector number is not the vector; it is a pointer
to one particular vector- During any exception processing,
the MC68000 fetches the vector pointed to by a vector
number- Each exception has a unique vector number which,
for all exceptions except user interrupts is generated internal-
ly by the MC68000. User interrupts require that the vector
number be placed on the lower eight bits of the data bus dur-
ing interrupt acknowledge_ The addition of the vector
number fetch requires the peripheral to supply only the eillht-
bit vector number instead of the whole 32-bit vector-

The MC68000 allows two methods of interrupt vector
number generation, internal or external. In order to generate
the vector number internally, VPA is connected to lACK. In
this mode., a unique vector number is generated for each in-
terrupt priority level. This mode, called the autovector mode,
is ideal for users requiring less than eight levels of interrupts
or users with more than seven peripherals whose timing re-
quirements are non-critical.

For users with more than seven peripherals and whose tim-
ing requirements demand service faster than possible with a
software polling method, the MC68000 provides an addi-
tional 192 interrupts which require external vector number
generation_ In this case, lACK is not connected to VPA; in-
stead, it is used by external hardware to determine that a vec-
tor number is needed by the MC68000 and to provide the

proper vector number and data transfer acknowledge
(DTACK).

In systems with only slightly more than seven possible in-
terrupt sources, lACK is first sent to the highest priority
peripheral and then daisy-chained to all remaining
peripherals in order of priority _ If any peripheral generates
an interrupt, it must suppress lACK to all remaining
peripherals and then place the vector number on the lower
eight bits 'of the MC68000 data bus and assert DTACK.
Systems that have a large number of interrupt sources and
timing requirements too critical for software polling can also
generate the vector number and DTACK by the same
method. However, since every peripheral must have the
capability to generate these signals, redundant hardware is
spread throughout the system making debug, modification,
and maintenance difficult- Alternatively, all interrupt lines
could be brought to a central location where both DTACK
and the proper vector number could be supplied. The ap-
plication describes a system that will provide DTACK and
the vector number for up to 192 possible interrupt sources.

VECTOR NUMBER GENERA nON
The 192 user interrupt vectors are referenced by sequential

vector numbers 64 through 255. Therefore, if fewer than 193
interrupts are required, eacli interrupt can be assigned a
unique vector number which can also be interpreted as a
priority. Vector number 64 can be assumed to have the

lowest priority and vector number 255 the highest. The 192
levels of externally-generated priority can be represented by
eight bits .(0ooooo-10111111ס0) The vector number is the
externally-generated priority offset by 64; the vector number
can be generated by encoding the interrupt to its priority and
then adding 64. This is essentially the same format that is us-
ed in the autovectors.

Figure 2 is a block diagram of such a system. All circuitry,
except the processor, can be located in one area rather than
spread throughout the system. Note that two sets of latches
have been inserted to guarantee that no interrupts are lost
and that the vector number that is placed on the data bus is
the result of only one interrupt. Otherwise, if an interrupt re-
quest is generated during interrupt acknowledge, it could
cause the vector number to be in a state of transition when
the MC68000 is attempting to latch the vector number from
the data bus. Latch number one prohibits any new interrupts
from being accepted until the vector number has been

Interrupt
Absolute Priority

Encoder

Three-State
LE Vector Number

Latch 12

latched by latch number two. Latch number two isolates the
vector number from the data bus until lACK is asserted.
After a delay sufficient to allow the vector number to prop-
agate to latch number two, latch number one is released to
allow new interrupts to be accepted.

IMPLEMENTATION
The circuitry shown in Figure 3 performs all the tasks

necessary to provide vector numbers for up to 192 possible
interrupt sources. The 192 interrupt request lines are divided
into 24 groups of eight which are input through a SN74LS373
octal.latch to a SN74LS148 8-to-3 encoder. The SN74LSI48
encoders are daisy-chained so that each stage can disable all
succeeding stages which effectively prioritizes the interrupts
by group. Within each group, interrupts are prioritized into
eight levels which the encoder represents with a three-bit en-
coded number on lines AO, AI, and A2.

Interrupt
Latches

11

8-81t
Encoded
Priority

MC68000
Interrupt
Encoder

o Flip-Flops
T a Sync Inputs
to 8 MHz Clock
IXC68000 Only)

'0
Preceding
Slageof

Ground

The AO line from each of the 24 groups is NANDed to
form the AOof the vector number. The A1 and A2 lines are
handled in an identical manner. Bits 3 and 7 of the encoded
interrupt are made by NAN Ding selected GS outputs of the
encoders. Bits 6 and 7 of the vector number differ from bits 6
and 7 of the encoded interrupt because of the offset of 64.

After the vector number has had sufficient time to prop-
agate, a second SN74LS373 octal latch is used to capture the
number and allow the latches in the 24 interrupt group to be
released to accept new interrupt requests. The delay, imposed
by a SN74LS95 four-bit shift register to latch the vector
number, assumes that all 24 groups are implemented and the
MC68000 is running at eight megahertz. Timing re-
quirements can be derived from Figure 4.

A final SN74LSl48 is used to encode the three-bit inter-
rupt requests to the MC68000. The inputs to this encoder are
the GS outputs of the SN74LSl48 encoders from any group
of interrupts. The group providing the GS output and all
preceding groups can activate the level to which the GS out-
put is input. However, GS outputs of preceding groups
which are input to a higher level in the final SN74LSl48 will

OT ACK delav = Vector number propagation delay - 235 ns
(If ~ t1> then no walt states are necessary)

effectively disable the lower level interrupt request.
If R9M or T6E mask types are used in the system, then the

seven levels of interrupts must be latched before encoding on
the rising edge of the processor clock. The latch is necessary
to synchronize the interrupt request lines.

VARIATIONS
The following variations to the system given in the applica-

tion can be considered in light of specific system re-
quirements:

1. Flip-flops could be inserted on each group to latch an
edge-type interrupt input.

2. The level of interrupt that initiated exception processing
could be decoded from address lines A I, A2, and A3 of
the MC68000.

3. If vector numbers reserved for other functions, e.g.,
TRAPS, auto vectors, are unused; then they could be
used for user interrupts. However, observe caution
when using any reserved vector numbers.

AN·820

HARDWARE CONSIDERATIONS FOR
DIRECT MEMORY ACCESS USING

THE MC6809 MICROPROCESSOR UNIT AND
MC6844 DMA CONTROLLER

Prepared by:
David Smith

MOS Microprocessor
Systems and Applications

Introduction
This application note discusses hardware considerations

which must be applied to any Direct Memory Access (DMA)
design used with the MC6809 Microprocessor Unit and the
MC6844 Direct Memory Access Controller (DMAC). Addi-
tionally, any circuit using the DMAC requires some form of
"dead-cycle" protection during the time in which the bus
control is being transferred from processor to DMAC and
back. It is assumed that the user has an intimate knowledge
of M6800 Family processors and peripherals; and, in general,
the concept of DMA. Figure 1 contains a block diagram
showing an application for the MC6844 DMAC used with
the MC6809 MPU. For additional DMA or microprocessor
information, refer to the respective data sheets and the
MC6809 Users Manual.

MC6809 Requirements
DMA design, using the MC6809, is made easier by the in-

clusion of the DMAlBus request (DMAIBREQ) feature on-
chip. When the DMAIBREQ line is asserted, the MC6809
relinquishes control of the bus by: (1) setting its address,
data, and control lines to the high-impedance state; and (2)
transferring control to the DMAC by asserting a Bus Grant
signal (BA= I and BS= I). This DMAlBus request feature
has timing constraints which must be considered by the
designer in order to stay within published specifications.

As shown in Figure 2, the DMAIBREQ signal must occur
at least tpCSD before the falling edge of E. This guarantees
that the transfer begins on the next falling edge of the E
clock. In addition, DMAIBREQ must not be allowed to
change during the last 120 ns of this E cycle. If this timing is
violated, the MC6809 could enter an undefined state. A
simple sync circuit can be made, using a D-type flip-flop as
shown in Figure 3. This circuit causes all bus transfer re-

quests to be synchronized with Quadrature Clock Q.
Although the MC6844 is shown as an example throughout
the application note, the same conditions must be followed
when using the MC6809, regardless of the DMAC used.

DMA Dead-State Protection
Most DMA circuits have inherent properties (such as noise

susceptibility) which ~uses difficulty in the exchange of bus
control. The high-impedance approach (using three-state
buses) has particular constraints in the area of address tim-
ing. Refer to Figure 4. When the MPU places its lines into the
high-impedance state (relinquishes the bus) and before the
DMAC assumes control of the bus, there is a period of time
in which the bus lines are not driven. During this "exchange
of bus control" time, the bus lines are extremely susceptible
to noise. This condition could cause unwanted reads and
writes during the bus control transfer. To alleviate this condi-
tion, a means of protecting memories and peripherals during
transfer must be provided.

One method to provide this protection is to generate a
signal called DMAVMA, as shown in Figure 5. This signal
line (Direct Memory Access Valid Memory Address) is then
used as one of the inputs for the memory decoding scheme.
Thus, when the DMAVMA line goes high, the memory can-
not be enabled. The DMAVMA signal is the result of Bus
Grant or DMA Grant (DGRNT, BA= I BS= I) being ap-
plied to an Exclusive OR; one direct input and one delayed
input. As long as DGRNT does not change, DMA VMA is
low and the system decoder is functional. When the MPU
relinquishes the bus (places its lines in the high-impedance
state) BA and BS both go high, causing DGRNT to change to
a high. The DGRNT high causes the DMAVMA line to go
high until the next E-clock negative edge clocks the 74LS74
(both Exclusive OR inputs become equal): causing the

DMAVMA line to again go low. Thus, during the time
shown as "DEAD" in Figure 4, the system cannot be enabl-
ed and the memories and peripherals are protected during the
exchange of bus control. The above description pertained to
a change from MPU to DMA. However, in Figure 4 the
DMA VMA goes high for a corresponding time when the
change is from DMA to MPU with one exception: the
DGRNT signal change is from high-to-low; but, the effect on
the Exclusive OR is the same.

One consideration is that the actual time when DMA VMA
is high is not sufficient to provide full protection during the
entire bus transition time. This is because the logical function
Bus Grant (BA-BS; DGRNT in Figure 4) occurs
simultaneously with the high-impedance transition of the ad-
dress and control bus (see CD of Figure 4). However, a
period of 20 to 30 ns could elapse before DMA VMA goes
high, resulting from propogation delay through the logic
elements. During this 20-30 ns time, the memory is still func-
tional but addresses are invalid; therefore, spurious
read/write complications may be possible· with some
memories. One solution to this problem would be to enable
the memory decoding with the E clock. One benefit of this is
that most decoding must be synchronized with the falling
edge of E anyway,· since all data transfers occur then. One
negative aspect to this is that the maximum memory access
time is shortened to 450 ns (E high time).

Another solution (more oriented toward lengthening ac-
cess time) would be to protect the memory, starting at the
falling edge of E and continuing only throughout the 20-30

t'
DMA Request
lDMA/BREQl

ns propogation delay period that the bus is unprotected.
Since this unprotected state cannot be detected before the
Bus Grant is sent, this period should be protected during
every cycle. Then if a request occurs, and that cycle is a high-
impedance (dead) state, the DMAVMA signal will cause pro-
tection to extend to the end of that cycle. A convenient
period of time to use for that additional "pre-transition"
protection is the first full quarter-cycle of E. The length of
that signal (Figure 4) is long enough to cover the address
change time (200 ns maximum) and still be short compared to
the remaining 750 ns of cycle time. (Since the addresses are
not guaranteed until 200 ns after falling E, and a 30 ns delay
in bus transition is inherent, only 20 ns typically is lost in
memory access time with this signal.) This first-quarter cycle
signal, called FQ (Figures 4 and 6), enters the de-enable path
through the OR gate along with DMAVMA. It will keep
DMAVMA' high during the first quarter of all cycles.

If the designer already uses fast memories, the decoding
can be enabled with the E clock. This method does cut access
time to 450 ns for all parts, but if this is a more cost effective
solution', it will protect the bus during the entire first half of
each cycle. This should cover the exchange of control during
all DMA dead-states (this method could be used with some
peripherals due to address setup times).

These interface procedures should be used with all DMA
systems, and in particular with the MC6844 and MC6809.
DMA does require exact timing and bus protection, and
these methods will fulfill those requirements.

Device
Requesting
Attention

DRQT
(on MC68441

Quadrature
Clock

(O!

DMA/BREO
IAfter Sync.
see Figure 21

Address { 6B09

and Control 6844
Active

II, I
II,t-0 'I
I

I I
II II
11 II

n n n
I I I
I I

Propagation Time
from Logical

Bus Grant Signal
to Change

FOJl _ -----In,----
I

IFOeDMAVMAJ DMAVMAJ"l _

E
34

RESET 37
Q 35

CLR
D Q
Yo74LS74

CP

) yMAVM: To
System

. Decode

E34

RESET 37
Q 35

CLR
D Q

Yo74LS74

To
System
Decode

AN-823

CBUGOS DEBUG MONITOR PROGRAM
FOR

MC14680SE2 MICROPROCESSOR UNIT
Prepared by
Rex Davis

Microprocessor Applications Engineer

MCM65516

ADO-AD7

A8-A12

M, DE, CE

MCl4028
Ql3

A,8,C to
Q6

4

1. INTRODUCTION
CBUG05 is a debug monitor program written for the

MCI46805E2 Microprocessor Unit and contained in the
MCM65516 2Kx8 CMOS ROM. CBUG05 allows for rapid
development and evaluation of hardware and M6805 Family
type software, using memory and register examine/change
commands as well as breakpoint and single instruction trace
commands. CBUG05 also includes software to set and
display time, using an optional MCI46818 Real-Time Clock
(RTC), and routines to punch and load an optional cassette
interface. Figure 1 shows a minimum system which only re-
quires the MPU, ROM, keypad inputs and display output in-
terfaces. Port A of the MCI46805E2 MPU is required for the
I/O; however, Port B and all other MCI46805E2 MPU
features remain available to the user. A possible expanded
system is shown in Figure 2. The memory map is shown in
Figure 3. Locations S17OQ-S173Fare available to the user if
the optional MCI46818 RTC is not used.

MCl46805E2

8D-87

A8-A12

AS. OS, R/W

MC145000

Data
Clock

FEATURES:
• MCI46805E2 Eight-Bit CMOS MPU

• Expandable Multipled Address/Data Bus
• Eight-Bit 1/0 Port
• Eight-Bit Timer with p'rescaler
• Maskable External Interrupt
• 16 Levels of Subroutine Nesting
• Minimum of 38 Bytes of Unused Internal RAM

• MCM65516 2Kx8 CMOS with CBUG05
• Memory and Register Examine/Change
• Breakpoints and Single Instruction Trace
• Branch Offset Calculation
• Set/Display Current Time (w/optional MCI46818

Real-Time Clock)
• Punch/Load/Verify Cassette Tape (w/optional

cassette tape interface)
• Stop Command for Low-power Software Standby
• Software Alterable Interrupt Vectors

6'x4
Keypad

Rows '

A ~
PBO-PB7 For User

'I V Cassette
IRO Load From Cassette Recorder

TIM For User
Interface

RESET

- From User Hardware

AS-A12, AS, OS, R/W

"" ;;. "" ;;. "" ? "" '7

MCl46805E2
MCl4681S ~ ~MPU MCM65516 Address

t-
Additional Additional

ROM
Real-Time r--

Decode Memory y Peripherals
Clock .,

lr it I"r -4 ~
A

S0-B7

'l

6x4

" ---" Keypad

PA4-PA6 3-to-S 01-06 Rows

r Decoder --,I
Columns

A I
PAO-PA3

'l

"PA6 Data BP1-BP4 ,
Cassette

MC145000 K LCD .- Punch
_ To Cassette

FP1-FP12 ., Interface Recorder
PA7 Clock

V

I/O Ports
Timer
RAM

- - - - -- - - - -

External User
Memory

Space
15632 Bytes)

MCl46B1B RTC
10ptionai Bytes)

External User
Memory Space

1192 Bytes)

MCM65516
CMOS ROM
12048 Bytes)

--- - - - - - --
Timer Interrupt From Walt State Only----------Timer Interrupt
- - - ----- - --
-- External Interrupt- - - - - - - -

SWI- - -- -- - ---
RESET

0

,=.. {Via
127

Page 0 128
Direct

Addressing

255
256

8181

Interrupt {
Vectors

8191

S007F

SOO8O

\
SOOFF

I

SOl00

$16FF
S170D

$173F
S1740

Sl FF5

SlFF6-S1Fj74
SlFF8-S1FF94

I
SlFFA-S1FFB

I
SlFFC-S1FFD

I

SlFFE-S1FFF
12

2. CBUGOS COMMAND DESCRIPTION
Commands are entered in one of two ways:
(I) If the command requires no additional user input, then

only the command key need be depressed; e.g., TR
(CBUG05 will execute one instruction), and (2) If the com-
mand allows additional user input then the ENT key is used
to enter the users input.

ESC will allow exit from all commands except STOP, V,
L, & P once the ending address is entered.

RS
P
L
V
ST
DT
OFF
BP
BCL
TR
GO

- Reset MCI46805E2
- Punch cassette tape
- Load cassette tape
- Verify cassette tape against memory
- Set current time
- Display current time
- Calculate branch offset
- Set/display breakpoints
- Disable one or all breakpoints
- Execute one instruction
- Begin program execution

0 Port A Data

1 Port B Data

2 External Memory Space

3 External Memory Space

4 Port A Data DIrection

5 POft B Data Dlrectlon

6 External Memory Space

7 External Memory Space

8 Timer Data

9 Timer Control
0

External Memory
Space

5
6

Internal
User
RAM

139 Bytes)

5
CBUG 05

Working Storage
1Reserved 41 Bytes)

5
It /'

/'

/' Stack 132 Bytes Maxi

/' t/

7

SOOOO

SOOOl

S0002

S0003

SOOO4

SOOO6

SOOOO

S0007

SOOO8

SOOO9

SOOOA

PC - Display user program counter
AR - Examine/change user accumulator
XR - Examine/change user index register
CC - Examine/change user condition code register
SP - Display user stack pointer
M - Examine/change memory contents
STOP - Put the system into a low power standby

mode
RS - I) Automatic on power-up

2) Press RS to:
a) Return from STOP
b) Return to monitor when program con-

trol is lost
STOP - I) MCI46805E2 oscillator is halted reducing

current requirements
2) Command sequence:

a) Press STOP
b) Display will be cleared

Place recorder into the record mode
Press P
'bA' will be displayed

-1)
2)
3)

Enter beginning address
Press ENT
'EA' will be displayed
Enter ending address
Press ENT
Prompt' =' will be returned when punch is
finished
Command sequence

a) Press L
b) Display will be cleared
c) Depress PLAY on recorder

Valid loads will be followed by the prompt

Checksum errors are indicated by 'Err'
Bad memory stores are indicated by display-
ing the address of the bad memory.
Command sequence

a) Press V
b) Display wiJI be cleared
c) Depress PLAY on recorder

If the compare is successful, the prompt ' = '
is returned
Checksum errors are indicated by 'Err'
If the compare is unsuccessful, the address of
the memory location is displayed
MCI46818 is used
Command sequence

a) Press ST
b) OOסס' A' will be displayed
c) Enter time in a 12 hour format
d) Press P for PM (AM is the default)
e) Press ENT
f) Prompt' =' will be returned

Press DT ,
current time wiJI be displayed if MCI46818
has been initialized
Beginning and ending addresses point to the
instruction opcode addresses
The opcode for the branch instruction must
exist at the beginning address so the monitor
can determine whether to do a bit branch or
a conditional branch
Command sequence

a) Press OFF
b) 'bA' will be displayed
c) Enter beginning address
d) Press ENT
e) 'EA' will be displayed
f) Enter ending address
g) Press ENT

If valid:
a) 'USE Xx' will be displayed.
b) xx wiJI be loaded into beginning ad-

dress + 2 for bit branches and ad-
dress + I for conditional branches.

If not valid:
a) Offset calculation result is displayed in

2's complement and 'Or' (out of range)
is displayed

b) No change is made to instruction at
the beginning address.

-I)
2)

-I)
2)

-I)

2)

-I)
2)

Three breakpoints are available: 0, I, 2
Command sequence

a) Press BP
b) Breakpoint 0 will be displayed
c) 'bOFF 0' wil be displayed if break-

point 0 is disabled
d) Enter new breakpoint address if

desired
e) Press ENT
f) Next breakpoint will be displayed and

open for entry
Disable all breakpoints

a) Press BCL
b) 'bCI' will be displayed
c) Press ENT
d) Prompt' =' wiJI be returned

Disable only one breakpoint
a) Press BCL
b) 'bCI' wiJI be displayed
c) Enter the number of the breakpoint to

be disabled
d) Press ENT
e) Prompt' =' wiJI be returned

Press TR
The instruction located at the user PC will be
executed
New user PC wiJI be displayed
If breakpoints are enabled, the instruction at
the breakpoint address wiJI be executed and
the PC of the next instruction to be executed
will be displayed
Continue execution with the instruction at
the user PC

a) Press GO
b) Current user PC is displayed
c) Press ENT

Begin execution at new address
a) Press GO
b) Current user PC is displayed
c) Enter the new PC address
d) Press ENT

Press M
Last address will be displayed
Enter new address if desired
Press ENT
Address and contents of the address wiJI be
displayed in format 'aaaa xx'
Enter new contents if desired
Save (use one)

a) Press ENT (next address and contents
will be displayed)

b) Press M (previous address and con-
tents wiJI be displayed)

Not alterable
Command sequence

a) Press PC
b) Current user PC displayed in format

'aaaa PC'

-I)
2)

3)
-I)

-I)
2)
3)
4)
5)

-I)
2)

AR -I) Alterable
2) Command sequence

a) Press AR
b) Current user accumulator contents dis-

played in format 'ACCA xx'
c) Enter new data if desired
d) Press ENT
e) Prompt ' =' will be returned

XR -I) Alterable
2) Command sequence

a) press XR
b) Current user index register contents

displayed in format 'Idr xx'
c) Enter new data if desired
d) Press ENT
e) Prompt ' =' will be returned

CC -I) Alterable'
2) Command sequence

a) Press CC
b) Current user condition code will be dis-

played in format
'COdE xx'

c) Enter new contents if desired
d) Press ENT
e) Prompt ' =' will be returned

SP -I) Not alterable
2) Command sequence

a) Press SP
b) Current user stack pointer will be dis-

played in format 'aaaa SP'

3. INTERRUPT VECTORS
At reset, CBUG05 sets up an extended JUMP instruction

pointing to a default CBUG05 interrupt service routine for
each of the three interrupt types. The vectors, of the three in-
terrupt types, point to one of the three JUMP instructions.
Since the JMP instructions are located in RAM, the use may
alter the two-byte extended address within any of the JMP
instructions. The location of the two-byte extended address
for each interrupt type is listed in Table I.

INTERRUPT TYPE

EXTERNAL

TIMER

TIMER (FROM WAIT)

~
$41-$42

$44-$45

$47-$48

4. MCI4S000 CMOS MULTIPLEXED LCD DRIVER
The MC145000 LCD Driver is designed to drive LCDs in a

multiplexed-by-four configuration. It can drive up to 48
LCD segments or six seven-segment plus decimal point
characters. Data for each character is translated into a for-
mat that is clocked serially from the MCI46805E2 (MPU) to
the MC145000 LCD Driver. The MC145000 LCD Driver
continuously generates the multiplexed display signals, from
the internally stored serial data, without further re-
quirements from the MPU.

The recommended display is a General Electric
LXD69D7R09; an 8-digit, 7-segment multiplexed LCD with
decimal point. The required connections to the MC145000
LCD Driver are shown in Figure 4.

2
BP3

29

30
BP4

3

4
FPll B8

56

FP12
57

A8
6

FP9 B7
54

FPlO
55

A7
10

11
FP7 B6

51

FP8
52

A6
14

FP5
15

B5
48

FP6
49

A5
24

FP3
25

B2
37

FP4
36

A2
27

FP1
28

B1
34

FP2
33

Al

Each segment of a seven-segment plus decimal point
character is represented by one bit of an 8-bit byte. Figure 5
shows the relationship between a character segment and the
bit number of the display byte (bit 7 is MSB and bit 0 is LSB).
A logical "I" in any bit will activate its corresponding seg-
ment. Table 2 lists the hexadecimal code of some common
seven-segment characters in display format. For example, the
digit 5 is represented by SB5 (10110101) which would activate

segments 0, 2, 4, 5, and 7. The decimal point is displayed by
setting bit 3 of the display byte to a logical "I" (effectively
adding eight to the display byte). Data in BCD or binary for-
mat is translated by CBUG05, into the display format, using
a lookup table. CBUG05 then left-shifts the character to the
MC145000 via port A of the MCI46805E2.

Table 2. Display Format Conversions
Displayed Display Format
~ Hex Code

o 07
1 06
2 E3
3 A7
4 36
5 B5
6 F5
7 07
8 F7
9 B7
A 77
b F4
C Dl
d E6
E Fl
F 71
P 73
Y B6
H 76
U D6
L DO

blank 00
- Idashl 20

lequalJ AO
n 64
r 60

o Idegreesl 33

NOTE- A Decimal Point can be added to all but the right-most display
digit by setting b3 [segment 1311to a 1.

Several display routines are available for the user. Figure 6
describes the address, function, and use of these routines. All
routines are called using a jump-to-subroutine (JSR) instruc-
tion. Most display outputs are initiated by filling a display
table with all six characters in the display format to be
displayed, then calling a routine (DISTAB) to display the en-
tire table. In other words, the whole display is rewritten every
time any character change is made. The display table is called
DTABL (locations $49-$4E) and occupies six consecutive
bytes where DT ABL (location $49) is the left most digit to be
displayed.

5. KEYPAD INPUT
CBUG05 requires a 4 x 6 keypad such as is shown

schematically in Figure 7. The six column lines are derived
from a three-bit output from port A-bits 4-6 driving a 3-to-8
decoder. By using this method port B is saved for the user.
Figure 7 shows the required layout of the 4 x 6 keypad and
3-to-8 decoder. The keypad is continuously scanned for in-
put. If an input is received, a 3075 MPU cycle deb ounce in-
sures against spurious input. The required debounce time
places a lower limit on the MPU clock frequency. At a I
MHz bus speed (5 MHz oscillator input), the debounce time
is about 3 ms. With a 10 kHz bus speed (50 kHz time base in-
put), the deb ounce time is about 0.3 seconds. Debounce
times of approximately 60 milliseconds or more require the
keys be held down a longer time than an operator is normally
accustomed.

Five routines are listed in Figure 8 of which two (COL-
UMN and DEBOUNC) are branch routines and one is a
look-up table (STABL). One of the other two routines,
KEYSCN, checks for a keyboard input and, if valid, returns
it to the accumulator in a column-row format. This format
can then be converted to a hexadecimal number which cor-
responds to the one key that was pressed (see STABL routine
and Table 3). Note that hexadecimal numbers 0 through F
correspond to the keypad keys 0 through F. The last routine
of Figure 8, CHARIN, checks for a character and returns a
hexadecimal number to the accumulator.

6. CASSETTE TAPE OPTION
The cassette tape option is included to allow for user pro-

gram storage. Programs are stored in a modified bi-phase
format (see Figure 9). The storage format used defines a zero
as more than 300 MPU cycles between transitions and less
than 300 MPU cycles between transitions. Data is punched
with a start bit of one, eight bits of data and a zero stop bit.
Tapes are punched with 16K zeros as a leader followed by a
BOT and the ending and beginning addresses. The program
is then punched followed by the checksum. Tapes are loaded
after 256 consecutive zeros are read. The BOT then syn-
chronizes the loading program. The ending and beginning
addresses are loaded and data read and stored accordingly.
Finally, the checksum is read and compared to the new com-
puted checksum.

Baud rates are determined by the MPU cycle time. The
software is set up to provide a default baud rate of 2400 baud
if a one microsecond cycle time is used. Cycle times greater
than one microsecond will decrease the baud rate propor-
tionally.

* *
* CLEAR DISPLAY TABLE *
* *
* X REG DESTROYED *
* *.****.*********************************.
*IDF5 AE 05 A CLRTAB LOX #5

IDF7 6F 49 A CLRLOC CLR DTABL,X CLEAR SIX
IDF9 5A DECX LOCATIONS IN
IDFA 2A FB IDF7 BPL CLRLOC DISPLAY TABLE
IDFC 81 RTS

******************.**********************
* *
* DISPLAY TABLE CONTENTS *
* *
* A,X REGISTERS DESTROYED *
* ***
*IDFD AE 05 A DISTAB LDX #5

IDFF E6 49 A DISCHR LDA DTABL,X LOAD DISPLAY
lE01 AD 09 lE0C BSR DISPLY TABLE INTO
lE03 5A DECX 145000
lE04 2A F9 IDFF BPL DISCHR
11':0681 RTS

***************.*****************.*******
* *
* BLANK DISPLAY *
* *
* A,X REGISTERS DESTROYED *
* ****************.******************.*****
*lE07 AD EC IDF5 CLRDIS BSR CLRTAB BLANK

lE09 AD F2 IDFD BSR DISTAB DISPLAY
lE0B 81 RTS

.**********************************
* *
* SHIFT ONE CHARACTER INTO *
* DISPLAY *
* *
* A REGISTER DESTROYED *
* ***********.**** •• **********.************
*lE0C BF 50 A DISPLY STX WORKI SAVE INDEX

lE0E ID 00 A BCLR 6,PORTA CLEAR DATA
lE10 AE 08 A LDX #8
lE12 48 DISI LSLA SET UP
lED 24 02 lE17 BCC DIS2 BIT OF
lE15 lC 00 A BSET 6,PORTA ACCUMULATOR
11'17 IE 00 A DIS2 BSET 7,PORTA CLOCK
lE19 IF 00 A BCLR 7,PORTA IT
lElB ID 00 A BCLR 6,PORTA CLEAR DATA
lElD 5A DECX COMPLETE?
lElE 26 F2 lE12 BNE DISI NO
lE20 BE 50 A LDX WORKI RESTORE INDEX
lE22 81 RTS

Figure 6. Display Routines

From 3-10-8 Decoder

Figure 7. 4 x 6 Keypad Schematic Diagram

HEXADECIMAL ($)
EQUIVALENT

o
F
E
o

Wha\ever baud rate is used, the cassette tape and recorder
must have an upper frequency response 2-3 times the baud
rate and a lower frequency response of 1/2 - 1/3 the baud
rate to insure reliability.

KEYPAD
CHARACTER

o (P.C.)
F IAR)
E IXR)
o ICC)

4
5 IBP)
6 IB.CL.I
B ITR)

7
8 .DT.)
9 1ST.)
A IOFF)

PORT-A
DATA

11
12
14
18

7. MCl46818 REAL-TIME CLOCK (RTC) OPTION
The RTC can be added to a system to provide time, data,

periodic interrupt and many other user functions (see
MCI46818 ADI-856). The RTC time may be set and
displayed using CBUG05 software; however, only the
12-hour mode is available. The displayed time is updated
once per second after polling the Update-In-Progress bit
(UIP) for a zero. All MCI46818 functions are available to the
user. The CBUG05 software set and display time routines re-
quire that a 4.194304 MHz crystal be used; however, if power
consumption is critical then either a 1.04576 MHz or 32.678
KHz oscillator input could be used. The user would be re-
quired to set-up the divider chain in the RTC for the par-
ticular time base used.

8. INTERNAL AND EXTERNAL MEMORY SPACE
The internal memory space is located in the first 128 bytes

of memory and contains the timer registers, I/O port
registers, and 112 bytes of RAM. External memory can be
mapped at the same addresses as the internal memory space.
An MPU write to internal memory space is duplicated exter-
nally; however, an MPU read of internal locations will result
in only the internal data being recognized. This allows the
user to map large memories externally without requiring that
accesses to internal memory locations be excluded from the
external memory, thus, simplifying external address
decoding.

*********~******************************
* *
* KEYPAD SCAN *
* *
* X REGISTER DESTROYED *
* *
* A REGISTER CONTAINS VALUE *
* *
* CARRY SET IF VALID OUTPUT *
* ***
*1E23 98 KEYSCN CLC

1E24 4F CLRA
1E25 AE ~6 A LDX '6 SETUP
1E27 AB 1~ A KEY1 ADD '$1~ ROW
1E29 B7 ~~ A STA PORTA
1E2B AD ~6 1E33 BSR COLUMN CHECK COLUMNS
1E2D 25 ~3 1E32 BCS KEY2 IF VALID GET OUT
1E2F SA DECX ELSE TRY
1E3~ 26 F5 1E27 BNE KEY1 NEXT ROW
1E32 81 KEY2 RTS

* *
* CHECK FOR KEY CLOSURE *
* WITHIN COLUMN AND DEBOUNCE *
* *
* A REGISTER CONTAINS VALUE *
* *
* CARRY SET IF VALID OUTPUT *
* ***
*1E33 B6 ~~ A COLUMN LDA PORTA READ KEYPAD

1E35 B7 5~ A STA WORK1 STORE IT
1E37 AS ~F A BIT '$~F KEY CLOSED?
1E39 27 19 1E54 BEQ COLRET NO GET OUT
1E3B AD 18 lESS BSR DSOUNC ELSE DEBOUNCE
1E3D B6 ~~ A LDA PORTA RE-READ KEYPAD
1E3F B1 5~ A CMP WORK1 SAME KEY CLOSED?
1E41 26 11 1E54 BNE COLRET NO GET OUT
1E43 99 SEC SET FLAG FOR VALID
1E44 B6 ~~ A COLl LDA PORTA KEY
1E46 AS ~F A BIT #$~F RELEASED?
1E48 26 FA 1E44 BNE COLI NO TRY AGAIN
1E.4AAD 09 lESS BSR DBOUNC YES DEBOUNCE
1E4C B6 ~~ A LOA PORTA STILL
1E4E AS ~F A BIT '$~F RELEASED?
1E50 26 F2 1E44 BNE COLI NO TRY AGAIN
1E52 B6 5~ A LDA WORK1 RETURN CHAR IN A-REG

lES4 81 COLRET RTS YES GO HOME

* *
* PAUSE FOR 307S CYCLES *
* *
* A REGISTER DESTROYED *
* ***
*lESS A6 FF A DBOUNC LDA t$FF PAUSE

lES7 21 FE lES7 DLOOP BRN * 2S6X12
lES9 21 FE lES9 BRN * CYCLES
lESB 4A DECA OR AT
lESC 26 F9 lES7 BNE DLOOP LEAST
lESE 81 RTS 3.0 MS

*

****.************************************
* *
* INPUT ONE CHARACTER *
* ..
* A REGISTER CONTAINS HEX VALUE *
* *
* X REGISTER CONTAINS HEX VALUE *
* ***
*lESF A CHRIN EQU *lESF CD lE23 A JSR KEYSCN GET KEY

lE62 24 FB lESF BCC CHRIN IF NOT VALID RETRY
lE64 SF CLRX
lE6S Dl lE6F A CHRINl CMP STABL,X CONVERT
lE68 27 03 lE6D BEQ CHRIN2 TO HEX
lE6A SC INCX
lE6B 20 F8 lE6S BRA CHRINl
lE6D 9F CHRIN2 TXA IF CANCEL
lE6E 81 RTS

* *
* CONVERSION TABLE FOR KEYPAD *
* TO HEX NUMBER *
* ***
*lE6F 11 A STABL FCB $11 0

lE70 21 A FCB $21 1
lE71 22 A FCB $22 2
lE72 24 A FCB $24 3
lE73 31 A FCB $31 4
lE74 32 A FCB $32 5
lE75 34 A FCB $34 6
lE76 41 A FCB $41 7
lE77 42 A FCB $42 8
lE78 44 A FCB $44 9
lE79 48 A FCB $48 A
lE7A 38 A FCB $38 B
lE7B 28 A FCB $28 C
lE7C 18 A FCB $18 D
lE7D 14 A FCB $14 E
lE7E 12 A FCB $12 F
lE7F 61 A FCB $61 CANCEL COMMAND
lE80 58 A FCB $58 ENTER COMMAND
lE81 1i8 A FCB $68 STACK POINTER
lE82 64 A FCB $64 MEMORY
lE83 62 A FCB $62 GO
lE84 54 A FCB $54 VERIFY TAPE
lE85 52 A FCB $52 LOAD TAPE
lE86 51 A FCB $51 PUNCH TAPE

* *
* HEX TO MUX DISPLAY *
* CONVERSION TABLE *

137
Cycles

BIT
I I

BIT
I

I I I
STOP 7 6 5 4 I 3 2

I 0 START
I

a. Two Versions of Punch 0(TIME

0 0 0 0 0

I
3 4 I

I I
b. Two Versions of Load

I BIT
6 I 7

I
TIME

PAGE ""1 CBUG"5 .SA:1

"""''''1 OPT CMOS
"""'''2 *
""'''''3 """,,,, A PORTA EQU """''''''4 """'4 A PORTAD EQU 4
"''''''''5 """1 A PORTB EQU 1
""""'6 "''''''8 A TIMER EQU 8
"'''''''''7 "'''''''9 A TIMEC EQU 9
"''''''''''8 17"'A A CR1 EQU $ 17 "'A
"''''''''''9 17"'B A CR2 EQU $17"'B
"'''''''1''' 17"'''' A SEC EQU $17"''''
"'''''''11 17"2 A MIN EQU $17"'2
"'''''''12 17"'4 A HOUR EQU $17"'4
"'''''''13 1707' A DAY EQU $17"'7
"'''''''14 17"'8 A MONTH EQU $17"8
"'''''''15 17"'9 A YEAR EQU $17"9
"'''''''16 18"''' A MONSTR EQU $18"''''
"'''''''17 ""'IF A PCMASK EQU $lF
"'''''''18 "'''''''3 A NUMBKP EQU 3
"''''''19 "''''M A PROMPT EQU $A'"
"'''''''2''' "''''CC A LJMP EQU $CC
"'''''''21 "'''83 A SWIOP EQU $83
"'''''''22 *
""''''23A "''''4''' ORG $4'"
"''''''24 *

;

"'''''''25 ""37 A BKPTBL EQU *-3*NUMBKP
"'''''''26A ""'4" "'''''3 A IRQ RMB 3
"''''''27A "''''43 "''''''3 A TIRQ RMB 3
"''''''28A "'''46 ""''''3 A TIRQW RMB 3
"'''''''29A "'''49 "'''''6 A DTABL RMB 6
"'''''''3'''A""''''4F ""''''1 A SWIFLG RMB 1
"'''''''31A "''''5''' "'''''''1 A WORK1 RMB 1
"''''''32A "''''51 "'''''''1 A WORK2 RMB 1
"'''''''33A "'''52 "'''''''1 A ADDRH RMB 1
"''''''34A "''''53 "'''''''1 A ADDRL RMB 1
"'''''''35A "''''54 ""''''1 A WORK3 RMB 1
"'''''''36A "''''55 "'''''''1 A WORK4 RMB 1
"'''''37A "''''56 "''''''1 A WORKS RMB 1
"'''''''38A "''''57 "'''''''1" A WORK6 RMB 1
""'''39A ""'58 "'''''''2 A TEMP RMB 2
""''''4''A "''''SA ""''''1 A PNCNT RMB 1
"'''''''41A ""'5B "''''''1 A CHKSUM RMB 1
""''''42A "'''5C "'''''''1 A SREF RMB 1
"'''''''43A "''''5D "'''''''1 A LCNT RMB 1
"'''''''44A "''''5E ""'''1 A PCNT1 RMB 1
"''''''45A "''''SF ""'''1 A PCNT'" RMB 1
"""'46 *

PAGE ~~2 CBUG~5 .SA:l

~~~48 *~~~49A 18~~ ORG $18~~
~~~5~ *~~~51A 18~~ A6 F~ A RESET LOA #$F~ SETUP PORT
~~~52A 18~2 B7 ~4 A STA PORTAO FOR KEYPAO
~~~53A 18~4 3F ~~ A CLR PORTA ANO OISPL/t.Y
~~~54A 18~6 3F 5C A CLR SREF INITIALIZE
~~~55A 18~8 A6 ~F A LOA #$F TAPE SOFTWARE
~~~56A IBM B7 50 A STA LCNT FOR 24~~ BAUO
~~~57A 18~C A6 12 A LOA #$12
~~~58A 18~E B7 5E A STA PCNTI
~~~59A 181~ A6 26 A LOA #$26
~~~6~A 1812 B7 5F A STA PCNT0
0~061 *00062A 1814 IFC5 A VECTOR FOB IRQV SET-UP
00~63A 1816 IFC7 A FOB TIRQV INTERRUPT
00~64A 1818 IFC4 A FOB TIRQWV VECTORS
~0065A 181A A6 CC A LOA #LJMP IN RAM
~0066A 181C B7 40 A STA IRQ
00~67A 181E B7 43 A STA TIRQ
00068A 1820 B7 46 A STA TIRQW
00069A 1822 C6 1814 A LOA VECTOR
0007M 1825 B7 41 A STA IRQ+l
00071A 1827 C6 1815 A LOA VECTOR+l
~0072A 182A B7 42 A STA IRQ+2
00~73A 182C C6 1816 A LOA VECTOR+2
00074A 182F B7 44 A STA TIRQ+l
00075A 1831 C6 1817 A LOA VECTOR+3
~0076A 1834 B7 45 A STA TIRQ+2
00077A 1836 C6 1818 A LOA VECTOR+4
00078A 1839 B7 47 A STA TIRQW+l
00079A 183B C6 1819 A LOA VECTOR+5
0~08~A 183E B7 48 A STA TIRQW+2
00081 *00082A 1840 AE 4F A LOX #SWIFLG
0~083A 1842 7F INIT CLR 0,X CLEAR
00084A 1843 5C INCX WORKING
00~85A 1844 A3 56 A CPX #WORK5 STORAGE
00~86A 1846 23 FA 1842 BLS INIT
~0087A 1848 CO 1003· A JSR SCNBKP CLEAR
00~88A 184B A6 FF A LOA #$FF ALL
0~~89A 1840 F7 REBCLR STA 0,X BREAKPOINTS
0009M 184E 5C INCX
00091A 184F 5C INCX
00092A 185~ 5C INCX
00093A 1851 3A 5A A OEC PNCNT
00094A 1853 26 F8 1840 BNE REBCLR
~0~95A 1855 83 SWI
~0096 *00097 1856 A SWI EQU *00098A 1856 00 4F 04 1850 BRSET 0,SWIFLG,SWICHK FROM RESET?
~0099A 1859 10 4F A BSET 0,SWIFLG YES
0~1~0A 185B 20 4E 18AB BRA GETCMO
0~101A 1850 CO 1003 A SWICHK JSR SCNBKP REMOVE
00102A 1860 F6 SWIREP LOA 0,x BREAKPOINTS
0~1~3A 1861 2B 0B 186E BMI SWINOB
0~1~4A 1863 B7 52 A STA AOORH
00105A 1865 E6 01 A LOA 1,x



PAGE 003 CBUG05 .SA:1

00106A 1867 B7 53 A STA ADDRL
00107A 1869 E6 02 A LDA 2,X
00108A 186B CD 1F24 A JSR STORE
00109A 186E 5C SWINOB INCX GET NEXT B.P.
00110A 186F 5C INCX
00111A 1870 5C INCX
00112A 1871 3A 5A A DEC PNCNT
00113A 1873 26 EB 1860 BNE SWIREP
00114 *00115A 1875 CD 19~6 A JSR LOCSTK FIND STACK
00116A 1878 E6 08 A LDA 8,X
00117A 187A A0 01 A SUB #l ADJUST
00118A 187C B7 59 A STA TEMP+l
00119A 187E E6 07 A LDA 7,X
00120A 1880 A2 00 A SBC 110
00121A 1882 B7 58 A STA TEMP
00122A 1884 BF 57 A STX WORK6 SAVE STACK LOCATION
00123A 1886 CD lDD3 A JSR SCNBKP SETUP B.P. SCAN
00124A 1889 F6 SWITRY LDA 0,x ADJUSTED P.C.
00125A 188A 2B 15 18Al BMI SWICMP IN B.P. TABLE?
00126A 188C Bl 58 A CMP TEMP
00127A 188E 26 11 18Al BNE SWICMP
00128A 1890 E6 01 A LDA 1,x
00129A 1892 Bl 59 A CMP TEMP+l
00130A 1894 26 0B 18Al BNE SWICMP NO,TRY AGAIN
00131A 1896 BE 57 A LDX WORK6 YES,RESTORE S.P.
00132A 1898 E7 08 A STA 8,X PUT ADJUSTED P.C.
00133A 189A B6 58 A LDA TEMP INTO STACK
00134A 189C E7 07 A STA 7,X
00135A 189E CC 1B31 A JMP TRACE EXECUTE 1 INSTRUCTION
00136A 18A1 5C SWICMP INCX NEXT B.P.
00137A 18A2 5C INCX
00138A 18A3 5C INCX
00139A IBM 3A 5A A DEC PNCNT
00140A IBM 26 El 1889 BNE SWITRY DONE?
00141A 18A8 CC 1928 A JMP PCOUNT YES PRINT P.C.
00142 *00143 18AB A GETCMD EQU *00144A 18AB CD 1DF5 A JSR CLRTAB
00145A 18AE A6 A0 A LDA #PROMPT PRINT
00146A 18B0 B7 49 A STA DTABL ':=:'
00147A 18B2 CD 1DFD A JSR DISTAB PROMPT
00148 *00149A 18B5 CD lE23 A CMDSCN JSR KEYSCN CHECK KEYPAD
0015M 18B8 24 FB 18B5 BCC CMDSCN
00151A 18BA 5F CLRX
00152A 18BB B7 50 A STA WORK1
00153A 18BD D6 18D2 A RJUMP LDA PTABL,X THIS COMMAND?
00154A 18C0 B1 50 A CMP WORKl
00155A 18C2 27 0A 18CE BEQ PJUMP YES
00156A 18C4 Al 68 A CMP #$68
00157A 18C6 27 E3 18AB BEQ GETCMD
00158A 18C8 5C INCX NO
00159A 18C9 5C INCX GO TO
00160A 18CA 5C INCX NEXT
00161A 18CB 5C INCX POSSIBLE
00162A 18CC 20 EF 18BD BRA RJUMP TRY AGAIN
00163A 18CE 5C PJUMP INCX GO TO



99164A 18CF DC 18D2
99165



PAGE 335 CBUG35 .SA:l

33167 *33168A 18D2 11 A PTABL FCB $11
33169A 18D3 CC A FCB LJMP
33173A 1804 1928 A FDB PCOUNT PROGRAM COUNTER
33171A 18D6 12 A FCB $12
33172A 18D7 CC A FCB LJMP
33173A 18D8 1943 A FDB AREG ACCUMULATOR
3317.4A 18DA 14 A FCB $14
33175A 18DB CC A FCB LJMP
33176A 18DC 195A A FDB XREG INDEX REGISTER
33177A 18DE 18 A FCB $18
33178A 18DF CC A FCB LJMP
33179A 18E3 1977 A FDB CCODE CONDITION CODE
33183 *33181A 18E2 28 A FCB $28
33182A 18E3 CC A FCB LJMP
33183A 18E4 IFD7 A FDB PWRDWN UNUSED
33184 *33185A 18E6 32 A FCB $32
33186A 18E7 CC A FCB LJMP
33187A 18E8 lA78 A FDB BPDIS DISPLAY/SET BP
33188A 18EA 34 A FCB $34
33189A 18EB CC A FCB LJMP
3319M 18EC lAD6 A FDB BPCLR CLEAR BP
33191A 18EE 38 A FCB $38
33192A 18EF CC A FCB LJMP
33193A 18F3 IB31 A FOB TRACE TRACE ONE INSTRUCTION
33194 *33195A 18F2 42 A FCB $42
33196A 18F3 CC A FCB LJMP
33197A 18F4 lC3B A FDB OTIME DISPLAY TIME
33198A 18F6 44 A FCB $44
33199A 18F7 CC A FCB LJMP
33233A 18F8 IB86 A FDB STIME SET TIME
33231A 18FA 48 A FCB $48
33232A 18FB CC A fCB LJMP
33233A 18FC 19E5 A FDB OFFSET OFFSET CALCULATION
33234 *33235A 18FE 51 A FCB $51
33236A 18FF CC A FCB LJMP
33237A 1933 lC35 A FDB PUNCH PUNCH TAPE
30208A 1902 52 A FCB $52
33239A 1903 CC A FCB LJMP
03213A 1904 lCDD A FDB TLOAD LOAD TAPE
33211A 1906 54 A FCB $54
03212A 1937 CC A FCB LJMP
33213A 1938 ID81 A FDB VERIFY VERIFY TAPE
33214 *33215A 193A 62 A FCB $62
33216A 193B CC A FCB LJMP
33217A 193C ID8F A FDB GO GO
33218A 190E 64 A FCB $64
33219A 193F CC A FCB LJMP
33220A 1913 lEAA A FDB MEMEX MEMORY
33221A 1912 68 A FCB $68,
03222A 1913 CC A FCB LJMP
33223A 1914 IDDA A FDB STACK STACK
30224 *



PAGE "''''6 CBUG"'5 .SA: 1

"''''226 ****************************************
"''''227 * *
"''''228 * SEARCH FOR STACK POINTER *
"''''229 * *
"''''23''' * X-REG CONTAINS SP-3 *
"''''231 * *
"''''232 * A-REG DESTROYED *
"''''233 * *
"''''234 ****************************************
"''''235 *
"''''236A 1916 AD "'1 1919 LOCSTK BSR LOCST2
"''''237 "''''19 A STKHI EQU */256
"''''238 "''''18 A STKLOW EQU *-(*/256)*256
"''''239A 1918 81 RTS
"''''24M 1919 AE 7F A LOCST2 LDX 1I$7F
"''''241A 191B A6 19 A LOCLOP LDA lISTKHI
"''''242A 191D 5A LOCDWN DECX
"''''243A 191E F1 CMP "',X
"''''244A 191F 26 FC 191D BNE LOCDWN
"''''245A 1921 A6 18 LDA lISTKLOW
"''''246A 1923 E1 "'1 A CMP l,X
"''''247A 1925 26 F4 191B BNE LOCLOP
"''''248A 1927 81 RTS
"''''249 *
"''''25''' ****************************************
"''''251 * *
"''''252 * DISPLAY PROGRAM COUNTER *
"''''253 * *
"''''254 ****************************************
"''''255 *
"''''256 1928 A PCOUNT EQU *
"''''257A 1928 A6 73 A LDA 1I$73 PRINT
"''''258A 192A 87 4D A STA DTABL+4 'PC'
"''''259A 192C A6 D1 A LDA 1I$D1
"''''26"'A 192E B7 4E A STA DTABL+5
"''''261A 193'" AD E4 1916 BSR LOCSTK FIND USER PC
"''''262A 1932 E6 "'7 A LDA 7,X HIGH BYTE
"''''263A 1934 B7 52 A STA ADDRH
"''''264A 1936 E6 "'8 A LDA 8,X LOW BYTE
"''''265A 1938 B7 53 A STA ADDRL PRINT IT
"''''266A 193A CD IFB'" A JSR PRTADR
"''''267A 193p CC 18B5 A JMP CMDSCN
"''''268 *
"''''269 ****************************************
"''''27''' * *
"''''271 * ACCUMULATOR EXAMINE/CHANGE *
"''''272 * *
"''''273 ****************************************
"''''274 *
"''''275 194'" A AREG EQU *
"''''276A 194'" A6 77 A LDA 1I$77 PRINT 'ACCA'
"''''277A 1942 B7 49 A STA DTABL
"''''278A 1944 87 4C A STA DTABL+3
"''''279A 1946 A6 D1 A LDA 1I$D1
"''''28'''A1948 B7 4A A STA DTABL+1
"''''281A 194A B7 4B A STA DTABL+2
"''''282A 194C AD C8 1916 BSR LOCSTK FIND ACCUM. VALUE
"''''283A 194E 9F TXA



PAGE IH17 CBUGQl5 .SA: 1

Q1Q1284A 194F AB 135 A ADD #5
Q1Q1285A 1951 3F 52 A CLR ADDRH SETUP FOR
Q1Q1286A 1953 B7 53 A STA ADDRL EXAMINE/CHANGE
00287A 1955 1C 4F A BSET 6,SWIFLG
00288A 1957 CC 1EB1 A JMP MEMEX3 USING MEMORY ROUTINE
00289 *
00290 ****************************************
00291 * *
013292 * INDEX REGISTER EXAMINE/CHANGE *
00293 * *
00294 ****************************************
00295 *
013296 195A A XREG EQU *
00297A 195A A6 06 A LDA #6 PRINT 'ID'
0Q1298A 195C CD 1DF5 A JSR CLRTAB
0Q1299A 195F B7 4A A STA DTABL+1
0Q1300A 1961 A6 E6 A LDA #$E6
00301A 1963 B7 4B A STA DTABL+2
00302A 1965 A6 60 A LDA #$60
00303A 1967 B7 4C A STA DTABL+3
00304A 1969 AD AB 1916 BSR LOCSTK FIND INDEX
00305A 196B 9F TXA REGISTER VALUE
00306A 196C AB 06 A ADD #6
0030-7A 196E 3F 52 A CLR ADDRH SETUP FOR
00308A 1970 B7 53 A STA ADDRL EXAMINE/CHANGE
00309A 1972'IC 4F A BSET 6,SWIFLG
00310A 1974 CC 1EB1 A JMP MEMEX3 USING MEMORY ROUTINE
00311 *
00312 ****************************************
00313 * *
013314 * CONDITION CODE *
00315 * EXAMINE/CHANGE *
00316 * *
00317 ****************************************
00318 *
00319 1977 A CCODE EQU *
00320A 1977 CD 1DF5 A JSR CLRTAB
00321A 197A A6 D1 A LDA #$D1
00322A 197C B7 49 A STA DTABL
00323A 197E A6 D7 A LDA #$D7
00324A 1980 B7 4A A STA DTABL+1
00325A 1982 A6 E6 A LDA #$E6
00326A 1984 B7 4B A STA DTABL+2
00327A 1986 A6 F1 A LDA #$F1
00328A 1988 B7 4C A STA DTABL+3
00329A 198A AD 8A 1916 BSR LOCSTK FIND CONDITION
00330A 198C 9F TXA CODES
00331A 198D AB 04 A ADD #4
00332A 198F 3F 52 A CLR ADDRH SETUP FOR
0Q1333A 1991 B7 53 A STA ADDRL EXAMINE/CHANGE
Q1Q1334A 1993 1C 4F A BSET 6,SWIFLG
Q10335A 1995 CC 1EB1 A JMP MEMEX3 USING MEMORY ROUTINE
1313336 *1313337 ****************************************
1313338 * *013339 * BUILD A BEGINNING *00340 * AND ENDING *
013341 * ADDRESS RANGE *



PAGE fHl8 CBUG05 .SA:l

00342 * *00343 * TEMP,TEMP+l BEGINNING *00344 * ADDRH,ADDRL ENDING *00345 * *00346 ****************************************
00347 *00348A 1998 19 4F A BLDRNG BCLR 4,SWIFLG
00349A 199A 17 4F A BCLR 3,SWIFLG
01'l351'lA199C CD IDF5 A JSR CLRTAB PRINT
1'l0351A 199F A6 F4 A LDA #$F4 'BA'
1'l0352A 19A1 B7 4D A STA DTABL+4
1'l0353A 19A3 A6 77 A LOA #$77
1'l0354A 19A5 B7 4E A STA DTABL+5
00355A 19A7 CD IDFD A JSR DISTAB
00356A 19AA CD lF58 A JSR BLDADR GET SOURCE ADDR.
1'l1'l357A19AD 24 2C 19DB BCC BLDRNI VALID?
00358A 19AF B6 52 A LDA ADDRH YES
1'l0359A 19B1 Al IF A CMP #PCMASK TOO BIG?
1'l1'l36M19B3 22 2A 19DF BHI BLDRN2 YES
1'l0361A 19B5 B7 58 A STA TEMP NO SAVE IT
1'l0362A 19B7 B6 53 A LOA ADDRL
01'l363A 19B9 B7 59 A STA TEMP+l
1'l1'l364A19BB CD IF15 A JSR LOAD FETCH OPCODE OF INSTR.
1'l1'l365A19BE B7 57 A STA WORK6 SAVE IT
1'l1'l366A19CI'lCD IDF5 A JSR CLRTAB
1'l1'l367A19C3 A6 Fl A LDA #$Fl PRINT 'EA'
1'l0368A 19C5 B7 4D A STA DTABL+4
00369A 19C7 A6 77 A LDA #$77
1'l1'l371'lA19C9 B7 4E A STA DTABL+5
01'l371A 19CB CD IDFD A JSR DISTAB
1'l1'l372A19CE CD IF58 A JSR BLDADR GET DESTINATION ADDR
1'l1'l373A19D1 24 1'l8 19DB Bce BLDRNI VALID?
1'l1'l374A19D3 B6 52 A LDA ADDRH YES
1'l0375A 19D5 Al IF A CMP #PCMASK TOO BIG?
00376A 19D7 22 06 19DF BHI BLDRN2 YES
00377A 19D9 20 06 19E1 BRA BLDRET
1'l0378A 19DB 18 4F A BLDRNI BSET 4,SWIFLG INVALID
1'l0379A 19DD 21'l02 19E1 BRA BLDRET
00383A 19DF 16 4F A BLDRN2 BSET 3,SWIFLG TOO BIG
03381A 19E1 81 BLDRET RTS
1'l1'l382 *00383 ****************************************
1'l0384 * *1'l1'l385 * CALCULATE BRANCH OFFSET *01'l386 * FOR BIT AND CONDITIONAL *31'l387 * BRANCHES *1'l1'l388 * *31'l389 * OPCODE MUST BE AT *1'l0391'l * BEGINNING ADDRESS *01'l391 * *1'l0392 * OFFSET WILL BE INSERTED *1'l1'l393 * INTO BRANCH INSTRUCTION *00394 * *30395 *************~**************************
01'l39.6 *1'l1'l397A19E2 CC lE97 A OFFERR JMP ERROR
00398 *30399 19E5 A OFFSET EQU *



PAGE fiHl9 CBUGIl5 .SA: 1

1l1l41lllA19E5 AD Bl 1998 BSR BLDRNG
1l1l41l1A19E7 118 4F 2B lA15 BRSET 4,SWIFLG,ORET
1l1l41l2A19EA 116 4F F5 19E2 BRSET 3,SWIFLG,OFFERR
1l1l41l3A19ED B6 53 A LDA ADDRL NO FIND APPARRENT
1l1l41l4A19EF BIl 59 A SUB TEMP+l OFFSET
filll41l5A19F1 All fil2 A SUB #2
1l1l4fil6A19F3 B7 53 A STA ADDRL
1l1l41l7A19F5 B6 52 A LDA ADDRH
1l1l41l8A19F7 B2 58 A SBC TEMP
1l1l41l9A19F9 B7 52 A STA ADDRH
1l1l411lA19FB B6 57 A LDA WORK6 CHECK OPCODE
1l1l411A 19FD Al IF A CMP JI$lF FOR BIT BRANCH
filll412A19FF 23 41 1M2 BLS OFFSTI
1l1l413A lAlll B6 52 A LDA ADDRH
filll414AlAfil3Al FF A CMP JI$FF + OR - OFFSET?
filfil415AlAfil!)27 113 lAllA BEQ OFFST2
filfil416A1All7 4D TSTA CHECK OFFSET
Ilfil417A1All8 26 61l lA6A BNE OVRERR FOR +/- Il
1l1l418A lAfilA B6 53 A OFFST2 LDA ADDRL
1l1l419A lAIlC Al FF A CMP JI$FF
filfil42filAlAfilE 27,5A IMA BEQ OVRERR
1l1l421A lAlll AD 116 lA18 BSR USE PRINT IT IF VALID
filll422AlA12 CC 18B5 A JMP CMDSCN
1l1l423A lA15 CC 18AS A ORET JMP GETCMD
1l1l424 *1l1l425A lA18 CD IDF5 A USE JSR CLRTAB
1l1l426A lAlB A6 D6 A LDA #$D6 PRINT 'USED'
filll427AlAID B7 49 A STA DTABL
filll428AIAIF A6 B5 A LDA JI$B5
1l1l429A lA21 B7 4A A STA DTABL+l
1l1l431lAlA23 A6 Fl A LDA JI$Fl
filll4JIAlA25 B7 4B A STA DTABL+2
Ilfil432AlA27 A6 E6 A LDA JI$E6
Ilfil433AlA29 B7 4C A STA DTABL+3
filll434AlA2B B6 53 A LDA ADDRL PRINT OFFSET
filll435AlA2D CD IF8C A JSR PRTDAT
Ilfil436AlA30 97 TAX
1l1l437A lA31 B6 59 A LDA TEMP+l
"'fil438AlA33 AB III A ADD U
1l1l439A lA35 B7 53 A STA ADDRL
fil"'441lAlA37 B6 58 A LDA TEMP
1l1l441A lA39 A9 "'" A ADC JI'" PUT INTO
"''''442AlA3B B7 52 A STA ADDRH INSTRUCTION
"''''443AlA3D 9F TXA
"'0444A lA3E CD IF24 A JSR STORE
"''''445AIMI 81 RTS
"''''446 *"''''447A1M2 B6 53 A OFFSTI LDA ADDRL ADJUST FOR
"''''448AIM4 All "'1 A SUB U BIT BRANCH
"''''449AIM6 B7 53 A STA ADDRL
"''''45'''AIM8 B6 52 A LDA ADDRH
"''''451AIMA A2 "'''' A SBC U
""'452A IMC B7 52 A STA ADDRH
"''''453A-IME Al FF A CMP JI$FF NEG OFFSET?
fil"'454AlA5'" 27 "'3 lA55 BEQ OFFST3 YES
1l1l455A lA52 4D TSTA CHECK FOR
"''''456AlA53 26 15 lA6A BNE OVRERR +/- '" AND -1
""'457A lA55 B6 53 A OFFST3 LDA ADDRL



PAGE 0Hl CBUG05 .SA:l

00458A lA57 Al FF A CMP #$FF
00459A lA59 27 0F lAGA BEQ OVRERR
00460A lASB Al FE A CMP #$FE
00461A lA5D 27 I'lB lA6A BEQ OVRERR
00462A lA5F 3C 59 A INC TEMP+l
00463A lA61 26 02 lAGS BNE OFFITS
00464A lAG3 3C 58 A INC TEMP
00465A lA65 AD Bl lA18 OFFITS BSR USE PRINT IF VALID
00466A lA67 CC 18B5 A JMP CMDSCN
00467 *00468A lAGA AG 07 A OVRERR LOA #$07 PRINT 'OR'
00469A lA6C B7 40 A STA DTABL+4
0047lilAlAGE A6 60 A LOA #$60
00471A lA70 B7 4E A STA DTABL+5
00472A lA72 CD IFB0 A JSR PRTADR
00473A lA75 CC 18B5 A JMP CMDSCN
00474 *00475 ****************************************
00476 * *00477 * DISPLAY/SET BREAKPOINTS *00478 * *00479 ****************************************
00480 *00481 lA78 A BPDIS EQU *00482A lA78 3F 57 A CLR WORK6
00483A lA7A 3A 57 A DEC WORK6
00484A lA7C CD 1003 A JSR SCNBKP FIND B.P. TABLE
00485A lA7F BF 51 A STX WORK2
00486A lA81 3F 40 A BPDISI CLR DTABL+4
00487A lAB3 F6 LOA 0,X GET B.P.
00488A lA84 2A 10 lA96 BPL BPDIS2 VALID?
00489A lAB6 A6 F4 A LDA #$F4 NO
00490A lA88 B7 49 A STA DTABL PRINT 'BOFF'
00491A lA8A A6 D7 A LDA #$07
00492A lA8C B7 4A A STA DTABL+l
00493A lA8E A6 71 A LDA #$71
00494A lA90 B7 4B A STA DTABL+2
00495A lA92 B7 4C A STA DTABL+3
00496A lA94 20 09 lA9F BRA BPDIS4
00497A lA96 B7 52 A BPDIS2 STA ADDRH PRINT B.P.
00498A lA98 E6 01 A LDA 1,X
00499A lA9A B7 53 A STA ADDRL
0050lilAlA9C CD IFB0 A JSR PRTADR
00501A lA9F 3C 57 A BPDIS4 INC WORK6 PRINT B.P. #
00502A lAAl BE 57 A LDX WORKh
00503A lAA3 06 lE87 A LDA CTABL,X
00504A lAAG B7 4E A STA DTABL+5
00505A lAAB CD IDFD A JSR DISTAB
00506A lAAB CD IF58 A JSR BLDADR NEW B.P.
00507A lAAE BE 51 A LDX WORK2
00508A lAB0 25 08 lABA BCS BPDIS7 YES
00509A lAB2 Al 10 A CMP #$10 NO,ESC?
00510A lAB4 27 lA lAD0 BEQ BPRET GET OUT
00511A lAB6 Al 11 A CMP #$11 ENTER?
00512A lAB8 27 0B lACS BEQ BPDIS5 GET NEXT B.P.
005l3A lABA B6 52 A BPDIS7 LOA ADDRH TOO BIG?
00514A lABC Al IF A CMP #PCMASK
00515A lABE 22 13 lAD3 BHI BPERR YES



PAGE 011 CBUG05 .sA:l

00516A lAC0 F7 sTA 0,X NO,sTORE NEW B.P.
00517A lACl B6 53 A LDA ADDRL
00518A lAC3 E7 01 A sTA 1,X
00519A lAC5 5C BPDIs5 INCX GET NEXT B.P.
00520A lAC6 5C INCX
00521A lAC7 5C INCX
00522A lAC8 BF 51 A sTX WORK2
00523A lACA 3A 5A A- DEC PNCNT
00524A lACC 26 B3 lABl BNE BPDIsl DONE?
00525A lACE 20 A8 lA78 BRA BPDIs YES START OVER
00526A lAD0 CC 18AB A BPRET JMP GETCMD
00527· *00528A lAD3 CC lE97 A BPERR JMP ERROR
00529 *00530 ****************************************
00531 * *1IJ1IJ532 * BREAKPOINT CLEAR *1IJ1IJ533 * *1IJ1IJ534 * TYPE 1I FOR SINGLE *1IJ1IJ535 * CLEAR AND ENT FOR ALL *1IJ1IJ536 * *1IJ1IJ537 ****************************************
1IJ1IJ538- *1IJ0539 lAD6 A BPCLR EQU *1IJ1IJ5411JAlAD6 CD IDF5 A JsR CLRTAB PRINT 'BCLR'
1IJ1IJ541AlAD9 A6 F4 A LDA lI$F4
1IJ1IJ542AlADB B7 49 A sTA DTABL
1IJ1IJ543AlADD A6 Dl A LDA lI$Dl
1IJ1IJ544AlADF B7 4A A sTA DTABL+l
1IJ1IJ545AlAEl A6 DIIJ A LDA lI$DIIJ
1IJ1IJ546AlAE3 B7 4B A sTA DTABL+2
1IJ1IJ547AlAE5 A6 611J A LDA 1I$611J
1IJ1IJ548AlAE7 B7 4C A sTA DTABL+3
1IJ0549A lAE9 CD IDFD A JsR DIsTAB
1IJ1IJ5511JAlAEC CD IDD3 A JsR sCNBKP FIND B.P. TABLE
1IJ1IJ551AlAEF BF 51 A sTX WORK2
1IJ1IJ552AlAFl CD IF49 A JsR GETNYB
1IJ1IJ553AlAF4 25 12 IBIIJ8 BCs BPCLRI ENTER?
011J554A lAF6 Al 11 A CMP 1I$11
1IJ1IJ555AlAF8 26 34 IB2E BNE BPCRET NO
1IJ1IJ556AlAFA A6 FF A LDA lI$FF YEs,CLEAR ALL
1IJ0557A lAFC BE 51 A LDX WORK2
011J558A lAFE F7 BPCLR2 STA IIJ,X
011J559A lAFF 5C INCX
1IJ1IJ5611JAIB00 5C INCX
1IJ1IJ561AIBIIJI 5C INCX
011J562A IBIIJ2 3A 5A A DEC PNCNT
011J563A IB04 26 F8 lAFE BNE BPCLR2
1IJ1IJ564AIB06 20 26 IB2E BRA BPCRET
1IJ1IJ565AIB08 Al 1IJ3 A BPCLRI CMP lINUMBKP VALID B.P. lI?
011J566A IB0A 24 C7 lAD3 BHs BPERR NO
011J567A IB0C 97 TAX YES
1IJ1IJ568AIB0D D6 lE87 A LDA CTABL,X PRINT B.P. 1I
1IJ0569A IB10 B7 4E A sTA DTABL+5
1IJ1IJ5711JAIB12 4F CLRA FIND IT
1IJ0571A IB13 A0 1IJ3 A SUB 1I3
011J572A IB15 AB 03 A BPCLR3 ADD 1I3
1IJ1IJ573AIB17 5A DECX



PAGE IH2 CBUG"5 .51'.:1

""5741'. IBl8- 21'.FB IBIS BPL BPCLR3
""5751'. IBIA B7 57 A STA WORK6
""5761'. IBIC CD IDFD A JSR DISTAB PRINT B.P.
""5771'. IBIF CD lE5F A JSR CHRIN
""5781'. IB22 Al 11 A CMP #$11 CLEAR IT?
""5791'. IB24 26 "8 IB2E BNE BPCRET NO
""58"1'. IB26 A6 37 A LOA #BKPTBL YES
""5811'. IB28 BB 57 A ADD WORK6
""5821'. IB2A 97 TAX
""5831'. IB2B 1'.6FF A LOA #$FF
""5841'. IB2D F7 STA ",X
""5851'. IB2E CC 18AB A BPCRET JMP GETCMD
""586 *
""587 ****************************************
""588 * *
""589 * TRACE ONE INSTRUCTION *
""59" * *
""591 * TIMER INTERRUPT IS *
""592 * USED *
""593 * *
""594 ****************************************
""595 *""596 IB31 A TRACE EQU *""5971'. IB31 CD 1916 A JSR LOCSTK FIND 5 .·P.
""5981'. IB34 E6 "4 A LOA 4,X
""5991'. IB36 A4 "8 A AND #8
""6"1'lA IB38 B7 57 A STA WORK6
""6"11'. IB3A E6 "7 A LOA 7,X
""6"21'. IB3C B7 52 A STA ADDRH
""6"31'. IB3E E6 "8 A LOA 8,x
""6"41'. IB4" B7 53 A STA ADDRL
""6"51'. IB42 CD IF15 A JSR LOAD GET OPCODE
""6"61'. IB45 Al 83 A CMP #$83 SWI?
""6"71'. IB47 26 "F IB58 BNE TRACE3
""6"81'. IB49 B6 53 A LOA ADDRL YES
""6"91'. IB4B AB "1 A ADD U INC PC
""61"1'. IB4D E7 "8 A STA 8,X
""6111'. IB4F B6 52 A LOA ADDRH
""6121'. IB51 1'.9"" A ADC II"
""6131'. IB53 E7 "7 A STA 7,X
""6141'. IB55 CC 1928 A JMP PCOUNT
""6151'. IB58 Al 9B A TRACE3 CMP #$9B SEI?
""6161'. IB5A 26 15 1B71 BNE TRACE2
""6171'. IB5C E6 "4 A LOA 4,X YES
""6181'. 1B5E AI'."8 A ORA #8 SET IT IN
""6191'. 1B6" E7 "4 .1'. STA 4,X STACK
""62"1'. 1B62 B6 53 A LOA ADDRL
""6211'. 1B64 AB "1 A ADD U
""6221'. 1B66 E7 "8 A STA 8,X
""6231'. 1B68 B6 52 A LOA ADDRH
""6241'. 1B6A 1'.9"" A ADC II"
""6251'. 1B6C E7 "7 A STA 7,X
""6261'. 1B6E CC 1928 A JMP PCOUNT
""6271'. 1B71 Al 91'. A TRACE2 CMP #$91'. CLI?
""6281'. 1B73 26 "2 1B77 BNE TRACE 1
"·"6291'.1B75 3F 57 A CLR WORK6 YES,CLEAR IT ON STACK
""63"1'. 1B77 E6 "4 A TRACE 1 LOA 4,X GET CONDo CODE
""6311'. 1B79 A4 F7 A AND #SF7 CLEAR IRQ BIT



PAGE In3 CBUG05 .SA:l

00632A IB7B E7 04 A STA 4,X RETURN TO STACK
00633A IB7D A6 10 A LDA #16
00634A IB7F B7 08 A STA TIMER
00635A IB81 A6 08 A LDA #8
00636A IB83 B7 09 A STA TIMEC
00637A IB85 80 RTI EXECUTE
00638 * I

00639 ****************************************
00640 * *
00641 * SET CURRENT TIME *
00642 * USING MC146818 *00643 * *
00644 * 12-HOUR FORMAT *
00645 * *
00646 **********,*****************************
00647 *00648 IB86 A STIME EQU *00649A IB86 CD IDF5 A JSR CLRTAB
00650A IB89 A6 77 A LDA #$77 AM BY DEFAULT
00651A IB8B B7 4E A STA DTABL+5
00652A IB8D 3F 53 A CLR ADDRL
00653A IB8F 3F 52 A CLR ADDRH
00654A IB91 CD lFB0 A STIME2 JSR PRTADR
00655A IB94 CD IF49 A JSR GETNYB GET INPUT
00656A IB97 25 12 IBAB BCS STIMEI
00657A IB99 Al 10 A CMP #$10 ESC?
00658A 1B9B 27 4F IBEC BEQ STMRET
00659A IB9D Al 11 A CMP #$11 ENT?
00660A IB9F 27 ID IBBE BEQ STIME4
00661A IBAI Al 17 A CMP #$17 P?
00662A IBA3 26 EC IB91 BN!': STIME2
00663A IBA5 A6 73 A LDA #$73 YES,
00664A IBA7 B7 4E A STA DTABL+5 PRINT P
00665A IBA9 20 E6 IB91 BRA STIME2
00666A IBAB Al 09 A STIMEI CMP #9 GT 9?
00667A IBAD 22 40 IBEF BHI STERR
00668A IBAF AE 04 A LDX #4 SHIFT IN NEW
00669A IBBI 38 53 A STIME3 LSL ADDRL INPUT
00670A IBB3 39 52 A ROL ADDRH
00671A IBB5 SA DECX
00672A IBB6 26 F9 IBBI BNE STIME3
00673A IBB8 BA 53 A ORA ADDRL
00674A IBBA B7 53 A STA ADDRL
00675A IBBC 20 D3 IB91 BRA STIME2
00676,'\IBBE B6 52 A STIME4 LDA ADDRH HOURS GT 12?
00677A iBC0 Al 12 A CMP #$12
00678A IBC2 22 2B IBEF BHI STERR
00679A IBC4 4D TSTA HOURS EQ 0?
00680A IBC5 27 28 IBEF BEQ STERR
00681A IBC7 B6 53 A LDA ADDRL MIN? GT 59?
00682A IBC9 Al 59 A CMP #$59
00683A IBCB 22 22 IBEF BHI STERR
00684A IBCD A6 80 A LDA #$80 PUT IN
00685A IBCF C7 170B A STA CR2 SET TIME MODE
00686A IBD2 4F CLRA
00687A IBD3 C7 170A A STA CRI
00688A IBD6 04 4E 02 IBDB BRSET 2",DTABL+5, STIME5 PM?
00689A IBD9 IE 52 A BSET 7,ADDRH YES



PAGE 014 CBUG05 .SA:l
00691:lAIBDB B6 53 A STIME5 LDA ADDRL PUT TIME INTO
00691A IBDD C7 1702 A STA MIN MC146818
00692A IBE0 B6 52 A LDA ADDRH
00693A IBE2 C7 1704 A STA HOUR
00694A IBE5 4F CLRA
00695A IBE6 C7 170B A STA CR2 ALLOW TO RUN
00696A IBE9 C7 1700 A STA SEC CLR SECONDS
00697A IBEC CC 18AB A STMRET JMP GETCMD
00698 *00699A IBEF CC lE97 A STERR JMP ERROR
00700 *00701 ****************************************
00702 * *00703 * WAIT FOR THE END *00704 * OF UPDATE CYCLE *00705 * *00706 ****************************************
00707 *00708A 1BF2 CD lE23 A VALID JSR KEYSCN
00709A IBF5 25 13 lC0A BCS VALRET
00710A IBF7 C6 170A A LDA CRI IS UIP LOW?
00711A IBFA A4 80 A AND 11$80
00712A 1BFC 27 F4 IBF2 BEQ VALID YES,WAIT UNTIL HIGH
00713A IBFE CD lE23 A VALID2 JSR KEYSCN
00714A lC01 25 07 lC0A BCS VALRET
00715A lC03 Co 170A A LDA CRI UIP MADE NEG TRANSITION
00716A lC06 A4 80 A AND 11$80
00717A lC08 26 F4 IBFE BNE VALID2
00718A lC0A 81 VALRET RTS
00719 *00720 ****************************************
00721 * *00722 * DISPLAY CURRENT TIME *00723 * FROM MC146818 *00724 * *00725 * USES 12-HOLJR FORMAT *00726 * *00727 ****************************************
00728 *00729 lC0B A DTIME EQU *00730A lC0B CD IDF5 A JSR CLRTAB
00731A lC0E A6 77 A LDA 11$77
00732A lC10 B7 4E A STA DTABL+5
00733A lC12 AD DE IBF2 BSR VALID UPDATE OVER
00734A lC14 24 04 lClA BCC DTIME2
00735A lC16 SF CLRX
00736A lC17 CC 18BD A JMP RJUMP
00737A lClA C6 1704 A DTIME2 LDA HOUR
00738A lClD B7 52 A STA ADDRH
00739A lClF 0F 52 06 lC28 BRCLR 7,ADDRH,DTIMEI PM?
00740A lC22 IF 52 A BCLR 7,ADDRH
00741A lC24 A6 73 A LDA 11$73 PRINT IT
00742A lC26 B7 4E A STA DTABL+5
00743A lC28 C6 1702 A DTIMEI LDA MIN
00744A lC2B B7 53 A STA ADDRL
00745A lC2D CD IFB0 A JSR PRTADR PRINT TIME
00746A lC30 20 D9 lC0B BRA DTIME
00747 '"



PAGE "15 CBUG"5 .SA:1

""748 ****************************************
""749 * *
""75" * PUNCH TAPE *
""751 * *
""752 * LAST ADDRESS WILL *
""753 * REMAIN UNTIL PUNCH *
""754 * IS COMPLETE *
""755 * *
""756 * 24"" BAUD IS DEFAULT *
""757 * *
""758 ****************************************
""759 *
""76"A lC32 CC lE97 A PUNERR JMP ERROR
""761 *
""762 lC35 A PUNCH EQU *
""763A lC35 CD 1998 A JSR BLDRNG BUILD RANGE
""764A lC38 "8 4F 49 lC84 BRSET 4,SWIFLG,PUNRET VALID?
""765A lC3B '''64F F4 lC32 BRSET 3,SWIFLG,PUNERR VAILD?
""766A lC3E BE 58 A LDX TEMP SWAP ADDRESSES
""767A lC4" B7 58 A STA TEMP
""768A lC42 BF 52 A STX ADDRH
"0769A lC44 B6 53 A LDA ADDRL
""77"A lC46 BE 59 A LDX TEMP+l
""771A lC48 BF 53 1\ STX ADDRL ADJUST
""772A lC4A 4C INCA ENDING
""773A lC4B 26 "2 lC4F BNE PUN3 ADDRESS
""774A lC4D 3C 58 A INC TEMP
""775A lC4F B7 59 A PUN3 STA TEMP+!
""776A lC51 AD 3F lC92 BSR PUNLDR PUNCH LEADER
""777A lC53 A6 B3 A LDA #$B3 PUNCH BOT
""778A lC55 AD 5" lCA7 BSR PUNBYT
""779A lC57 3F 5B A CLR CHKSUM INITIALIZE CHECKSUM
""78"A lC59 B6 58 A LDA TEMP PUNCH
""781A lC5B AD 2A lC87 BSR PUNIT ENDING ADDRESS
""782A lC5D B6 59 A LDA TEMP+l
""783A lC5F AD 26 lC87 BSR PUNIT
""784A lC61 B6 52 A LDA ADDRH PUNCH
""785A lC63 AD 22 lC87 BSR PUNIT BEGINNING ADDRESS
""786A lC65 B6 53 A LDA ADDRL
""787A lC67 AD IE lC87 BSR PUNIT
""788A lC69 CD IF15 A PUNS JSR LOAD GET BYTE FROM MEMORY
""789A lC6C AD 19 lC87 BSR PUNIT PUNCH IT
""79"A lC6E 3C 53 A INC ADDRL
""791A lC7" 26 "2 lC74 BNE PUN4
""792A lC72 3C 52 1\ INC ADDRH
""793A lC74 B6 58 A PUN4 LDA TEMP FINISHED?
""794A lC76 Bl 52 A CMP ADDRH
""795A lC78 26 EF lC69 'BNE PUNS
""796A lC7A B6 59 A LDA TEMP+l
""797A lC7C Bl 53 A CMP ADDRL
""798A lC7E 26 E9 lC69 BNE PUNS
""799A lca" B6 5B A LDA CHKSUM YES, PUNCH
""8""A lC82 AD 23 lCA7 BSR PUNBYT CHECKSUM
""8"lA lC84 CC 18AB A PUNRET JMP GETCMD
""8"2 *""8"3A lC87 B7 56 A PUNIT STA WORKS
""8"4A lC89 AD lC lCA7 BSR PUNBYT PUNCH BYTE
""8"5A lC8B B6 56 A LDA' WORKS AND UPDATE



PAGE 016 CBUG05 .SA:1

00806A lC8D BB 5B A ADD CHKSUM CHECKSUM
00807A lC8F B7 5B A STA CHKSUM
00808A lC91 81 RTS
00809 *00810A lC92 A6 3F A PUNLDR LDA #$3F PUNCH 16K
00811A lC94 B7 50 A STA WORKI ZEROS
00812A lC96 A6 FF A LDA #$FF
01l813A lC98 B7 51 A STA WORK2
00814A lC9A AD 24 lCC0 PUNLDI BSR COMO
00815A lC9C AD 35 lCD3 BSR NOCO
00816A lC9E 3A 51 A DEC WORK2
00817A lCAeJ 26 F8 lC9A BNE PUNLDI
00818A lCA2 3A 50 A DEC WORKI
00819A lCM 26 F4 lC9A BNE PUNLDI
00820A lCA6 81 RTS
00821 *00822A lCA7 AE 08 A PUNBYT LDX #8 PUNCH
00823A lCA9 AD 15 lCC0 BSR COMO SYNC
00824A lCAB AD 13 lCCIl BSR COMO START
00825A lCAD AD 11 lCC0 PUNBYI BSR COMO SYNC
00826A lCAF 46 RORA
00827A lCB0 24 04 lCB6 BCC P\lNBY2 1 OR 0?
00828A lCB2 AD 0C lCC0 BSR COMO 1
1l0829A lCB4 20 02 lCB8 BRA PUNBY3
00830A lCB6 AD IB 'lCD3 PUNBY2 BSR NOCO 0
00831A lCB8 5A PUNBY3 DECX ALL
00832A lCB9 26 F2 lCAD BNE PUNBYI DONE?
00833A lCBB AD 03 lCC0 BSR COMO YES,SYNC
00834A lCBD AD 14 lCD3 BSR NOCO STOP BIT
00835A lCBF 81 RTS
00836 *00837A lCC0 BF 54 A COMO STX WORK3 MAKE A TRANSITION
00838A lCC2 0D 00 04 lCC9 BRCLR 6,PORTA,COMOI
00839A lCC5 ID 00 A BCLR .6,PORTA
00840A lce7 20 02 lCCB BRA DELAY PAUSE
00841A lCC9 lC 0" A COMOI BSET 6,PORTA
00842A lCCB BE 5E A DELAY LDX PCNTI
00843A lCCD 5A COM02 DECX
00844A lCCE 26 FD lCCD BNE COM02
00845A lCD0 BE 54 A LDX WORK3
00846A lCD2 81 RTS
00847 *00848A lCD3 BF 54 A NOCO STX WORK3 NO TRANSITION
00849A lCD5 BE 5F A LDX PCNT0 DOUBLE DELAY
00850A lCD7 5A NOCOI DECX
00851A lCD8 26 FD lCD7 BNE NOCOI
00852A lCDA BE 54 A LDX WORK3
00853A lCDC 81 RTS
00854 *00855 ****************************************
00856 * *00857 * LOAD TAPE OR *00858 * COMPARE TAPE *00859 * *00860 ****************************************
00861 *00862 lCDD A TLOAD EQU *00863A lCDD IB 4F A BCLR 5,SWIFLG



PAGE In7 CBUGfl5 .SA:l

flfl864A lCDF CD lEfl7 A JSR CLRDIS
flfl865A lCE2 A6 FF A LOADfl LDA #$FF LOAD 256
flfl866A lCE4 AD 78 ID5E LOADl BSR EDGE CONSECUTIVE
flfl867A lCE6 25 FA lCE2 BCS LOADfl ZEROS
flfl868A lCE8 4A DECA
flfl869A lCE9 26 F9 lCE4 BNE LOADI
flfl87flAlCEB AD 5fl ID3D LOAD2 BSR LOAD BY
flfl871A ICED Al B3 A CMP #$B3 BOT?
flfl872A lCEF 26 FA lCEB BNE LOAD2
flfl873 *flfl874A lCFl 3F 5B A CLR CHKSUM YES, INIT CHECKSUM
flfl875A lCF3 CD ID76 A JSR LOADIT GET ENDING
flfl876A lCF6 B7 58 A STA TEMP ADDRESS
flfl877A lCF8 AD 7C ID76 BSR LOAD IT
flfl878A lCFA B7 59 A STA TEMP+l
flfl879A lCFC AD 78 ID76 BSR LOADIT GET BEGINNING
flfl88flAlCFE B7 52 A STA ADDRH ADDRESS
flfl881A IDflflAD 74 ID76 BSR LOADIT
flfl882A IDfl2 B7 53 A STA ADDRL
flfl883 *flll884A IDIl4 AD 71l ID76 LOAD4 BSR LOADIT GET BYTE
Ilfl885A IDIl6 flB 4F IlB ID14 BRCLR 5,SWIFLG,LOAD5 COMPARE?
Illl886A IDIl9 B7 57 A STA WORK6 YES, IS IT
Illl887A IDflB CD IF15 A JSR LOAD SAME?
Illl888A IDIlE Bl 57 A CMP WORK6
Illl889A IDlll 26 25 ID37 BNE DISADR NO
Illl891lAID12 21l Il5 ID19 BRA LOAD6 YES
Illl891A ID14 CD IF24 A LOADS JSR STORE' NOT COMPARE, SAVE IT
Illl892A ID17 25 IE In37 BCS DISADR
Illl893A ID19 3C 53 A LOAD6 INC ADDRL INC ADDRESS
Illl894A IDIB 26 Il2 IDIF BNE LOAD3
Illl895A IDID 3C 52 A INC ADDRH
Illl896A IDIF B6 58 A LOAD3 LDA TEMP FINSHED?
Illl897A ID21 Bl 52 A CMP ADDRH
flll898A ID23 26 DF IDIl4 BNE LOAD4
flll899A ID25 B6 59 A LDA TEMP+l
Illl91lllAID27 Bl 53 A CMP ADDRL
Illl91l1AID29 26 D9 IDIl4 BNE LOAD4
Illl91l2AID2B AD III ID3D BSR LOADBY YES ,GET
Illl91l3AID2D Bl 5B A CMP CHKSUM CHECKSUM
Illl91l4AID2F 26 Il3 ID34 BNE LDERR NOT SAME -- ERROR
Illl9fl5AID31 CC 18AB A JMP GETCMD
Illl91l6 *Illl91l7AID34 CC lE97 A LDERR JMP ERROR
Illl91l8 *Illl91l9AID37 CD IFBIl A DISADR JSR PRTADR DISPLAY ADDRESS
Illl91llAID3A CC 18B5 A JMP CMDSCN FOR ERROR
Illl911 *Ilfl912A ID3D BF 51l A LOAD BY STX WORKI
Illl913A ID3F AE Il8 A LDX #8
Illl914A ID41 AD IB ID5E BSR EDGE SET START
Illl915A ID43 AD 19 ID5E LODBYI BSR EDGE BIT
Illl916A ID45 24 FC ID43 BCC LODBYI
Illl917A ID47 AD 15 ID5E BSR EDGE SYNC
Ilfl918A ID49 SA LODBY2 DECX
flll919A ID4A 2B IlF ID5B BMI LODBYR FINISHED?
IlIl92M ID4C 44 LSRA NO, SHIFT
Illl921A ID4D AD IlF ID5E BSR EDGE GET BIT



PAGE 018 CBUG05 .SA:1

00922A 104F 24 06 1057 BCC LOOBY3 1 OR 0?
00923A 1051 AO 0B lOSE BSR EOGE IF 1 GET CLEAR NEXT
00924A 1053 AA 80 A ORA #$80 TRANSITION
00925A 1055 20 F2 1D49 BRA LOOBY2 SHIFT IN 1
00926A 1057 AA 00 A LODBY3 ORA #0 SHIFT IN 0
00927A 1059 20 EE 1049 BRA LOOBY2
00928A 105B BE 50 A LOOBYR LOX WORK1
00929A 1050 81 RTS
00930 *00931A lOSE B7 51 A EOGE STA WORK2
00932A 1060 BF 54 A STX WORK3
00933A 1062 SF CLRX
00934A 1063 5C EOGE1 INCX LOOP TILL
00935A 1064 4F CLRA TRANSITION
00936A 1065 2E 01 .1068 BIL EOGE2
00937A 1067 4C INCA
00938A 1068 B1 5C A EOGE2 CMP SREF
00939A 106A 27 F7 1063 BEQ EDGE1
00940A 106C B7 5C A STA SREF UPOATE LEVEL
00941A 1D6E 9F TXA STATUS
00942A 106F B0 5D A SUB LCNT SET CARRY FOR
00943A 1071 B6 51 A LOA WORK2 1 OR 0
00944A 1073 BE 54 A LOX WORK3
00945A 1075 81 RTS
00946 *00947A 1076 AO C5 1030 LOADIT BSR LOAOBY GET BYTE
00948A 1078 B7 55 A STA WORK4 AND UPOATE
00949A 107A BB 5B A AOO CHKSUM CHECKSUM
00950A 107C B7 5B A STA CHKSUM
00951A 107E B6 55 A LOA WORK4
00952A 1D80 81 RTS
00953 *00954 ****************************************
00955 * *00956 * VERIFY TAPE *00957 * *00958 ****************************************
00959 *00960 1081 A VERIFY EQU *00961A 1081 1A 4F A BSET 5,SWIFLG
00962A 1083 CD 1E07 A JSR CLRDIS
00963A 1086 CC 1CE2 A JMP LOA00
00964 *00965A 1D89 CC 1E97 A GOERR JMP ERROR
00966 *00967A 108C CC 18AB A GOBACK JMP GETCMO
00968 *00969 108F A GO EQU *00970A 108F CD 1916 A JSR LOCSTK
00971A 1D92 E6 08 A LOA 8,X
00972A 1094 B7 53 A STA ADORL
00973A 1096 E6 07 A LOA 7,X
00974A 1098 B7 52 A STA AODRI;I
00975A 109A CO 1F53 A JSR GETAOR
00976A 109D 25 08 10A7 BCS GOON AODR VALlO?
00977A 109F Al 10 A CMP #$10
00978A 10A1 27 E9 108C BEQ GOBACK
00979A 10A3 Al 11 A CMP #$11



PAGE eJ19 CBUGeJ5 .SA:1

eJeJ98eJA10A5 26 E2 1089 BNE GOERR
eJeJ981A 10A7 CO 1916 A GOON JSR LOCSTK YES PUT IT
eJeJ982A 10AA BQ 52 A LOA AOORH IN STACK
eJeJ983A lOAC Al IF A CMP #PCMASK TO BIG?
0eJ984A 10AE 22 09 1089 BHI GOERR YES
eJeJ985A 10BeJ E7 eJ7 A STA 7,X
eJeJ986A 10B2 B6 53 A LOA AOORL
eJeJ987A 10B4 E7 eJ8 A STA 8,x
eJeJ988A 10B6 AO 1B 1003 CONT BSR SCNBKP FINO B.P. TABLE
eJeJ989A 10B8 F6 GOINSB LOA eJ,X INSERTPB.P.'S
eJeJ99eJA10B9 2B 1eJ 10CB BMI GONOB VALIO?
eJeJ991A 10BB B7 52 A STA AOORH YES
eJeJ992A lOBO E6 eJ1 A LOA 1,X
eJeJ993A 10BF B7 53 A STA AOORL
eJeJ994A lOCI CO 1F15 A JSR LOAO SAVE OPCOOE
eJeJ995A 10C4 E7 eJ2 A STA 2,X
eJeJ996A 10C6 A6 83 A LOA #SWIOP
eJeJ997A 10C8 CO 1F24 A JSR STORE
eJeJ998A 10CB 5C GONOB INCX GET NEXT B.P.
eJeJ999A 10CC 5C INCX
eJ1eJeJeJAlOCO 5C INCX
eJ1eJeJ1A10CE 3A 5A A DEC PNCNT
eJ1eJeJ2A100eJ 26 E6 10B8 BNE GOINSB OONE?
eJ1eJeJ3A1002 8eJ RTI YES
eJ1eJeJ4 *eJ1eJeJ5 1003 A SCNBKP EQU *eJ1eJeJ6A1003 A6 eJ3 A LOA #NUMBKP
eJ1eJeJ7A1005 B7 5A A STA PNCNT
eJ1eJeJ8A1007 AE 37 A LOX #BKPTBL
eJ1eJeJ9A1009 81 RTS
eJ1eJ1eJ *eJ1eJll ****************************************
eJleJ12 * *eJ1eJ13 * OISPLAY STACK POINTER *eJ1eJ14 * *eJ1eJ15 ****************************************
eJ1eJ16 *eJ1eJ17 100A A STACK EQU *eJleJ18A 100A A6 B5 A LOA #$B5 PRINT
eJ1eJ19A lODC B7 40 A STA DTABL+4 'SP'
eJ1eJ2eJAlODE A6 73 A LOA #$73
eJ1eJ21A 10EeJ B7 4E A STA OTABL+5
eJ1eJ22A 10E2 4F CLRA
eJ1eJ23A 10E3 5F CLRX
eJ1eJ24A 1DE4 CO 1F8E A JSR PRTBYT
eJ1eJ25A 1DE7 CO 1916 A JSR LOCSTK FIND USER
eJ1eJ26A 10EA 9F TXA STACK POINTER
eJ1eJ27A 1DEB AB eJ3 A ADO #3
eJ1eJ28A 10ED AE eJ2 A LOX #2
eJ1eJ29A 1DEF CO 1F8E A JSR PRTBYT PRINT IT
eJ1eJ3eJA1DF2 CC 18B5 A JMP CMOSCN
eJ1eJ31 *



PAGE filUJ CBUGfil5 .SA: 1

fillfil33 *fillfil34 ****************************************
fillfil35 * *fillfil36 * CLEAR DISPLAY TABLE *fillfil37 * *fillfil38 * X REG DESTROYED *
fillfil39· * *fillfil4fil ****************************************
fillfil41 *fillfil42A IDF5 AE fil5 A CLRTAB LDX #5
fillfil43A IDF7 6F 49 A CLRLOC CLR DTABL,X CLEAR SIX
fillfil44A IDF9 5A DECX LOCATIONS IN
fillfil45A IDFA 2A FB IDF7 BPL CLRLOC DISPLAY TABLE
fillfil46A IDFC 81 RTS
fillfil47 *fillfil48 ****************************************
fillfil49 * *fillfil5fil * DISPLAY TABLE CONTENTS *fillfil51 * *fillfil52 * A,X REGISTERS DESTROYED *fillfil53 * *fillfil54 ****************************************
fillfil55 *fillfil56A IDFD AE fil5 A DISTAB LDX #5
fillfil57A IDFF E6 49 A DISCHR LDA DTABL,X LOAD DISPLAY
fillfil58A lEfill AD fil9 lEfilC BSR DISPLY TABLE INTO
fillfil59A lEfil3 5A DECX 145filfilfil
fillfil6filAlEfil4 2A F9 IDFF BPL DISCHR
fillfil61A lEfil6 81 RTS
fillfil62 *fillfil63 ****************************************
fillfil64 * *fillfil65 * BLANK DISPLAY *fillfil66 * *fillfil67 * A,X REGISTERS DESTROYED *fillfil68 * *fillfil69 ****************************************
fillfil7fil *fillfil71A lEfil7 AD EC IDF5 CLRDIS BSR CLRTAB BLANK
fillfil72A lEfil9 AD F2 IDFD BSR DISTAB DISPLAY
fillfil73A lEfilB 81 RTS
fillfil74 *fillfil75 *****************~**********************
fillfil76 * *fil1fil77 * SHIFT ONE CHARACTER INTO *fillfil78 * DISPLAY *fillfil79 * *fillfil8fil * A REGISTER DESTROYED *fillfil81 * *fillfil82 ****************************************
fillfil83 *fillfil84A lEfilC BF 5fil A DISPLY STX WORKI SAVE INDEX
fillfil85A lE0E ID 00 A BCLR 6,PORTA CLEAR DATA
01086A lE10 AE 08 A LDX #8
01087A lE12 48 DISI LSLA SET UP
01088A lEl3 24 02 lE17 BCC DIS2 BIT OF
fil1089A lE15 lC 00 A BSET 6,PORTA ACCUMULATOR
01090A lE17 IE 00 A DIS2 BSET 7,PORTA CLOCK



PAGE 021 CBUG05 .SA: 1

0109111. lE19 IF 00 'A BCLR 7,PORTA IT
0109211. lElB ID 00 A BCLR .6,PORTA CLEAR DATA
0109311. lElD SA pECX COMPLETE?
0109411. lElE 26 F2 lEl2 BNE DISI NO
IH095A lE20 BE 50 A LDX WORKI RESTORE INDEX
0109611. lE22 81 RTS
01097 *01098 ****************************************
01099 * *
01100 * KEYPAD SCAN *
01101 * *
01102 * X REGISTER DESTROYED *
01103 * *
01104 * A REGISTER CONTAINS VALUE *
01105 * *
01106 * CARRY SET IF VALID OUTPUT *
01107 * *
01108 ****************************************
01109 *0111011. lE23 98 KEYSCN CLC
0111111. ~E24 4F CLRA
0111211. lE25 AE 06 A LDX #6 SETUP
0111311. lE27 AB 10 A KEYI ADD #$10 ROW
0111411. lE29 B7 00 A STA PORTA
0111511. lE2B AD 06 lE33 BSR COLUMN CHECK COLUMNS
0111611. lE2D 25 03 lE32 BCS KEY2 IF VALID GET OUT
0111711. lE2F SA DECX ELSE TRY
0111811. lE30 26 F5 lE27' BNE KEYI NEXT ROW
0111911. lE32 81 KEY2 RTS
01120 *
01121 ****************************************
01122 * *
01123 * CHECK FOR KEY CLOSURE *
01124 * WITHIN COLUMN AND DEBOUNCE *01125 * *
01126 * A REGISTER CONTAINS VALUE *
01127 * *01128 * CARRY SET IF VALID OUTPUT *
01129 * *01130 ****************************************
01131 *0113211. lE33 B6 00 A COLUMN LDA PORTA READ KEYPAD
01133A lE35 B7 50 A STA WORKI STORE IT
0113411. lE37 AS 0F A BIT #$0F KEY CLOSED?
0113511. lE39 27 19 lE54 BEQ COLRET NO GET OUT
0113611. lE3B AD 18 lESS BSR DBOUNC ELSE DEBOUNCE
0113711. lE3D B6 00 A LDA PORTA RE-READ KEYPAD
0113811. lE3F Bl 50 A CMP WORKI SAME KEY CLOSED?
0113911. lE41 26 11 lE54 BNE CQLRET NO GET OUT
0114011. lE43 99 SEC SET FLAG FOR VALID
0114111. lE44 B6 00 A COLI LDA PORTA KEY
0114211. lE46 AS 0F A BIT #$0F RELEASED?
0114311. lE48 26 FA lE44 BNE COLI NO TRY AGAIN
0114411. lE4A AD 'l9 lESS BSR DBOUNC YES DEBOUNCE
0114511. lE4C B6 011 A LDA PORTA STILL
0114611. lE4E AS llF A BIT #$IlF RELEASED?
111147A lE5'l 26 F2 lE44 BNE COLI NO TRY AGAIN
111148A lE52 B6 511 A LDA WORKI RETURN CHAR IN A-REG



PAGE 022 CBUG05 .SA:1

01149A lE54 81 COLRET RTS YES GO HOME
lH150 *01151 ****************************************
01152 * *01153 * PAUSE FOR 3075 CYCLES *01154 * *01155 * A REGISTER DESTROYED *01156 * *01157 ****************************************
01158 *01159A lESS A6 FF A DBOUNC LDA #$FF PAUSE
0116l!JAlE57 21 FE lE57 DLOOP BRN * 256X12
01161A lE59 21 FE lE59 BRN * CYCLES
01162A lE5B 4A DECA OR AT
01163A lE5C 26 F9 lE57 BNE DLOOP LEAST
o 1164A lESE 81 RTS 3.7 MS
01165 *



PAGE 023 CBUG05 .SA:1

01167 *01168 ****************************************
IH169 * *
01170 * INPUT ONE CHARACTER *01171 * *01172 * A REGISTER CONTAINS HEX VALUE *
01173 * *01174 * X REGISTER CONTAINS HEX VALUE *01175 * *
01176 ****************************************
01177 *01178 1E5F A CHRIN EQU *
o 1179A 1E5F CD 1E23 A JSR KEYSCN GET KEY
01180A 1E62 24 FB 1E5F BCC CHRIN IF NOT VALID RETRY
01181A 1E64 SF CLRX
01182A 1E65 D1 1E6F A CHRIN1 CMP STABL,X CONVERT
01183A 1E68 27 03 1E6D BEQ CHRIN2 TO HEX
01184A 1E6A 5C INCX
01185A 1E6B 20 F8 1E65 BRA CHRIN1
o 1186A 1E6D 9F CHRIN2 TXA IF CANCEL
01187A 1E6E 81 RTS
01188 *01189 ****************************************
01190 * *
01191 * CONVERSION TABLE FOR KEYPAD *01192 * TO HEX NUMBER *01193 * *01194 ****************************************
01195 *o 1196A 1E6F 11 A STABL FCB $11 0
01197A 1E70 21 A FCB $21 1
o 1198A 1E71 22 A FCB $22 2
01199A 1E72 24 A FCB $24 3
01200A 1E73 31 A FCB $31 4
01201A 1E74 32 A FCB $32 5
01202A 1E75 34 A FCB $34 6
01203A 1E76 41 A FCB $41 7
01204A 1E77 42 A FCB $42 8
01205A 1E78 44 A FCB $44 9
01206A 1E79 48 A FCB $48 A
01207A 1E7A 38 A FCB $38 B
01208A 1E7B 28 A FCB $28 C
01209A 1E7C 18 A FCB $18 D
01210A 1E7D 14 A FCB $14 E
01211A 1E7E 12 A FCB $12 F
01212A 1E7F 61 A FCB $61 CANCEL COMMAND
01213A 1E80 58 A FCB $58 ENTER COMMAND
01214A 1E81 68 A FCB $68 STACK POINTER
01215A 1E82 64 A FCB $64 MEMORY
01216A 1E83 62 A FCB $62 GO
01217A 1E84 54 A FCB $54 VERIFY TAPE
01218A lESS 52 A FCB $52 LOAD TAPE
01219A 1E86 51 A FCB $51 PUNCH TAPE
01220 *01221 ****************************************
01222 * *01223 * HEX TO MUX DISPLAY *01224 * CONVERSION TABLE *



PAGE 024 CBUG05 .SA:l

01225 * *1il1226 ****************************************
1il1227 *01228A lE87 D7 A CTABL FCB $D7 Iil
1il1229AlE88 06 A FCB 6 1
1il1230A lE89 E3 A FCB $E3 2
01231A lE8A A7 A FCB $A7 3
1il1232AlE8B 36 A FCB $36 4
01233A. lE8C B5 A FCB $B5 5
01234A lE8D F5 A FCB $F5 6
1il1235AlE8E 1il7 A FCB 7 7
01236A lE8F F7 A FCB $F7 8
01237A lE90 B7 A FCB $B7 9
01238A lE91 77 A FCB $77 A
1il1239AlE92 F4 A FCB $F4 B
01240A lE93 Dl A FCB $Dl C
01241A lE94 E6 A FCB $E6 D
01242A lE95 Fl A FCB $Fl E
01243A lE96 71 A FCB $71 F
01244 *1il1245 lE97 A ERROR EQU *1il1246AlE97 CD IDFS A JSR CLRTAB
01247A lE9A A6 Fl A LDA #$Fl
01248A lE9C B7 4A A STA DTABL+l
01249A lE9E A6 60 A LDA #$60
01250A lEAf' B7 4B A STA DTABL+2
01251A lEA2 B7 4C A STA DTABL+3
1il1252A lEM CD IDFD A JSR DISTAB
01253A lEA7 CC 18B5 A JMP CMDSCN



PAGE ~25 CBUG~5 .SA:l
~1255 *
~1256 ****************************************
~1257 * *0125B * MEMORY EXAMINE/CHANGE *~1259 * *
~126~ ****************************************
~1261 *~1262A lEAA CD IF53 A MEMEX JSR GETADR BUILD ADDRESS
~1263A lEAD Al l~ A CMP #$Hl
~1264A lEAF 27 SF IFl~ BEQ MEMEX4
~1265A lEBl B7 5~ A MEMEX3 STA WORKI
~1266A lEB3 B6 52 A LDA ADDRH
~1267A lEB5 Al IF A CMP jlPCMASK
~126BA lEB7 23 ~3 lEBC BLS MEMOK
~1269A lEB9 CC lE97 A JMP ERROR
~127~A lEBC B6 5~ A MEMOK LDA WORKI
~1271A lEBE CD IF15 A JSR LOAD LOAD DATA
~1272A lECl CD IFBC A JSR PRTDAT PRINT IT
~1273A lEC4 CD IF49 A JSR GETNYB GET NEW NIBBLE
~1274A lEC7 Al l~ A CMP #$l~
~1275A lEC9 27 45 IFl~ BEQ MEMEX4
~1276A lECB Al 11 A CMP #$11
~1277A lECD 27 19 lEEB BEQ ADRINC
~127BA lECF Al 13 A CMP #$13
~1279A lEDl 27 2D IF~~ BEQ ADRDEC
~12BM lED3 24 ~B- lEDD BCC CMDMDL IF VALID
~12BIA lED5 CD IFBC A MEMEXI JSR PRTDAT PRINT IT
~1282A lED8 CD IF37 A JSR GETBY2 SHIFT IN NEXT
~12B3A lEDB 25 FB lED5 BCS MEMEXI IF VALID TRY AGAIN
~12B4 *~12B5A lEDD Al 11 A CMDMDL CMP #$11 ENTER?
~12B6A lEDF 26 15 lEF6 BNE MEMEX2 NO
~1287A lEEl B6 51 A LDA WORK2 RESTORE ACCA
~12B8A lEE3 CD lF24 A JSR STORE YES STORE IT
~12B9A lEE6 25 C9 lEBl BCS MEMEX3 STORE VALID?
~129~A lEE8 ~C 4F 25 IFl~ ADRINC BRSET n,SWIFLG,MEMEX4
~1291A lEEB 3C 53 A INC ADDRL YES GOTTO
~1292A lEED 26 ~2 lEFl BNE MEMEX5 NEXT
~1293A lEEF 3C 52 A INC ADDRH
~1294A lEFl CD IFB~ A -MEMEX5 JSR PRTADR PRINT IT
~1295A lEF4 2~ BB lEBl BRA MEMEX3 REPEAT
~1296A lEF6 Al 13 A MEMEX2 CMP #$13 MEMORY?
~1297A lEF8 26 16 IFl~ BNE MEMEX4 NO
~129BA lEFA B6 51 A LDA WORK2
~1299A lEFC AD 26 IF24 BSR STORE
~13~~A lEFE 25 Bl lEBl BCS MEMEX3
~13~lA IF~~ ~C 4F ~D IFl~ ADRDEC BRSET 6,SWIFLG,MEMEX4
~13~2A IF03 3D 53 A TST ADDRL YES THEN
013~3A IF~5 26 ~2 IF~9 BNE CMDMB2 GET PREVIOUS
~13~4A IF~7 311.52 A DEC ADDRH ADDRESS
~13~5A IF~9 311.53 A CMDMB2 DEC ADDRL
~13~6A IF~B CD IFB~ A JSR PRTADR PRINT IT
~13~7A IF~E 2~ Al lEBl BRA MEMEX3 REPEAT
~13~8A IFl~ ID 4F A MEMEX4 BCLR 6,SWIFLG INVALID CHAR
~13~9A IF12 CC 18AB A JMP GETCMD
~131~ *~1311 ****************************************
~1312 * *



PAGE ~26 CBUG~5 .SA:1

~1313 * LOAD BYTE AT ADDRH,ADDRL *- ~1314 * INTO ACCUMULATOR *~1315 * *~1316 ****************************************
~1317 *~1318A· 1F15 BF 5~ A LOAD STX WORK1 SETUP
~1319A 1F17 AE C6 A· LDX #$C6 ROUTINE
~132~A 1F19 BF 51 A LDSTCM STX WORK2 TO DO
~1321A 1FlB AE 81 A LDX #$81 TWO BYTE
~1322A 1F1D BF 54 A STX WORK3 LOAD
U323A 1F1F BD 51 A JSR WORK2
~1324A 1F21 BE 5~ A LDX WORK1
~1325A 1F23 81 RTS
~1326 *U327 *.**************************************
U328 * *~1329 * STORE ACCUMULATOR INTO *~133~ * BYTE AT ADDRH,ADDRL *~1331 * *~1332 ****************************************
~1333 *~1334A 1F24 BF 5~ A STORE STX WORK1
~1335A 1F26 AE C7 A LDX #$C7 SETUP
~1336A 1F28 AD EF 1F19 BSR LDSTCM ROUTINE
~1337A 1F2A B7 55 A STA WORK4 TO DO
~1338A 1F2C CD 1F15 A JSR LOAD TWO BYTE
~1339A 1F2F B1 55 A CMP WORK4 STORE
~134~A 1F31 27 ~1 1F34 BEQ STRTS
U341A 1F33 99 SEC
~1342A 1F34 BE 5~ A STRTS LDX WORK1
~1343A 1F36 81 RTS
~1344 *



PAGE 327 CBUG35 .SA:1

31346 *31347 ****************************************
31348 * *
31349 * BUILD A BYTE *31353 * *
31351 * A REGISTER CONTAINS BYTE *31352 * *31353 ****************************************
01354 *31355A IF37 B7 51 A GETBY2 STA WORK2
31356A IF39 AD 3E IF49 BSR GETNYB
31357A IF3B 24 3B IF48 BCC GETBRT
31358A IF3D 38 51 A ASL WORK2
31359A IF3F 38 51 A ASL WORK2
31363A IF41 38 51 A ASL WORK2
31361A IF43 38 51 A ASL WORK2
31362A IF45 BA 51 A ORA WORK2
31363A IF47 99 SEC
31364A IF48 81 GETBRT RTS
31365 *31366 ****************************************
31367 * *31368 * GET ONE CHARACTER AND *31369 * CHECK FOR VALID HEX NUMBER *01373 * *31371 * A REGISTER CONTAINS OUTPUT *31372 * *31373 * X REGISTER DESTROYED *31374 * •
31375 * CARRY SET IF VALID HEX NUMBER *31376 * *31377 ****************************************
31378 *31379A IF49 CD lE5F A GETNYB JSR CHRIN GET CHARACTER
31383A IF4C 98 CLC
31381A IF4D Al 3F A CMP 1I$3F VALID HEX?
31382A IF4F 22 31 IF52 BHI GETRET NO
31383A IF51 99 SEC YES
31384A IF52 81 GETRET RTS
31385 *31386 ****************************************
31387 * *
31388 * BUILD ADDRESS *31389 * *31393 * A,X REGISTERS DESTROYED *31391 * *31392 * ADDRH,ADDRL CONTAIN ADDRESS *31393 * *01394 * CARRY SET IF NEW ADDRESS *31395 * *31396 ****************************************
31397 *31398A IF53 CD IDF5 A GETADR JSR CLRTAB BLANK DISPLAY
31399A IF56 AD 58 IFB3 BSR PRTADR
31433A IF58 AD EF IF49 BLDADR BSR GETNYB GET CHARACTER
31431A IF5A 25 3A IF66 BCS GETADI VALID HEX
31432A lF5C Al 13 A CMP 11$10
3141BA IF5E 27 2B IF8B BEQ GETRTS



PAGE "28 CBUG"5 .SA:1

"14"4A IF6" Al 11 A CMP #$11 NO ENTER?
"l4"5A IF62 27 27 IF8B BEQ GETRTS NO TRY AGAIN
91496A IF64 29 ED IF53 BRA GETADR
91497A IF66 3F 52 A GETADI CLR ADDRH INIT HIGH ADDRESS
91498A IF68 B7 53 A STA ADDRL PUT CHAR AWAY
91499A IF6A AD 44 IFB" BSR PRTADR PRINT NEW ADDRESS
"l419A IF6C AD DB IF49 GETALP BSR GETNYB IGET ANOTHER CHAR
91411A IF6E 24 12 IF82 BCC GETARG VALID?
91412A IF79 48 ASLA YES
91413A IF71 48 ASLA SHIFT IT IN
91414A IF72 48 ASLA
"l415A IF73 48 ASLA
91416A IF74 AE 94 A LDX #4
91417A IF76 48 GETASF ASLA
91418A IF77 39 53 A ROL ADDRL
"1419A IF79 39 52 A ROL ADDRH
91429A IF7B SA DECX
"1421A IF7C 26 F8 IF76 BNE GETASF
91422A IF7E AD 30 IFB0 BSR PRTADR PRINT NEW ADDR
91423A IF80 20 EA lF6C BRA GETALP GET ANOTHER CHAR
91424A IF82 Al 10 A GETARG CMP #$1"
01425A IF84 27 "5 IF8B BEQ GETRTS
91426A lF86 Al 11 A CMP #$11 IS ENTER?
01427A IF88 26 E2 IF6C BNE GETALP NO TRY AGAIN
01428A IF8A 99 SEC YES SET FLAG
91429A IF8B 81 GETRTS RTS
91439 *



PAGE 329 CBUG35 .SA:1

01432 *01433 ****************************************
01434 * *
01435 * PRINT ONE BYTE INTO PAIR *01436 * OF DISPLAY DIGITS *
01437 .. *
01438 * A REGISTER CONTAINS BYTE *
01439 * *
01440 * X REGISTER POINTS TO 1ST *
01441 * DIGIT OF PAIR *01442 * *01443 ****************************************
01444 *01445A 1F8C AE 04 A PRTDAT LDX '4 PRINT IN LAST TWO DIGIT
01446A 1FSE BF 50 A PRTBYT STX WORK1
01447A 1F90 B7 55 A STA WORK4
01448A 1F92 44 LSRA
01449A 1F93 44 LSRA
01450A 1F94 44 LSRA
01451A lF95 44 LSRA
01452A 1F96 97 TAX
01453A 1F97 D6 1ES7 A LDA CTABL,X
01454A 1F9A BE 50 A LDX WORK1
01455A 1F9C E7 49 A STA DTABL,X
01456A 1F9E B6 55 A LDA WORK4
01457A 1FA0 A4 0F A AND ,$0F
01458A 1FA2 97 TAX
01459A 1FA3 D6 1E87 A LDA CTABL,X
01460A 1FA6 BE 50 A LDX WORK1
01461A 1FA8 E7 4A A STA DTABL+1,X
01462A 1FAA CD 1DFD A JSR DISTAB
01463A 1FAD B6 55 A LDA WORK4
01464A 1FAF 81 RTS
01465 *01466 ****************************************
01467 * *01468 * PRINT ADDRESS ADDRH,ADDRL *01469 * *01470 * X REGISTER DESTROYED *01471 * *01472 ****************************************
01473 *01474A 1FB0 B7 56 A PRTADR STA WORK5
01475A 1FB2 BF 54 A STX WORK3
01476A 1FB4 B6 52 A LOA ADDRH
01477A 1FB6 5F CLRX
01478A 1FB7 AD D5 1F8E BSR PRTBYT
01479A 1FB9 B6 53 A LDA AODRL
I'l1480A1FBB AE 02 A LOX #2
01481A 1FBO AD CF 1FSE BSR PRTBYT
01482A 1FBF B6 56 A LOA WORK5
01483A 1FC1 BE 54 A LDX WORK3
01484A IFC3 81 RTS
01485 *



PAGE 030 CBUG05 .SA:1

01487 *01488A 1FC4 80 TIRQWV RTI
01489 *01490A 1FC5 80 IRQV RTI
01491A 1FC6 80 RTI
01492 *01493 1FC7 A TIRQV EQU *01494A 1FC7 A6 40 A LOA #$40
01495A 1FC9 B'1 09 A STA TIMEC
01496A 1FCB CD 1916 A JSR LOCSTK
01497A 1FCE E6 04 A LOA 4,X
01498A 1FD0 BA 57 A ORA WORK6
01499A 1FD2 E7 04 A STA 4,X
01500A 1FD4 CC 1928 A JMP PCOUNT
01501 *01502A 1FD7 CD 1E07 A PWRDWN JSR CLRDIS
01503A 1FDA 8E STOP
01504 *01505A 1FF6 ORG $1FF6
01506 *01507A 1FF6 0046 A FOB TIRQW
01508A 1FF8 0043 A FOB TIRQ
01509A 1FFA 0040 A FOB IRQ
01510A 1FFC 1856 A FOB SWI
01511A 1FFE 1800 A FOB RESET
01512 *01513 END
TOTAL ERRORS 00000--00000



AN-824

MC68000 DMA
USING THE MC6844 DMA CONTROLLER

Prepared by
Arnold Morales

Microprocessor Applications Engineering

The MC6844 DMA Controller (DMAC) can be interfaced
to the MC68000 microprocessor to provide flexible, low-
cost, relatively high performance DMA control in an
MC68000-based system. In designing such a system, three
interface requirements must be considered:

I. The DMAC should operate at maximum frequency for
efficient data transfer. High performance systems may
require the use of the two megahertz device
(MC68B44), so the system must allow the MC68000 to
access the DMAC asynchronously.

2. Handshake logic must be implemented to arbitrate
control of the system bus between the MC68000, the
DMA control system, and other possible bus masters.

3. The MC6844 is an 8-bit device intended for use in
MC68000 systems, capable of direct memory access
through only a 64K memory space, and also lacks
certain bus strobes necessary for simple implementa-
tion in an MC68000-based system. A bus interface
must be designed to allow direct memory access
throughout the entire 16 megabyte MC68000 memory
map and to provide the required bus strobes needed
for successful use in an MC68000-based system.

This application note describes designs to meet each of
these requirements. These designs are then combined to
form a direct memory access control system for the
MC68000. An implementation of the complete system is
presented in block diagram form using an MC6854 Ad-
vanced Data Link Controller (ADLC) and a static memory
buffer.

MC6844 ASYNCHRONOUS INTERFACE OPERATION
The MC6844 can be interfaced asynchronously to the

MC68000 using the circuitry presented in Figure I. This
circuit allows the MC68000 to access a DMAC driven by an
E clock that is either synchronous or asynchronous to the
MC68000 clock. It generates DMAC chip select at the proper
time to satisfy OMAC timing requirements, latches data to
satisfy data hold time requirements, and asserts data transfer
acknowledge at the proper time to ensure valid data transfer

between devices. This circuit can be used to interface other
MC6800 peripherals, and is used to interface to the ADLC as
well as the DMAC in the system implementation presented at
the end of this application note.

CIRCUIT OPERATION - When the MC68000 per-
forms a read or write bus cycle (access), the processor asserts
one or both of the two data strobes (OS), an address strobe
(AS), the read/write (R/W) signal, and an address. The
processor also outputs data during write cycles.

The MC68000 remains in this state until the bus cycle is
terminated. Data transfer acknowledge (DTACK) is asserted
by the peripheral or memory device being accessed to initiate
termination of the bus cycle by the MC68000.

The circuit in Figure 1 synchronizes MC68000 accesses to
the OMAC with the E clock. Initially, flip-flops U IA and
U IB are cleared causing a high DTACK output setting U2
and U3 into a transparent mode. Latch U2 is in the high-
impedance state due to a high on the output enable (OE)
input. Latch U3 is enabled due to a low on the OE input.

At the start of a DMAC access, latch U3 remains enabled
if the access is a write. If the access is a read, the high R/W
and DMAC Select inputs to U4A cause U3 to go to the high-
impedance state and U2 to become enabled. The DMAC
Select signal is asserted when the DMAC is addressed.
However, the DMAC is actually selected by the assertion of
CS (DMAC). Flip-flop UIA is clocked high on the first fall-
ing edge of E after DMAC Select and data strobe (DS) are
asserted. The Q output of U IA is applied to U4D, asserting
CS (DMAC). Selecting the DMAC at this time ensures that
the DMAC has adequate address setup time.

On the next falling edge of E, the Q output of U IB is
clocked low asserting DTACK and latching data into the
enabled latch. The asserted DTACK signal, inverted by
U4D, deselects the DMAC by causing CS (DMAC) to go
high. When the access terminates, flip-flop UI is cleared by
the negation of DS, and the interface circuitry is initialized
for the next access. The DTACK signal is buffered by an
open-collector buffer (U5) to allow assertion of DTACK by
other devices when the DMAC is not being accessed.



U3

D7 D7

D6 06

D5 05

us (
D4 04

D3 03

D2 02

D1 01
DO 00

OE LE

SN74LS373

U2

'- - 07 D7f---

06 D6
4LSOO 05 D5

04 D4
03 D3

02 D2

01 Dl

00 DO

_ VCC S~OO '1lE LE

R/~=:J h U48»---U4A ~
Select ~ SN7407

DTACK •
U5

~SOO

U4D'"
VCC VCC •....---../

SN74LS112 SN74LS112

S • DMAC Select
J SD Q J SD Q NC

UIA U18

E CP --< CP

.,f;: K Q NC .,J:" K IT =
E

_ CD
.,. TDTACK

S~OO - ---rr-
U4C '\. 1 ·Open Coil

----.-/ DS

I

BUS ARBITRATION INTERFACE

The MC6844 is an 8-bit, 4-channel DMA Controller capa-
ble of performing direct memory transfers of a user defined
number of data bytes (data block) within a 64K byte memory
space. Associated with each channel of the controller are:

• A transfer request (TxRQ) input which is asserted by a
peripheral controller or a processor to request DMA

. service.

• A l6-bit address register which is initialized with the
beginning address of the data block to be transferred.

• A l6-bit byte count register which is initialized with the
desired number of data bytes (size of the data block) to
be transferred.

Each channel can perform DMA transfers in one of three
modes: TSC Steal, Halt Steal, and Halt Burst. Two of these
modes, TSC Steal and Halt Steal, are single-byte transfer
modes in which the DMAC returns control of the system bus
to the processor after each transfer, while the Halt Burst

mode is a block transfer mode in which the DMAC retains
control of the system bus until the last byte of the data block
has been transferred.

The bus arbitration circuit presented in Figure 2 is de-
signed for the Halt Steal and Halt Burst modes of operation.
The TSC Steal mode is intended for use with the MC6800
and offers no advantage over the Halt Steal mode in
MC68000 applications.

In the Halt Steal mode the DMAC responds to a transfer
request by asserting DMA request halt steal (DRQH). The
DMAC then waits until DMA grant (DGRNT), a DMAC
input, is asserted. At this time, one transfer of data is initial-
ized and transfer strobe (TxSTB) is asserted, followed by the
negation of DRQH. This sequence is repeated until all data
has been transferred.

The same sequence is followed in the Halt Burst mode
with the exception that DQRH is negated only after the last
byte of the data block has been transferred. In this mode,
bus mastership is arbitrated once, then data transfers occur
in succession until all data has been transferred.



5V
MC68000 MC6844

U5 SN74LS32 U7

BR DRQH TxRQ

5V 5V

SN74LS138

U4
SN74LS04

BG 'IT
AS E3 U611:

DTACK AO

BGACK A1

A2 SN74LSOO

DGRNT

5V

'Open Collector Output

Note: 10 kn Pullup Resistors

CIRCUIT OPERATION - For either a Halt Steal or
Halt Burst OMA transfer by the control systems presented in
this application note, three conditions must be met:

I. Transfer request (TxRQ) must be asserted.
2. ORQH must be asserted.
3. All bus masters must have relinquished the bus to

ensure that OMA grant (OGRNT) is asserted.
Initially OGRNT is low, bus grant acknowledge

(BGACK) is not asserted by the interface, and TxSTB is
high. The OMAC responds to a transfer request by asserting
ORQH. Once ORQH is asserted, it remains asserted until
the OMAC performs a byte transfer in the Halt Steal mode
or until the last byte of a designated memory block is trans-
ferred in the Halt Burst mode.

Transfer request (TxRQ) is coupled through U I and U2 so
that MC68000 bus request (BR) is asserted when TxRQ is
asserted. By requesting a OMA transfer and bus arbitration
simultaneously (disregarding gate propagation delay), OMA
latency time is minimized. The MC68000 responds to a bus
request by asserting bus grant (BG) and relinquishing the
bus.

When ORQH is asserted and all bus masters are off the
system bus, indicated by the negation of AS, OTACK, a~
BGACK, flip-flop U3A-U3B is set by the assertion of the 03
output of U4. The setting of flip-flop U3A-U3B asserts
OGRNT to initiate OMA transfer(s), and also asserts
BGACK to keep other bus masters off the bus. Bus grant

(BG) is negated by the MC68000 soon after BGACK is
asserted. _

Flip-flop U3A-U3B is cleared on the rising edge of TxSTB
after it is asserted during each OMA cycle in the Halt Steal
mode, and during the last cycle of a block transfer in the
Halt Burst mode. Clearing flip-flop U3A-U3B negates
BGACK to release the system bus, and negates OGRNT to
stop OMAC transfer activity. .

The MC68000 BR and BGACK signals are driven by open
collector gates to allow other devices to also request the
system bus. A pullup resistor is used to hold AS in the
negated state during transitions in bus ownership.

BUS INTERFACE REQUIREMENTS
A general direct memory access controller for an

MC68000-based system must allow direct memory access
throughout the entire 16 megabyte memory map of the
MC68000. In addition, it must assert the appropriate data
strobe(s) and an address strobe. The MC6844 does not sat-
isfy these requirements; therefore, TTL devices must be used
to meet these needs.

The MC68000 can perform three types of data transfers:
word transfers (00-015), byte transfers to/from lower data
bytes (00-07), and byte transfers to/from upper data bytes
(08-015). When transferring a byte, the MC68000 asserts
either the upper data strobe (UOS) or the lower data strobe
(LOS), depending on whether an upper or a lower data byte
is being transferred; and when transferring a word, it asserts



SN74LS75 SN74LS367
S03 7 U4 .L.i U5 5 L5S
S02 6 ~ 3 UOS

SOl 3 &.!1 -11 LOS
SOO 2 ~ 13 UOS- - -E E E013

•
4 15 1

MC6844
U1

CS
2 -®
4 SA1/

AO SA25
A1

SA3A2 6

A3 7 SM
IRQ/.-E.. M 8 SA5/

DEND 36 A5 9 SA6

DRQH~ A6 10 SA7

DRQT-fg- A7 11 SA8

RESET~ A8
12 SA9

SAlOE ---:.:..
A9 13

~

14 SA11
-.: U9 34 Al0

TxSTB All
15 SA12

AS 16 SA13
SOO 28 A12 17 SA14DO
SD1 27 A13

18 SA15Dl A14SD2 26
02 A15 19 SA16 SS03 25 SR/W103 R/W 3 SR/W

SD4 24 1 f"..... 2 1 ~SN74LSOO ~D4 TxAKA
35

SD5 23 D5
U7~

~SD6 22 D6 SN74LS04
SD7 21 D7

~OGRNT
38

SN74LS373
SOO 3 U2 2 SA17
SDl 4 5 SA18
SD2 7 6 SA19
S03 8 9 SA20
S04 13 12 SA21
SD5 14 15 SA22
SD6 17 16 ,

SA23

~
6E

...!.L
LE

0.1,1 1
1 CHAN 0 SELECT

A SN74LS373
SOO 3 U3 2 SA17
SD1 4 5 SA18
S02 7 6 SA19
S03 8 9 SA20
SD4 13 12 SA21
SD5 14 15 SA22
S06 17 16 SA23

~
LE - ~

OE

0 11 CHAN 1 SELECT

N74LS86

~ RiVii To Peripherall.:::Y .Controller



both UDS and LDS. The MC68000 asserts AS during each
type of transfer.

The following are general designs which can be modified
to meet individual system requirements. The two designs
presented differ in the types of transfer they perform.

Only two of the four DMAC channels are used in each
design. However, these interfaces can be easily modified for
four-channel operation.

WORD AND NON-SEQUENTIAL BYTE
TRANSFER INTERFACE SYSTEM

An MC68000 DMA control system capable of word
transfers and byte transfers to/from upper byte or lower
byte memory locations is presented in Figure 3.

In this system, address lines AO-A15 from the DMAC are
connected to MC68000 system address lines SA I-SA23 and
as the DMAC address lines increment or decrement (accord-
ing to user option), the system address is incremented/
decremented by words, rather than bytes; that is, the system
address changes in increments of two bytes.

The system upper address lines SAI7-SA23, are latched
into transparent latches U2 and U3 during initialization,
which are enabled during a DMA transfer. Latch U2 is the
channel 0 upper address latch, with its chip select labeled A;
latch U3 is the channel I upper address latch, with its chip
select labeled B. During a direct memory access, transfer
acknowledge A (TxAKA) from the DMAC is asserted during
channel I transfers, and negated during channel 0 transfers.
This DMAC output is used to enable the proper address
latch during a direct memory access.

The type of direct memory access transfer (word or byte)
is determined by the state of latch U4 during the access.
Latch U4 with its chip select labeled C, is connected to
system data bus lines SDO-SD3 and, through three-state
buffer U5, to system data strobes LDS and UDS. When
writing to latch U4 during initialization, the states of SD2
and SD3 determine the states of the data strobes during a
channel I direct memory access, and the states of SDO and
SDI determine the states of the data strobes during a channel
o direct memory access. For word transfer both of the data
strobes must be asserted, while for byte transfers either the
LDS or UDS is asserted, depending on whether a lower data
byte (DO-D7) or an upper data byte (D8-DI5) is being trans-
ferred.

Note that in memory organized in 16-bit words, byte
transfers are to/from either the upper byte or the lower byte
of memory during each DMA block transfer.

During a direct memory access the appropriate U4 latch
states are gated onto the system bus by U5. The appropriate
U5 buffers are enabled by latch U2 during channel 0 access,
and by latch U3 during channel I access.

When DGRNT is asserted, the R/W signal to the periph-
eral controller is inverted by exclusive OR gate U6.

Transfer strobe (TxSTB) is fed through an open collector
Duffer te>the system AS line. During a direct memory access
transfer the AS output of the MC68000 is in the high-
impedance state and TxSTB is used as the system address
strobe. Transfer strobe is asserted by a DMAC operating at 2
megahertz for at least 370 nanoseconds to indicate a valid
address during a direct memory access, and may require
conditioning for use as an address strobe during direct mem-
ory access in some systems.

SEQUENTIAL MEMORY BYTE
TRANSFER INTERFACE SYSTEM

An MC68000 DMA control system capable of byte trans-
fers to/from sequential memory locations in a memory orga-
nized in 16-bit words is presented in Figure 4. In this system,
address lines Al-AI5 from the DMAC are connected to
MC68000 system address lines SAI-SAI5. Address line AD
of the DMAC is connected to inverting buffer U4. Buffer U4
is enabled by DGRNT to generate the data strobes. Only one
data strobe is asserted at a time. Each time the DMAC
increments/decrements, the state of UDS and LDS alter-
nate. System address line SA I changes state only after each
data strobe is asserted for one DMA cycle and negated for
one DMA cycle. By doing this, data is transferred to/from
consecutive byte locations in the word-dim~nsioned memory
map.

Latches U2 and U3 latch upper system address lines
SA 16-SA23 during initialization and their operation is iden-
tical to the circuit presented in Figure 3.

COMPLETE SYSTEM IMPLEMENTATION
A block diagram of a complete MC68000 DMA system

using the MC6844 DMAC for controlling DMA between an
MC6854 ADLC and a block of memory is presented in
Figure 5. Data transfer in this system is between the ADLC
and lower memory byte locations (DO-D7).

The ADLC asserts receiver data service request (RDSR)
each time the receiver FIFO register requires servicing, and
transmitter data service request (TDSR) each time the trans-
mitter is ready for data. These outputs are tied to transfer
request channel 0 (TxRQO) and transfer request channel I
(TxRQI) of the DMAC so that DMAC channel 0 services the
ADLC receiver, and DMAC channel I services the ADLC
transmitter.

The block labeled "MC6854 Register Select, R/W Con-
trol" is used to address the ADLC transmit or receive regis-
ter and to invert the read/write signal during a direct mem-
ory access. This circuit puts the address bus from the ADLC
in the high-impedance state during the direct memory access
and forces ADLC register select zero (RSO) to a low state and
register select one (RSI) to a high state, so that during a
direct memory access either the transmit FIFO register or the
receiver FIFO register is selected according to the state of the
R/W signal. The, circuit uses DMAC r:>E1'IT5 to select the
frame terminate register of the ADLC during the last byte of
a DMA block transfer when servicing the transmitter FIFO.
During a direct memory access, the ADLC is selected by
assertion of TxSTB to ensure that the ADLC is selected only
during valid direct memory access cycles.

System memory is connected directly to the system bus.
The "Memory DTACK Gen." consists of a counter driven
by the MC68000 clock, and enabled by an asserted address
strobe when memory is accessed by the processor. Data
transfer acknowledge (DTACK) is "picked off" one of the
counter pins so that it is asserted at some preset time interval
a fter memory is accessed.

Memory address decoding is the same for both direct
memory access and processor data transfers. However, dur-
ing a direct memory access, memory is deselected by the
NOR or DGRNT and E. This ensures that, during a direct
memory access, the memory will latch written data at the fall
of E, when ADLC data is valid.



IRQ/DEND

DRQH

6ROT
RESET

ystem us

[ SN74LS368

U4

UDS 11 12

14 13 LDS

MC6844 E 15

U1 CS +-0
AO
A1 5 SA1

A2 6 SA2
33 A3 7 SA3 4

A4 8 SA4 SN74LS04
36 A5 9 SA5

37 10 SA6 5B
A6

39 A7 11 SA7 3

40
A8 12 SA8

AS
A9

13 SA9

~1
34

TxSTB A10 14 SAlO

All 15 SA11

SN7407 SDO 28
DO A12

16 SA12

SD1 27
D1 A13

17 SA13

SD2 26
D2 A14

18 SA14

SD3 25 D3 A15 19 SA15

SD4 24 D4 R/W
3 SR/W SR/W 1

SD5 23
D5 TxAKA

35 1 J'..... 2 1 ~ SN74LSOO 21

SD622
D6 U5A~

SD721
D7

SN74LS04 DGRNT
DGRNT

~
1

38

SN74LS373

SDO 3 U2 2 SA16

SD1 4 5 SA17
SD2 7 6 SA18
SD3 8 9 SA19 /
SD4 13 12 SA20

~ 15 SA21

~ 16 SA22

~ 19 SA23
LE OE

110 11 CHAN 0 SELECT

A SN74LS373

~ U3 2 SA16

~ 5 SA17

~ 6 SA18

~ 9 SA19

~ 12 SA20

~ 15 SA21

~ 16 SA22

~ - 19 SA23
LE OE

0 11 CHAN 1 SELECT

·Open

SN74LS86
3 R/WTo

~ Peripheral
Controller



MC6854
MC6854

Tx Data -SA1-SA2 Register } To Serial

Select, r Rx Data Link
R/IN

R/W '- RSO-RSl

Control
R/W I~

f- r
DO-D7 RDSR - I§·

z I~ '-a: TDSR '" .
MC68000 <:l

CS
N

Cl E <l:
Ul

MC6854 CS I I ,.:.

~ System L ~L(Address lDS DMA

Al-A23 Address
R/W Asynch. MC6844 Upper

V Decoder Interface DO-D7 Address,
Address SDO-SD7 DEND AS,

AS, lDS DTACK r Data
Periph Select SA1-SA16

AO-A15 Strobe- - '- TxAKA
~ System TxAKA Generator

Data - Peri ph CS DGRNT
DGRNT

DO-D7

V TxSTB
RNi TxROO

TxROl ~
r ,

IjDTACK DO-D7 DROHE '- -
lDS E Clock ----4 TxSTB I~AS Generator CS E

RIW I I
BR MC6B44CS I
BG DMA System latch Selects

JIGKACK

I~ TxSTB

Memory DTACK BR DROH

ClK DTACK BG Bus TxR01

Gen. DGRNT BGACK Arbitration TxRQ2

I) 15"I'AC1< DGRNT -
AS

~

Memory

I~ DGRNT SDO-SD7 r
DO-D7

1_ Riw '-
EJ )0- WE
~ SA1-SA10 r

"-
ADDR

_./ CS



ADDITIONAL SYSTEM ENHANCEMENTS
Two enhancements to the direct memory access control

systems presented in this application note should be cOnsid-
ered. One improvement increases ADLC throughout, and
the other allows memory to memory DMA data transfers.

THROUGHPUT ENHANCEMENT - Worst-case
DMA latency of the systems described in this application
note are 1.18 microseconds for MC68000 systems that do not
implement the Read-Modify-Write instruction, and 1.68 mi-
croseconds for systems that do implement the instruction.
This is the worst-case delay between assertion of TxRQ and
the beginning of the direct memory access cycle to service the
channel, and allows for propagation delay through the gates
in the bus arbitration handshake logic. These times assume 8
megahertz processor operation, and 2 megahertz controller
operation.

The ADLC service latency can be reduced by designing a
FIFO buffer to handle data transfers between the ADLC and

the rest of the system. In this technique, the FIFO buffer
services the ADLC, and direct memory access transfer is
between the FIFO buffer and system memory.

MEMORY TO MEMORY DMA - The direct memory
access designs presented in this application note can be easily
modified to perform memory to memory data transfer.

The DMAC will perform a direct memory access transfer
for each cycle in the Halt Burst mode while TxRQ is as-
serted, until the block transfer is complete. In this way, an
MC68B44 clocked at 2 megahertz can perform a direct ac-
cess at a 2 megahertz rate. For memory to memory transfer,
all that is needed is to allow one memory block to be ad-
dressed directly by the DMAC during direct memory access,
and transpose the address to access the other.!llemory block.
During a direq memory access, the DMA R/W signal to one
of the memory blocks must be inverted so that during each
direct memory access cycle data is read from one memory
location in one memory block, and is written into another
location in the other memory block.



AN·830·

AN INTELLIGENT TERMINAL
WITH DATA LINK CAPABILITY

By
Charles Melear

Microprocessor Applications Engineer

INTRODUCTION
A small but powerful terminal complete with high speed

data link can be constructed with a minimum number of
NMOS LSI circuits. Operating systems can be developed to
make this terminal act as a word processor, point-of-sale ter-
minal, data input source, etc. The data link capability allows
the operator to call in the resources of remote computers at
synchronous serial data rates of up to 1.5 megahertz.

Five devices form the core of the terminal as shown in
Figure I. An MC6809 Microprocessor (MPU) was chosen
because of its many hardware and software features.

The MC6845 CRT Controller (CRTC) permits the use of a
video display monitor. This controller was chosen because it
allows complete software control of the video display
monitor. Vertical sync delay, horizontal sync width and
delay, blanking, number of characters-per-row, and rows-
per-screen are all programmable.

Serial keyboard input capability is provided by an MC6850
Asynchronous Communications Interface Adapter (ACIA)
which performs the serial/parallel conversions. This applica-
tion polls the ACIA to check for a data present indication in-
stead of using an interrupt. This polling method provides the
highest priority and shortest response time to the high speed
data link.

High speed data link capabilities are provided by an
MC6854 Advanced Data Link Controller (ADLC). The
ADLC detects the start of a message, receives the message,
calculates and appends a CRC character, and provides a clos-
ing flag. Serial data rates of 1.5 megahertz are possible with
this system. To operate at these speeds, direct memory access
capability is needed and is provided, in this application, by
an MC6844 Direct Memory Access Controller (DMAC). A
data transfer can be processed every four bus cycles when an
MC6854 ADLC and an MC6844 DMAC are used together.

MC6845 CRT CONTROLLER (CRTC)
The CRTC provides horizontal sync, vertical sync, and

blanking to a video display monitor along with the memory

address of the data to be displayed. A cursor output is also
provided. Once the CRTC is initialized, it performs the func-
tion of controlling the video display monitor without in-
tervention by the processor. Initialization is accomplished by
writing the appropriate values into the 16 programmable
registers. Figure 2 Sheet I is a worksheet which can be used to
collect the information required to calculate the values need-
ed for the CRTC register worksheet given in Figure 2 Sheet 2.
It is assumed that the video display monitor uses a 60 hertz
power source and a 15,750 hertz horizontal oscillator fre-
quency. After initialization, the CRTC starts with the ad-
dress located in the start address register. The ASCII
character represented by the hexadecimal value at that loca-
tion will appear in the upper left-hand corner of the video
display monitor. The CRTC advances the memory address
lines by one with each character clock. The first row will con-
tain the number of characters specified in the horizontal
display register.

Due to synchronization problems between the CRT clock
and several other signals, it is possible that the first character
could be only partially displayed. Figure 3 shows how this
can happen because the time between the CRT clock and
display enable (Tx) is an internal function of the CRTC. The
first character will be partially displayed because display
enable goes high approximately in the middle of the first
character. This problem can be resolved by writing an ASCII
blank (20) at the first character location and using the second
character location to display the first character.

The screen memory must be accessible to the processor for
updating. Since the CRTC memory address lines normally
drive the screen memory, multiplexers are used to select
either the CRTC memory address lines or the processor ad-
dress lines. A decoding network selects the processor address
lines any time an address between ooסס$ and $IFFF is
detected. The data bus for the screen memory is isolated
from the processor data bus by SN74LS243 transceivers.
These devices are normally in the high-impedance state in
both directions except during a processor read or write of the



TxD
Bit Synchronous

RxD TerminalMC6854- ADLC

DMA
REO
•TxRO

BA0 DGRNTBS
DMA DROT
REO MC6844

/ l'. DMAMC6809 '\ /MPU Controller
/ >-"-

I

TxD
MC6850

ACIA Terminal

~ RxD

MC6B45 CRT
CRT Display

l-- Controller

screen memory. The direction signals for the transceivers are
derive.d from the select signal to the address line multiplexers
and the r~ad/write from the processor.

The output of the screen memory is latched into an
SN74LS374 octal latch. The shift/load signal is used as a
strobe to the latch. This latch is used to synchronize data
flow between the screen memory and the output shift
register. The latch holds data for one full CRT clock cycle
and is used mainly to remove concern about memory pro-

pagation times. The output of the latch drives an MCM66740
character generator which feeds the parallel input of an
SN74LSI65 shift register. The shift/load signal is used to
load the shift register. The dot clock is used to serially shift
the data from the shift register.

In order to display a row of characters on a video display
screen, the top line of each character must be addressed, then
the second line, and so on until each row has been displayed.
The CRTC steps through all the addresses to be displayed in



Format Worksheet

1 Displayed Characters Per Row Char.

2. Displayed Character Rows Per Screen Rows

3. Character Matrix a. Columns Columns

b. Rows Rows

4. Character Block a. Columns Columns

b. Rows Rows

5. Frame Refresh Rate Hz

6. HOrizontal Oscillator Frequency Hz

7. Active Scan Lines ILine 2 x Line 4bl Lines

B. Total Scan Lines I Line 6 + Line 51 Lines

9. Total Rows Per Screen ILine 8+ Line 4b) Rows

9a. Number of Scan Lines Remaining From Line 9 Lines

10. Ver\lcal Sync Delay ICharacter Rows) Rows

11. Vertical Sync Width IScan Lines) 16 Lines

12. Horizontal Sync Delay ICharacter Times) Char. Time

13. Horizontal Sync Width ICharacter Times) Char. Time

14. Horizontal Scan Delay ICharacter Times) Char. Time

15. Total Character Times ILine 1 + 12+ 13+ 14) Char. Time

16. Character Rate IL,ne 6 times 15) Hz

17. Dot Clock Rate IL,ne 4a times 161 Hz

RO Horizontal Total ILine 15 minus 11

R1 Horizontal Displayed I Line 1)

R2 Honzontal Sync Position lLine 1 + Line 12)

R3 Horizontal Sync Width lLine 13)

R4 Vertical.T otal ILine 9 minus 11

R5 Vertical Adjust ILin~ 9a Lines)

R6 Vertical Displayed ILine 21

R7 Vertical Sync Position ILine 2+ Line 101

RB Interlace 100 Normal, 01 Interlace, 03 Interlace and Videol

R9 Max Scan Line Add lLine 4b minus 1)

R10 Cursor Start

R11 Cursor End

R12 Start Address IH)

R13 Start Address III

R14 Cursor IHI

R15 Cursor III

R16 Li9ht Pen IHI

R17 Light Pen III



2 3 4 5 6 8 9

Dot Clock

00

01

02/CRT Clock I
I
I
I 1103 I
I

Shift/Load I

LJI
I
I•• -,I Tx

Display Enable

Load
•• First Character of LIne _ Second _ Second

Character Character

the first character row, increments the row address by one,
and then steps through the same addresses again. This pro-
cedure is repeated until the row address is equal to the ad-
dress contained in the maximum scan line address register.
The row address is reset to zero and the second character row
is displayed.

A cursor may be programmed to appear at any location
within the display memory area. The cursor output signal is
logically ORed with the output of the data output shift
register to form a new signal called cursor plus data.

Display enable is used for vertical and horizontal blanking.
The data to the video display monitor must be enabled only
during the time that the beam of the video display monitor is
sweeping what has been defined as the display area. Other-
wise, random data may appear at the edges of the screen and
horizontal and vertical retrace lines may also be visible.
Display enable goes high as the first character of a row is
displayed and goes low just after the last character of a row is
displayed .-

Signals which include cursor plus data, display enable, and
the select signal to the address line multiplexers are ANDed
to form the composite data signal applied to the video
display monitor. The select signal to the address line
multiplexer is included to suppress any spurious data that
may occur when the processor accesses the display memory.
Composite data is fed to a D-type flip-flop that is clocked by

_the dot clock. This ensures that boundaries between dot
periods in the composite data signal occur at regular inter-
vals.

MC6844 DIRECT MEMOIJ.Y ACCESS CONTROLLER
(DMAC)

This application has local keyboard interface capability
through use of an MC6850 Asynchronous Communications
Interface Adapter (ACIA). It also has serial data link
capability through the use of an MC6854 Advanced Data
Link Controller (ADLC). This is a high speed data link
capable of data transfer rates up to 1.5 megabits per second.
If used at maximum speed in full duplex, a polling routine
would not be able to handle the transmitted and received
data. Therefore, direct memory access capability is needed.
At one megabit data transfer rates, a data transfer must oc-
cur every four microseconds if full duplex operation is used.
An MC6844 Direct Memory Access Controller (DMAC) can
transfer data at that rate. One transfer is made every eight
microseconds on each of two channels or one byte received
and one byte transmitted during eight microseconds. The
DMAC has four channels, but only two are used in this ap-
plication. When enabled, two different pins on the ADLC
are used to indicate that the transmit data register is empty
and that the receiver FIFO buffer is full. These signals are
used to make transfer requests to channels zero and one of
the DMAC.

When the transfer request line (TxRQ) goes high in
response to a service request from the ADLC, the DMAC re-
quests the data bus from the MPU. When the data and ad-
dress buses are available, the MPU will assert bus available
(BA) and bus status (BS). The logical AND of these signals is
the DMA grant signal (DGRNT) to the DMAC. When DMA



grant is received, the DMAC automatically takes control of
the buses in one cycle and performs the data transfer during
the next cycle. The bus request from the DMAC is released
during the transfer cycle. The MC6809 will not attempt to
regain the bus until one full cycle after the release of bus re-
quest. The bus available and bus status signals from the
MPU are released immediately after the removal of bus re-
quests which causes DMA grant to go low. This allows the
DMAC to put its bus drivers in the high-impedance state in
the cycle following the transfer without the possibility of bus
contention by the MPU.

The DMAC has a number of 8-bit registers to be program-
med. Figure 4 is an illustration of these registers. Channel
zero is a transmit channel and its address register (registers 0
and I) is loaded with the first address in memory to be
transferred. The channel zero byte count register (registers 2
and 3) is loaded with the number of bytes to be transferred.
The address register for channel one (register 4 and 5) is load-
ed with the first address in memory to serve as a destination
for data. The byte count register for channel one (registers 6
and 7) should be loaded with $FFFF since the length of an in-
coming message is generally not known. This value will allow

a message of any length. Registers 8 through F are not used.
In this application, channel zero is programmed for the
three-state control steal transfer mode and read (from
memory to ADLC); and channel one is programmed for
three-state control steal transfer mode and write (from
ADLC to memory).

The priority control register is used to enable the transmit
and receive channels when desired. Only interrupt re-
quest/DMA end (IRQ{DEND) for channel zero is enabled in
the interrupt control ~egister. This will cause an interrupt
when the channel zero byte count register is decremented to
zero indicating that all bytes have been transferred. A DMA
end (DEN D) will occur when the last byte is transferred to
the transmit register of the ADLC. DMA end (YmNI» and
interrupt request (IRQ) are multiplexed on one pin. By tak-
ing the logical OR of DGRNT and IRQ/DEND, a separate
IRQ can be obtained. The separate DEND is obtained by
taking the logical OR of the transfer strobe (TxSTB) and in-
terrupt request/DMA end (IRQ/DEND). In actual use the
DMAC is programmed and enabled before the ADLC is
enabled. This will ensure that transfers can begin immediate-
ly upon initialization of the ADLC.

Address Register Content
Register

(Hex) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit a
Channel 1x· DMA End Busy/Ready Not Used Not Used Address TSC/ Burst! Read/Write
Control Flag Flag Up/Down Halt Steal (R/W)

IDENDI
Priority 14 Rotate Not Used Not Used Not Used Request Request Request Request
Control Control Enable 13 Enable 12 Enable 11 Enable 10

IRE31 IRE21 (RE11 (REOI

Interrupt 15 DEND Not Used Not Used Not Used DEND IRQ DEND IRQ DEND IRQ DEND IRQ
Control IRQ Enable 13 Enable #2 Enable 11 Enable 10

Flag IOIE31 IOIE21 IOIE1I IDIEOI

Data Chain 16 Not Used Not Used Not Used Not Used Two/Four Data Chain Data ChaIn Data Chain
Channel Channel Channel Enable

Select 12/41 Select B Select A

Register Channel
Address

(Hex)

Address HIgh 0 0
Address Low 0 1
Byte Count HIgh 0 2
Byte Count Low 0 3
Address HIgh 1 4
Address Low 1 5
Byte Count High 1 6
Byte Count Low 1 7
Address High 2 B
Address Low 2 9
Byte Count High 2 A
Byte Count Low 2 B

Address High 3 C
Address Low 3 D
Byte Count HIgh 3 E
Byte Count Low 3 F



MC6854 ADVANCED DATA LINK CONTROLLER
(ADLC)

The ADLC handles the data link protocol. Basically, the
ADLC transmits and receives serial data in full duplex. The
data format of message frame is shown in Figure 5. When
transmitting, the transmit data output (TxD) will either be
high (mark idle) or sending a series of opening flags (flag
idle). Upon writing a word to the transmit FIFO register, an
opening flag will be sent followed by the data. Details of the
ADLC registers are given in Figure 6. Data must be supplied
to the transmit FIFO register at a rate sufficient to ensure
that the data output shift register never becomes empty. The
last byte to be transmitted is written to the transmit last data
register. As soon as the last byte is transmitted, the ADLC
automatically appends a 16-bit cyclic redundancy character
(CRC) in the frame check sequence field and a closing flag.
The receiver constantly searches the data stream for an open-
ing flag with which to synchronize. After an opening flag is
detected, the first non-flag character and all succeeding bytes
are shifted into the receiver FIFO register and CRC calcula-
tion is started. The receiver FIFO register must be read fast
enough to ensure that a receiver overrun does not occur.·
When a closing flag is detected, the ADLC takes the prior 16
bits and compares it to the CRC generated by the receiver.
The CRC is not shifted into the receiver FIFO register.

The chip select (CS) pin of the ADLC must be asserted
whenever the DMAC requests data by issuing a transmit
strobe or when the address of the ADLC appears on the ad-
dress bus. The logical ANDing of TxSTB and the address of
the ADLC is used to develop a composite chip select (CS)
signal.

When a DMA transfer occurs between memory and the
ADLC, the DMAC controls the RlW line for the system.
During the transfer cycle, the R/W line of the ADLC must be
inverted with respect to the system R/W line. This is ac-
complished by exclusive ORing TxSTB and R/W. If TxSTB
is low (no transfer), the output follows R/W. If TxSTB is
high (transfer cycle), the output is the complement of R/W.

The ADLC requires that the last byte to be transferred be
treated differently. The system may set bit four of control
register two high and write the last byte into the transmitter
(continue) data register or the last byte can be written into the

transmitter (last) data register. In this application, the latter
method is used by using 1'X'S'f'IJ, mq/l5ENI>. and R/W to
control a dual, 4-to-l data selector. The truth table for the
data selector is shown in Table I. When UEN!5 is low, the
DMAC is indicating that this is the last byte. UENJ) occurs
coincidentally with TxSTB which forces the register selects
(RSO, RSI) of the ADLC high and selects the transmitter
(last) data register. If only TxSTB is low, register select zero
will be low and register select one will be high and the
transmitter (continue) data register will be selected.

MC6809 MICROPROCESSING UNIT (MPU)
The MC6809 must be discussed from two viewpoints -

hardware and software.

RAKOW ARE - The internal clock of the MPU is made
to work with the MC6844 DMA Controller. Figure 7 is a tim-
ing diagram for a DMA response and three-state steal. The
DMA request three-state control steal (DRQT) output of
DMAC drives the DMA/BREQ input of the MPU. As
shown in Figure 7, the first full cycle following DRQT going
low (which causes DMA/BREQ to also go low) is a dead cy-
cle. Since the MQT"low output from the DMA results in the
DMA/BREQ input to MC6809 going low, it is a dead cycle
for both the DMA and the MC6809. Dead time is the time re-
quired for the MPU to relinquish control of the bus and the
DMAC to gain control of the bus. The next cycle ac-
commodates the DMA transfer. During this cycle, DRQT is
released. The MPU automatically inserts one dead cycle after
DMA/BREQ is released. This gives the DMAC one cycle to
relinquish control of the bus and the MPU to gain control of
the bus. After the dead cycle, the MPU assumes normal con-
trol.

The MC6809 has no equivalent of the valid memory ad-
dress (VMA) signal which is available on the MC6800. Nor-
mallya VMA is not needed; however, during the dead cycles
which precede and follow a DMA transfer, the buses are
undefined. This allows the possibility of a spurious write into
a random memory location. This possibility can be
eliminated by developing a signal called direct memory access
valid memory address (DMAVMA). The DMA grant
DGR~T signal from the DMAC and the E signal are used to

01111110 88115 88115 8 BlIs I Vanable 16 Bit 01111110
Per Byte Per Byte Per Byte I Length

: 15-81
,

Frame Check
Sequence

Field



.............. ' •....•..• ' .•....••.. "

~ Status 12 Frame Valid Bit 1
;; Read Request
.~

Loop InactIve Idle Received BII 2
a:

Flag Detected Abort Received Bit 3>-

" (When Enabledl Same as AS1, ASO-=-10
0
"0 ~ FCS Error Bit 4
II Tx Underrun DCD Bit 5a:

TDAA/Frame Ax Overrun Bit 6
Complete
TAG Present ADA {Aecelver Data Availablel Bit 7

Transminer Transminer
Oat8 Data

Control Register = 2 Control Register - 3 (Continue Data) (last Data) Control Register 4
Bit I Control Regmer = 1

(ClbQ~CI IClbQ~ll IClbQ~C) IClbQ~l)

0 Address Control (AC) Prioritized Status LogIcal Control Bit 0 Bit 0 Double Flag Single
Enable Field Select Flag Interframe

Control; 1 Aecelver Interrupt 2 Byte/1 Byte Extended Control Btt 1 Bit 1 Word length Select
"g. Enable IRIEI Transfer Field Select Transmit 11
a: 2 Transmitter Interrupt Flag/Mark Idle Auto. Address Bit 2 Bit 2 Word Length Select
>-

Enable lT1Et Extension Mode Trallsmit 12"0 3 RDSR Mode IDMI\I Frame Complete/ 01/11 Idle Bit 3 Bll 3 Word length Select

~ TORA Select Receive 11

4 TDSR Mode IOMI\) Transmit Last Data Flag Detected BIt 4 Bit 4 Word length Select
Status Enable Receive 12

5 Rx Frame CLR Rx Status Loop/ Non-loop Mode Bit 5 Bit 5 Transmit Abort
Discontinue

6 Rx RESET ClR Tx Status Go Active on Poll/Test Bn 6 Bit 6 Abort Extend
7 Tx RESET RTS Control Loop On-Line Bit 7 Bit 7 NRZIINRZ

Control OTA

Operation r.518 OENO A/W A

Normal Operation 1 X X 1
No DMA Transfer

OMA Transler from
ADlC to Memory
OMA Transfer from
to ADlC

OMA Transfer of
Last Byte from
Memory to ADlC
OMA Transfer 01
Last Byte Irom
AlOC to Memory

develop the DMAVMA signal as shown in Figure 8. A timing
diagram showing the effect of the DMAVMA signal is given
in Figure 7.

SOFTWARE - The flowchart used to generate the soft-
ware to operate this system is shown in Figure 9 and the soft-
ware listings are shown in Figures 10 and 11. Figure 10 uses
the ADLC in the priority mode while Figure 11 uses the non-
priority mode. The software overhead in this program limits
the operation of the data link to about 62 kHz. However, this
program is highly instructive in the use of the ADLC/DMAC
combination.

The MC6809 has been shown to have definite hardware
advantages primarily clue to the internal DM!,> compatible
clocks; however, the software advantages are are also quite

impressive. The use of the Direct Page Register allows signifi-
cant reductions in the amount of object code that must be
generated. The Direct Page Register is an 8-bit register that
forms the upper byte of a 16-bit address instead of assuming
the upper byte is $00 when a direct instruction is executed.

The two programs contained in Figures 10and 11show the
use of the ADLC in the priority and non-priority modes,

"respectively. The priority mode program requires 660 bytes
of code without the Direct Page Register. However, 43 bytes
of code were saved when the scratch RAM was moved from
SOOOOto SBFIO. The Direct Page Register was set to SBF so
that the scratch RAM and peripherals could all be addressed
with direct instructions. The non-priority mode, which
originally requirecl 7!8 bytes of code, was reduced by 36
bytes when the Direct Page Register was used.

By setting the Direct Page Register to SBF, one byte of
code will be saved each time locations SBFOOto SBFFF are
accessed. An extended instruction takes three bytes of code
as opposed to two for direct. For pr~grams that must operate
on real time events, this also has the advantage of executing a
memory access in one less clock cycle. The program
operating this system limits the serial transmission rate due to
software overhead. By reducing this overhead, the hardware
can operate faster.

Another advantage is position independency. Conditional
branches of ± 32768 bytes can be executed. This covers the
entire memory address space available to the MC6809. Since
branches are program counter relative, this makes them in-
dependent of where the program originates. MC6800



Address {
and Control

PropagatIon T ,me
from Logical

Bus Grant Signal
to Change

I
I
I
1
11_ fS;;\
I~I

I
.1

/
\ /'-----



E
34

RESET 37

Q 35

E RESET

CLR
D Q
l'.74LS74

CP

branches being ± 128 bytes must be used to branch to jump
statements for moves of greater than 128 bytes. A long
branch to subroutine instruction also enables ± 32K bran-
ches which are also program counter relative. When a pro-
gram is completely position independent, the code can be
placed anywhere in the memory space and work. MC6800
programs cannot be made position independent unless they

are written in the first 256 memory locations. Therefore, the
MC6809 offers the convenience of position-independent
ROMs.

SYSTEM SCHEMATIC
Figure 12 is the schematic for the intelligent terminal.



SlO-CA3'11i
No LCF
No ECF

No Address Extend
11 Idle

Enable Flag Detect
No Loop Mode

Reset
ADLC

SCO-CAl
Tx, Ax Reset

Switch to CAl
SCO-CAl III

Address Control

Set Up DMA Controller
Ol-ICA Ch. 0 Interrupt
01-PCA Enable Ch. 0

$4OOO-ADAO
S5OO:J-ADAl
S200-BCAO
05-CHCAO

Transmit (Memory Read)
TSC/Steal

Increment Address
04-CHCAl

Receive (Memory Wntel
TSC/Steal

Increment Address

05-CAl III
Enable Priority Status

1 Byte
Flag Idle

Select TDAA
No Tx Last Data

No Clear Rx Status
No Clear Tx Status

No Request to Send

Switch to
CA 3. 4

SC1-CAl
Address
Control

Sub SCO-CAl III
OA 05-CAl
Enable AlE
Enable TIE

No Rx Reset
No Tx Reset

SlF-CA4 III
Flag Flag

Tx Word Length=B
Ax Word Length ~ B

No Tx Abort
No Abort Extend

NAZ



Store New Control
Byte in 2nd Byte

of Tx Buffer

Put Station Address
in 1st Byte of

Tx Buffer









OR $20-CRl
Enable Frame
Discontinue

OR 02-RXFRAM
Address has Been

Received and
Detected



Idle OR 01- Status
Detected Inactive Idle
Routine was Detected

ABORT

Abort OR 02 - Status

Routine Abort was
Detected

OVRUN

Overrun OR $10- Status

Routine Receiver Overrun
Occurred

DCDERR

DCD Lost OR 08- Status
Routine DCD was Lost

FCS
Error

Routine

OR 04- Status
FCS Error
Occurred

OR $20-CR2
Clear Receive

Status



Sub $86- RXFRAM
Reset in RSFRAM Bit

Reset Control Byte Received
Reset Address Received

Store High
Address
to ADR1

Store Low
Address
to ADR1



Tx
Underrun
Routine



00002 * MAY 19,1981
00003 OPT O,NOG.LLE=R2

00005 * THIS PROGRAM IS TO DEMONSTRATE THE MCr,854 AoLC
00006 * AS USED WITH THE MCr,844 oMA GONTROLLER AND
00007 * THE I~Cr,809 MPU CHIP DESIGNED FOR 01"1'.AND
00008 * DYNAMrr:: MEMORY R8FRESH.

00010 BF40 A ADRG0H EQU $BF4~ DMA ADD REG 0 HIGH ADD
00011 BF41 A ADRG"'L EQU $RF41 DMA REG

'"
LOW ADD

00012 BF42 A BCRG"'H EQU $BF42 DMA BYTE COUNT REG
'"

HI ADD
00013 BF43 A BCRG",'L EQU $BF43 oMA BYTE COUNT REG 11 LO ADD
00014 BF44 A ADRGIH EQU SBF44 DMA SDD REG 1 HIGH ADD
00"'15 BF45 A ADRGIL F;QU SBF45 oMA ADD REG 1 LOW ADD
00016 BF46 A BCRGIH EQU $BF4r, DMA BYTE COUNT REG 1 HI ADD
00017 BF47 A BCRGI L EQU $BF47 DMA BYTE COUNT REG 1 LO ADD
00018 BF50 A CNTRL0 EQU $BF5'" oMA CHAN " CONTROL REG
00019 BF51 A CNTRLI EQU $BF51 01"1'.CHAN 1 CONTROL RF:G
0002O BF54 II DMAPCR EQU $BF54 DMA PRIORITY CONTROL REG
00021 8F55 A DMAICR EQU $BF55 DMA IRQ CONTROL REG
00022 BF56 A DMADCR EQU $BF56 DMA DATA CHAIN CONTROL REG

00024 BF00 A STATSI EQU $BFlHl ADLC STATUS U ADD
00025 BF"'l A STATS2 EQU $RF01 ADLC STATUS #2 AnDRESS REG.
O0"'26 BF02 A RXFIFO EQU SBFll2 ADLC RXFIFO ADDRESS
00027 BFl'J0 A ADLCRI EQU SBFfl'" AnLC CONTROL REG #l ADD
O0028 BF01 A ADLCR~ EQU SBF01 AnLC CONTOL REG n2 ADD
00029 BF01 A ADLCR3 EQU $BFel AoLC CONTROL REG n ADD
0"'030 BFll3 A ADLCR4 EQU' SBFfl3 ADLC CONTROL REG n4 ADD
00031 BFfl2 A TXFIFO EQU SBF02 AOLe TXFIFO ADD

000331'. BF10 ORG $RFHl
0"'03~A BFl11 "'''' A STATUS FCB $flfl SOFTWARE CONDITION REGISTER
000351'. BFll "'0 A TXFIlAM FCB S"'0 TRANSMIT SOFTWARE STATUS REG
0fl036A BF'l2 fl0 A RXFRAM FCB $011 RECEIVE SOFTWARE STATUS REG
000371'. BF13 40fl0 A TXRUF'l FDB S400fl STARTING ADD OF 1ST TX RUFFER
000381'. BF15 4200 A TXBUF2 FOB S42011 STARTING ADD OF 2ND TX BUFFER
fl0fl39A BF'l7 5"'00 A RXBUFI FOB $5000 START ADD OF 1ST RECV BUFF
000401'. BF19 5200 A RXRUF2 FOB $5200 START ADD OF 2ND RECV BUFF
001141A BF'lB AI'. A ADRE:;l FCS SAA STATION ADDRESS
000421'. BFIC "'''' A ADRES2 FCB $110 ~lULL ADDRESS
00043A BF'lD FF A ADRES3 FCB $H GLOBAL ADDRF:SS
000441'. RF'lE "'''' A CONTRL FCB $(10 RECEIVF:D CONTROL I"ORO STORAGE LO
00"'45A BF'lF 00 A RFMCNT FCR S(II(1
00046A BF20 0fl /I TF"ICNT FCB SflfJ
000471'. BF21 55 A OUTADD FCB $5')
fl0048A BF22 flll l\ OUTCTL FCB $110
0"'049A RF23 fl0 /I n~~",~rlYl FCB S fH' DMl\ CHl\N (\ CONTROL RF:G IMIIGE
flflfl50ABF24 00 II DNAIP1 FCf3 S0fl DMA CHI\I~1 CONTROL REG II"AGf>
00051A BF25 l'lfl l\ CRlIMS FCB S(W IIDLC CONTROL REr, 1 IMIIGE
(Hl052A BF26 00 A CR~It'G FCB $(1{l AOLC CONTROL REG 2 IMAGE
000531'. BF27 flfl /I, CR3I"'G FCB SI'O /lDLC CONTROL HEG 3 IMAGE
00054A BF2'l fl0 A CR4IMG FCH S0n l\OLC CONTROL REG 4 IMII(;E

Figure 10. Priority Mode Program Listing (Sheet 1 of 11)



00055A BP29
00056A BF2I\
0"057A BF2tl

DMAAf1LC .SA: 1 J1MAADL

,JIll A fiRIIMG FC!>
00 A SIl2I"'C PCP."0 A I"CH'fL rCf!



PAGE 003 OMAAOLC .sA: 1 OMAAOL

00059A ....,00 ORG $....,00
00060 00BF A sETOP $BF
00061A A000 86 BF A LOA '$81'
o 0062A A002 11' 8B A TFR A,D!'
00063A A004 BE ....,66 A START LOX - HROINT
o 0064A A007 BF 1'1'1'8 A sTX $1'1'1'8
00065A Ml0A 10CE 11'1'1' A INIT LOS #$11'1'1' SET UP STACK
00066A A00E 1A 10 sEI SET IRQ MASK
00067A A010 86 01 A LOAA '$01 SF.T UP OMA IRQ CON REG
00068A Ml12 97 55 A sTAA OMAICH
00069A ....,1497 54 A STAA DMAPCR
00070A A016 9E 13 A LOX TXBUF1 SET UP XMIT ADO CTR IN OMA
00071A A018 91' 40 A sTX AORG0H
00072A A01A 9E 17 A LOX RXBUF1 SET UP RECV ADD CTR IN OMA
00073A ....,lC91' 44 A STX AORG1H
00074A A01E 8E 02fl0 A LDX #$200 SET UP CHAN o BCR (XMIT)
00075A ....,2191' 42 A STX BCRG0H WITH 1028 COUNT
00076A ....,2386 05 A LOAA #$05 SET UP CHAN 0 CONT REG (XMIT)
00077A A025 97 50 A sTAA CNTRLfl
00078A ....,2786 04 A LOAA '$04 SET UP CHAN 1 CONT REG (RECV)
00079A ....,2997 51 A sTAA CNTRLl
00080A ....,2886 C1 A LDAA #$C1 ACCESS CR4
00081A Afl20 97 0fl A sTAA AOLCR1
00082A A02F C6 11' A LDAB '$11' SET UP CONTROL RF.G 4 IN ADLC
0fl083A Afl31 D7 03 A STAR ADLCR4 8 BIT 'tlLS, NRZ, FLAG~FLAG
00084A A033 D7 28 A STAB CR4IMG
00085A Afl35 C6 10 A LDAB '$10 SET UP CONT REG 3 IN ADLC
00086 *ENABLE FLAG DETECT IN RECV
00087A A037 D7 01 A STAB AOLeR3
00088A Afl39 D7 27 A STAB CR3IMG
o fl089A A03B 86 C0 A LDAA #$C0 ACCF.sS CR2
00090A Afl3D 97 0fl A STAA ADLCR1
00091A A03F 97 25 A STAA CRlIMG
00092A A041 C6 05 A LDAB #$05 SET UP ADLC CONT REG 2
00093 *PRIORITY LOGIC ENABLE, 1 BYTF. XFER, FLAG IDLF:
00fl94A A043 D7 01 A STAB ADLCR2
fl0095A ....,4507 26 A STAB CR2IMG SAVE IN IMAGE
0fl096A Ml47 17 014C A196 LBSH XMIT ENABLF:S DMA MODF. OF OPERATION
00097A Afl4A 96 25 A LDAA CR1IMG
00098A ....,4C80 C0 A SUBA '$C0 TURN ON X.MIT SEC'rION IN AOLC
00099A ....,4E8A 06 A DRAA #$06 F.NA IRQ XMIT AND RECV.
00100A A050 97 25 A STAA CR1IMG
00101A ....,5297 00 A STAA ADLCR1
00102A Afl54 lC EF CLl
001fl3A M56 2fl fl0 1'.058 BRA ''''AIT



iH1l05
00106
00107

*WAIT IS A LOOP THAT WOULD BE THE NORMAL OPERATIOAL
*PROGRAM CONTROLLING THE MPU AND OTHER FUNCTIONS
*OF THE SYSTEM

00110A A05B 12 WAIT Nap
00111A 1\059 12 NOP
00112A A05A 96 IIi' A LDAA STATUS
00113A A05C 2E 04 A0fi2 BGT SOFT
00114A A05E 12 Nap
00115A A05F 12 Nap
'''''116AAliI60 20 F6 11058 BRA \-JAIT

00118 *SOFT \O/OULDBE AN AREA WHERE PROBLF.MS THAT
00119 *HAVE OCCURRED SUCH AS A LOSS OF CARRIER (DCD)
00120 *A RECEIVED ABORT, TX UNDERRUN, OR A -LOSS OF CTS
00121 *WOULD BE HANDLED IN SETTING UP SPECIAL FRAME
00122 *(SEQUENCED FORMAT) TO INDICATE WHAT IS REQUIRED.

00124A ACl62 0F III A SOFT CLR STATUS
00125A A064 20 F2 AIl58 BRA WAIT



00129
00130
00131
00132
00133

*HARDWARE INTERUPT IS THE AREA OF THE PROGRAM
*THAT SERVICES THE ADLC AND THE DMA ONCE TRANSFERS
*HAVE BEEN STARTED. IF A SYSTEM WOULD NOT USE IRQ
*OR NMI A POLLING ROUTINE WOULD BE NECESSARY
*1'0 SERVE THIS FUNCTION.

00136A A066 96 50 A HRDINT LOAA CNTRLIiJ IS IT FROM DMA
00137A M68 2B 05 AliJ6F BMI HIRQ2 YES-BRANCH
00138A AIl6A 9'6 00 A LDAA STATS1 IS IRQ FROM ADLC
00139A A06C 2B 04 M72 BMI HIRQ1 YES.,.BRANCH
00140A A06E 3B RTI NO.,.RETURN FROM IRQ

00142 *IF OTHER PERIPHERIALS WERE ENABLED FOR IRQ
00143 *THEY IN TURN WOULD BE POLLED FOR IRQ

00145A M6F 16 00AF A121 HIRQ2 LRRA HIRQ02
00146A A072 97 29 A HIRQ1 STAA SR1IMG SAVE ADLC STATUS
00147A A074 8A 10 A ORAA t5Hl KEEP IRQ MASKED
00148A M76 IF 8A TAP ACC A TO CCR
00149A A07B 25 6B ME2 BCS RDIITA BRANCH IF RXFIFO NEEDS SERVICE
00150A AIl7A 29 74 AflF0 BVS RSTAT2 RRANCII IF STATUS REG 2 NEEDS SER
01'll51A M7C 2B 2? MM BMI RFLAG BRANCH IF RXFLAG DETECTED
00152A AliJ7E 91; 29 A HIRQ1A LDAA SR1IMG RELOAD STATUS U CONTENTS TO ACC
00153A MB0 49, ROLA
00154A MlB1 2B 07 AOBA BMI TXLOAD TRANSMIT DATA REG AVAIL
00155A AIlB3 49 ROLA
00156A A084 2B e5 MBB BMI TXlJNOR TRANSMITTER UNDERFLOW
00157A A086 49 ROLA
00158A M87 28 0A M93 BMI CTSERH CLF-AR TO SEND LOST
00159A M89 3R RTI
01316011 AliJ8A 3F TXLOAD SWI NEVER SUPPOSED TO BE HERE
0011;1A M8B % 10 ~ TXUNOR LDAA STATUS SET BIT OF TX UNDERRUN
0011;2 *IN STATUS
0011;3A AIl8D 8A 411 A ORAA #5411
00164A M8F 97 H' A STAA STATUS
00165A A091 20 06 Al199 BRA CLRTXS
00166A A093 96 10 A CTSERH LOAA STATUS
00167A AIl95 8A 211 A ORAA #520
0016BA A097 97 III A STAA S'I'ATIJS
001f59A A099 96 2(, A CLRTXS LOAA CR2II~G
0017011 Al19B 8A 43 A ORAA ~541iJ
00171A AliJ9D 97 01 A STAA ADLCll2
00172A A09F 38 RTI
o I'll73A A0AI1 % 12 A RFLAG LOAA RXFRI\I~ TEST IF IN RX FRAI~E
00174A A0A2 2A 31 AOO5 BPL RFLAG1 NO-BRANCH -1ST FLAG
00175A AliJA4 17 0011R A14F LP,SR ROI"1I0F TUR~ OFF RECV DMA OPF-RATION
0<l175A 110A7 D') 26 A LDAB CH2 II~G CLEAR THE RX STATllS
00177A MA9 CA 21' A ORAR #52C1
0017811 AIilAB D7 01 ·A STAB ADLCH2
01il179A AIiJAD 12 Nor GIVE IT TIME TO DO IT

Figure 10.Priority Mode Program Listing (Sbeet 5 of 11)



001S0A A0AE 96
001S1A MB0 97
001S2A MB2 SA
001S3A MB4 1F
001S4A MB6 2S
001S5A MBS D6
001S6A MBA C4
001S7A A0BC C1
001SSA A0BE 27
001S9A A0C0 D6
00190A MC2 C0
00191A A0C4 CB
00192A A0C6 D7
00193A A0CS 17
00194A MCB 17
00195A MCE 3B
00196A MCF D6
00197A MD1 C0
0019SA A0D3 20

00200A
00201A
00202A
00203A
00204A
002~5A
00206A
00207A
0020SA
00209A
00210A
00211A
00212A
o 0213A

,
A0D5 96
I\0D7 8A
A0D9 97
A00B 96
A0DD SA
A00F 97
ME1 3B
ME2 06
ME4 96
A0E6 D7
A0E8 8A
A0EA 97
A0EC 17
A0EF 38

00218A MF0 96
00219A A0F2 97
00220A A0F4 8A
00221A A0F6 1F
00222A MF8 25
00223A MFA 27
00224A AflFC 2B
00225A AOFE 96
0(221)A A100 49
~0227A A1ll1 2B
00228A A11'13 49
111l229A A104 2B
0~230A A1116 49
00231A A107 2B
00232A A1119 3B
0"233A A1llA 8D
00234A A1f1C 3B

01
2A
10
8A
42
1E
Ell
Ell
0F
1E
E0
20
1E
01S1
00A7

MFA
A
A
A

A~CF
A
A
A RFLAG4
A

A24C
A175

RFLAG9
A RFLAG3
A

MC4

A RFLAG1
A
A
A
A
A

02
12
2B
S4
12
00E6

A RDATA
A
A
A
A.

A1D5

LDAA
STAA
ORA A
TAP
BVC
LDAB
ANDB
CMPB
BF.Q
LOAB
SUBB
ADDB
STAB
LBSR
LBSR
RTI
LDAB
SUBB
BRA

LDAA
ORAA
STAA
LDAA
ORAA
STAA

,RTI
WAB
LDAA
STAB
ORAA
STAA
LBSR
RTI

STATS2
SR?IMG
#$10

RSTAT3
CONTRL
#$E0
#$E0
RFLAG3
CONTRL
#$EO
#$20
CONTRL

.Gf:TLST
RXEND

CONTRL
#$E0
RFLAG4

RXFRAI~
#$0,8
RXFRAM
CR?IMG
#$20
ADLCR2

RXFIFO
RXFRAM
INCRTL
#$S4
RXFRAM
RD.-1AON

BRANCH IF NOT VALID
INC CONTROL NR COUNT
CLEAR IF 7 AND INC TO 1
IS IT 7 YET
NO-BRANCH
YES-CLEAR NR COUNT TO ZERO

A RSTAT2
A
A

A111A
A11'10 RSTAT3
A111

A

LDAA
STAA
ORAA
TAP
BCS
BEQ
BMI
LDAA
ROLA
AMI
ROLA
BI-n
ROLA
BMI
RTI
BSH
RTI

STATS2
SR2I"'G
#$10
ADDCK
RIOLf:
ABORT
SR?IMG

BRANCH IF ADDRESS PRESENT
BRANCH IF IDLE OF.Tf:CTf:O
BRANCH IF ABORT Df:Tf:CTf:D



IH'235A A10D 17
00236
0023,A A110 3B

00239A A111 17
00240A A114 3B
00241A A115 17
00242A A118 3B
00243A Al19 17
00244
00245A AllC 3B
00246A AllD 17
00247A A120 3B

00251A A121 96
00252A A123 8A
00253A A125 97
00254A A127 80
00255A A129 17
00256A A12C 80
00257A A12f. 3B
00258
00259
00260
00261
00262
00263
0021;4
00265
00266
00267
00268
00269
00270
00271
00272

00274A A12F 34
01'1275A A131 06
1'10276A A133 01
00277A A135 27
I""278A A137 01
00279A A139 27
00280A 11138 D1
00281A ADD 27
00282
00283A 1113F D6
00284A 11141 CA
00285A A143 D7
00286A A145 39
00287A A14~ Dr;
00288A A148 CA

0103 A213 RIDLf. LBSR IDLf.
*IDLE WAS Df.TECTED

RTI

0110 A224 ABORT LBSH - RABORT
RTI

0116 A22E FCSEHR LRSR CRCERR
RTI

011C A238 DCDERR LBSH DCDLST
*MODEM \,AS LOST

RTI
0122 A242 OVRUN LBSR OVRUN1

RTI

26
10
01
39
"0Cl
68

A
A
A

A162
A1ED
A196

HIRQI'I2 LDAA
ORAA
STAA
BSR
LRSR
RSR
RTI

CR2IMG
#$1"
ADLCR2
TDMAOF
TDMAON
XMIT

SET LAST DATA BIT IN CR2
(AUTO RESET)

*THIS ROUTINE lINLOADS THR ADDRESS FRDM THf. ADLC
*RXFIFO AND COMPARES IT THE STATION ADDRESSES.
*IF COHRECT IT SETS THE IIDD. RECV. £lIT IN THE
*RXFHAME. IF NOT THIS STATIONS' ADDRf.SS, CLEAR SYNC IS
*AND THf. RECf.IVER BEGINS LOOKING FOR THf. FLAG CONDITON
*AGAIN TO SYNC ON.

RXFIFO
ADRES1
CKIIDD2
IIDRLS2
CKADD2
ADRES3
CKIIDD2 YES-BHANC~

~ATCH THEN CLEAR Rf.CEIVf.
CfllIr-1G
~$2~
IIDLC"l

GET ADD BYT8
COMPARR RECV DATA TO POSSIBLf.
STATION ADDRESSES

CKATlD PSHR
LDAB
Cr-1PB
Rf.Q
CMPR
R8Q
CMP[]
BCQ

* NO ADDRf.SS
LDAR
ORAR
STp.R
RTS

A Cf<l\DD2 LDIIB
A ORIIB

A
A

A146
A

A145
AA14F,



00289A A14A D7
00290A A14C 35
00291A A14E 39

00293
00294
00295A A14F 34
00296A A151 96
00297A A153 80
00298A A155 97
00299A A157 97
00300A A159 9G
011301A A15B 80
00302A A15D 97
00303A A15F 35
00304A A161 39

011306
003117
00308A A102 34
00309A A164 96
00310A A166 80
00311A A168 97
00312A A16A 97
00313A A16C %
00314A AHE 80
00315A A170 97
00316A A172 35
00317A A174 39

00319
00320
00321
011322

00324A A175 34
1l0325A A177 96
011326A A179 85
00327A A17B 27
00328A /l17D 80
00329A A17F 85
011330A A181 n
01l331A A183 811
01l332A A185 9E
01l333A A187 9f
00334A A189 20
00335A AlAS 8B
0033(,A 1I1RD 9E
00337A A18f 9f
00338A 11191 97
0033911 11193 35
C0340A A195 39

A STAB
CKADD9 PULB

RTS

*THIS SUBROUTINE TURNS Off DMA CHAN 1 ENABLE AND
*ADLC RECEIVE MODE OF OPERATION.
RDMAOF PSHA

A LDAA CR1IMG GET IMAGE OF CR1
A SUBA #$08 DISABLE RX DMA MODE IN ADLC
A STAA CR1IMG
A STAA ADLeRl
A LDAA DMAPCR FETCH DMA PCR DATA
A SUBA #$02 RESET CHAN 1 ENABLE BIT
A STAA DMAPCR

PULA
RTS

*TURNS OFF TX
*IS DISABLED
TDMAOF PSIIA

A LDAA
A SUBA
A STAA
Ii STAA
A Lf'lAIl
A SUBA
A STAA

PULA
RTS

CR1IMG
#$111
CR1IMG
ADLCRI
DMAPCR
#$01
DMAPCR

RXFRAM
#$80
RXI::'ID9
ff58:;
~$01
RXEND1
#$01
RXRUFl
ADRGll1
RXEND2
#$01
RXBIJF2
ADHG1H
HXFHA~

DO IT
GET PCR CONTENTS
RESET CHAN #0 ENABLE BIT
DO IT

*THIS ROUTINE LOADS THE ALTERNATE RXBUffER ADDRESS
*INTO THE DMA, CLEARS THI::IN FRAME BIT, AND SETS
*THE POINTER TO THE NEXT RXBUFFER AREA TO BE LOADED
* II~TO THE DMA

TEST IFIN fHAME
NO~BRANCH-LEAVE ROUTINE
YES-CLEAR IN FRAME BIT &ADD & CO
TEST HI OR LO ADDRESS NEXT
RHIINCH TO LOAD LOW ADD
RESET AnD START BIT IN RXFRAM
LOAD HIGH ADDRESS

A
A

A193
A
A

A18B
A
A
A

1'.191
A
A
/I
A

RXEND PSHA
LDAA
BITA
BEQ
SUBA
BITA
REQ
SUBALnx
STX
BRA

RXE:-ID1AnnA
LDX
STX

RX,,'Ie;>. STAll
HXE,!D9 PULA

RTS



00342
00343
00344
00345

00347A A196 34
00348A A198 34
00349A A19A D6
00350A A19C C5
00351A A19E 27
00352A A1A0 9E
00353A A1A2 C0
o 0354A A1!\4 20
00355A A1A6 9E
00356A A1A8 CA
00357A A1AA D7
00358A A1AC 96
00359A AlAE A7
00360A A180 30
00361A A182 96
00362A A1B4 84
00363A A1B6 81
00364A A1B8 27
00365A AlBA 96
00366A A1BC 8B
00367A A1BE A7
00368A A1C0 97
00369A A1C2 96
00370A A1C4 8A
00371A A1C6 97
00372A A1C8 97
00373A A1CA 35
00374A A1CC 35
00375A A1CE 39
013376A A1CF 96
00377A A1D1 80
00378A A1D3 2~

00383A A1D5 34
00384A 1I1n? 8E
00335A AIDA 9F

00390A 1I1DC %
00391A AIDE 811
00392A 1I1EO 97
0039311 AlE2 9')
00394A A1"4 RA

'SUBROUTINE TO LOAD THE TXFIFO WITH THE ADDRESS
.'AND CONTROL WORDS, AND TO ENABLE THE ADLC IN

"THE TX DMA MODE OF OPERATION. (XMIT SECTION OF THE
"ADLC IS ONCE THE INITIAL SEQUENCE HAS BEEN PERFORMED.)

PSHA
PSIIB
LDAB
BITB
BEQ
LDX
SUBB
BRA
LDX
ORAB
STAB
LDAA
STAA
INX
LDAA
ANDA
CMPA
BEQ
LDAA
ADDA
STAA
STAA
LDAA
ORAA
STAA
STAA
PULB
PULA
RTS
LDAA
SUBA
BRA

LDI\A
ORAA
STAA
LDAA
OPAA

TXFRAM
#$01
XMIT2
TXBUF2
#$01
XMIT3
TXBUF1
#$01
TXFRAr~
ADRES1
0,X

CONTHL
#$OE
#$OE
X""TCLR
CONTRL
#$02
0,X
CONTRL
CR1IMG
#$113
ADLCR1
CRlIMG

CONTRL
#$(1E
XMITl

DMAPCH
1fSf'2
DMAPCR
CRlI"'"
#$08

DETERMINE WHICH TXBUF TO USE
IS IT U
YES- .•.BRANCH
NO- .•..•.IT'S #2
CHANGE FOR NEXT TIME

YES-BRANCH
NO .•.CONTINUE
INCREMENT THE NS COUNT
LOAD IT OUT
SIIVE THE NEW CONTROL WORD

'THE ADDRI>SS flE"Isn:R IS ALREADY SET BUT rrs SET UP
'COULD BE LOCATED HERE IILSO.(I~ RXEND SUBROUTINE)

A
A

Al 1\6
A
A

AIA/\
A X""IT2
A
A XMIT3
A
A

A
A
A

AICF
A
A XMITl
A
A
A
A
A
A

A XMTCLR
A

AIAC

02
FFFF
4')

RDMIION PSHII
A LDX
II STX



PAGE 010 DMAADLC .SA:1 DMAADL

00395A AlE:6 97 25 A STAA CHlI"1G
00396A A1E8 97 00 A STAA I'.DLCR1 DO TI
00397A A1EA 35 02 PULA
00398A AlEC 39 RTS

00400 *SUBROUTINE TO LOAD THE ALTERNATE TX BUFFER
00401 *ADDRESS INTO THE ADDRESS REG OF THE DMA CHAN 0

00403A A1ED 34 02 TDMAON PSHA
00404A A1EF 96 11 A LOAA TXFRAM GET TX FRAME STATUS
00405A A1F1 85 01 A BITA #$01 TEST WHICH BUFFER TO USE
00406A A1F3 2fi 08 A1FD BNE TDMON1 BRANCH NOT SET
00407A AlF5 811 01 A ORAA #$01
00408A AlF7 9E 15 A LOX TXBUF2 SELECT TX BUFFER #2
00409A AlF9 9F 40 A STX ADRG0H SET UP ADD REG IN DMA
00410A A1FB 20 06 A?03 BRA TOM ON 2
00411A A1FD 80 01 A TDMON1 SUBA #$IH
00412A A1FF 9E 13 A LDX TXBUF1 SELECT TX BUFFER #1
00413A A201 9F 40 A STX ADRG0H SET UP ADD REG IN DMA
00414A A203 97 11 A TDMON2 STAA TXFRAM
00415A .\205 8E 0400 A LDX #$0400 SET UP BCR IN DMA
0041hA A208 9F 42 A STX BCRGOH DO IT
00417A A20A 96 54 A LOAA O"1APCR ENABLE CHAN 0 IN DMA
00418A A2llC 8A 01 A ORAA #$01
00419A A20E 97 54 A STAA OMAPCR
00420A A210 35 02 PULA
00421A A212 39 RTS

00423 *SUBROUTINE TO SET THE INACTIVE IDLE BIT IN THE
00424 *STATUS SOFTWARE REG ISTER

0042SA A213 34 02 IDLE PSHA
00427A A215 96 10 A LOAII STATUS
00428A li217 8A 01 A ORAA #$IH SET INACTIVE IDLE BIT
00429A 11219 97 10 A STIIA STATUS
00430A A21B 96 2fi A CLEAR LDAA CH2IMG CLEAR RECEIVER STATUS
00431A A21D 8A 20 A ORAA #$20
00432A 1121F 97 01 A STAA ADLCR?
00433A A221 35 02 PULA
00434A A223 39 RTS

0043fi *SUBROUTINE TO SET THE ABORT BIT IN THE STATUS
00437 *SOF'T'IiAREREGISTER

00439A A224 34 0? RIIBORT PSIIA
ll044.1AA?2fi 96 1r. ". WIIA STATUS SET ABORT BIT
0044111 !I??S 81\ ~2 A ORAi' #$02
00442A A22A 97 10 A STAA STATUS
00443A A?2C ?n ED AnB ARA CLEAR
00444 *SUBROUTINE TO Sl::TTHE Fes r:RIlORBIT IN THE
00445 *STATUS ~OFT' ..•.I'dH~ REG Ir3TER

Figure 10. Priority Mode Program Listing (Sheet 10 of 11)



PAGE 011 DMAADLC .SA:l DMAADL

00447A A22E 34 02 CRCERR PSHA
00448A 1'.23096 10 A LDAA STATUS SET FCS ERROR BIT
011449A A232 8A 04 A ORAA #$04
00450A A234 97 10 A STAA STATUS
110451A 1'.23620 E3 A21B BRA CLEAR

011453 ·SUBROUTINE TO SET THE DCD ERROR BIT IN THE
110454 ·STATUS SOFTWARE REGISTER

111l456A 1'.23834 02 DCDLST PSHA
00457A A23A 96 HI A LDAA STATUS
110458A A23C 81'. 118 A ORAA tSf'8
004591'. A23E 97 III A STAA STATUS
011460A 1'.24020 09 A21B BRA CLEAR

00462 ·SUBROUTINE TO SET RECEIVE OVERRUN BIT IN STATUS
00463 ·SOFTWARE REGISTER AND CLEAR THE RECEIVER STATUS

004651'.1'.24234 02 OVRUNI PSHA
110466A 1'.24496 10 A LDAA STATUS SET RX OVERRUN BIT IN STATUS
004671'. 1'.24681'. 10 A ORAI'. t$l~
004681'.1'.24897 III A STAA STATUS
004691'. 1'.241'.211 CF A21B BRA CLEAR

00471 • THIS SUBROUTINE TAKES THE LAST BYTE OF DATA
00472 • OUT OF THE RECEIVE FIFO AT THE END OF EACH
00473 • FRAME.

004751'. A24C 34 04 GETLST PSHB
00476A A24E 34 02 PSHA
004771'. 1'.25096 26 A LDAA CR2IMG CLEAR RECEIVE STATUS
004781'.1'.25281'. 2il A ORAI'. #S20 TO ENABLE ROA
004791'. 1'.25497 01 A STAA AOLCR2 TO BE READ
004801'.A256 12 NOP GIVE IT TIME TO 00 IT
004811'. 1'.25796 011 A GTLST2 LOAA STATSl CHECK FOR DATA
004821'. 1'.25985 III A BITA #$~1
004831'. A25B 27 08 A265 BEQ 'GTLST9 NO DATA--~BRANCH
00484A 1'.25006 112 A LDAB RXFIFO G~T THE DATA BYTE
004851'. A25F 9E 44 A LOX ADRGIH GET NEXT ADO OF RX BUFFER
00486A 1'.261E7 84 A STAB "',X
004871'. A2fi3 30 01 INX
004881'.A2fi5 35 02 GTLST9 PULA
004891'. A2fi7 35 04 PULA
004901'. 1I2fi939 RTS
00491 E~D
TOTAL ERRORS 00000--00000
TOTAL WARNINGS 000~O~~00r,00



PAGE 1'l~1 NOPRIORT.SA:1 NOPRI

°I'll'll'l1 NAM NOPRI
1'l1'l1'l02 * r~AY 19, 1981
1'l1'l1'l03 OPT 0,I<OG,LLE=82

1'l1'l1'l1'lS *NON PRIORITY MODE OF OPERATION I'HTH DMA AND ADLC
1'll'll'll'lG *

1'l1'l"08 * THIS PROGRAI~ IS TO DEMONSTRATE THE MC68S4 ADLC
1'l1'l1'l1'l9 * AS USED WITH THE I~Cr;844 DMA CONTROLLER AND
1'l1'l1'l10 * THE MC6809 MPU CHIP DESIGNED FOR DMA AND
I'll'll'll! * DYNAMIC "Er~ORY REFRESH.

1'l1'l1'll3 BF40 A IIDRGOH EQU $BF40 DMA 1100 REG 11 HIGH ADD
I'lI'll'l14 BF41 A ADRG0L F:QU $BF41 DMA REG 'l LOW ADD
1'l01'l1S 1'1"42 A RCRG0H EQU $BF47o DMA AYTr; COUNT REG ° HI ADD
1'l1'l016 BF43 A BCRG0L F:QU $131"43 DMA BYTE COUNT RF.G 0 LO ADD
1'l1'l017 BF44 A IIDRG1H EQU !';BF44 DM/I SOD REG 1 HIGH ADD
1'l1'l1'l18 BF4S A ADRG1L EQU $BF4S OMA ADD REG 1 LOW ADD
1'l1'l1'l19 BF4" A BCRGHI F:QU SBF41i OMA BYTE COUNT REG 1 HI ADD
1'l1'l1'l21'l BF47 A BCHG1L F:QU SBF47 DMA BYTE COUNT REG 1 LO ADD
o I'll'l21 BFS1'l A CNTI<L0 EQU $BFS0 DMA CHAN 0 CONTROL REG
1'l0022 131"51 A CNTRLl F:QU $BFS1 DMA CHIIN 1 CONTROL REG
1'l01'l23 BFS4 A D/'lAPCR EQU SBFS4 DMA PRIORITY CONTROL REG
1'l1'l1'l24 BFSS A DMAICR EQU $BFSS DMA IRQ CONTROL REG
00025 IlFS1i II DM,'IDCR EQU $IlFS'; DMA DATA CHAIN CONTROL REG

""027 BF0ci A STATS1 F:QU $BF00 ADLC STATUS U ADD
I'l01'l28 BF01 A STATS70 EQU $BF01 ADLC STATUS 12 ADDRESS REG.
I'l'll'l29 BFI'l2 A RXFIFO EQU $BFI'l2 ADLC RXFIFO ADDRESS
00031'l BF"0 A ADLCR1 F:QU S8FO" ADLC CONTROL REG #1 ADD
I'lI'll'l31 IlFl'll II ADLCR2 F:QU $BF01 ADLC CONTOL REG #2 ADD
I'll'1032 IlFl'll A ADLCR3 EQU $BFl'll ADLC CONTROL REG #3 ADD
I'l01'l33 BF"'3 A ADLCR4 F:QU $IlF03 AOLC CONTROL REG #4 ADD
1'l0034 BFI'l2 A TXFIFO ~;QU SBF02 AOLC TXFIFO ADD

1'l01'l36ABFlO OHG SeF1fl

01'l"3811 BF11'l 0fl A ST.'ITUS FCR Sfl~ SOFT' .•IARE CONDITION REG ISTER
1'I1'1039ABF11 vlf1 A TXFRAM FCB $1l11 TRANSMIT SOFTWIIRR STATUS REGo 1'l1'l4OA BF12 "'0 II RXFRAM FCI3 $Ile RE:C8IVE SOFTWARF: STATlJS RF:G
I'l"'"41.'1 BF13 4lHJO A TXBIIF'l FOB $4ron STIIRTING ADD OF 1ST TX BIIFFER
0"''''42A IlFl5 47oM1 II TXRUF70 fOE 5421)0 STARTING ADD OF' 2ND TX BUfFER
Ol'lVl43A EiF17 5"'r.~ II RXRUFl fOR S5CH,.1 STAI1T ADD Of 1ST RECV IlUFF
1'l1'l044ABF19 570rr A RXPIIF2 FOil 55201' START ADD Of 2ND RECV IlUfF
110045A BFlB All II ADRF:Sl F'CB SIIA STATION AODRESS
1'l004':;/IllF'lC 1'0 fI I'DRI::S2 PCB ~CH' NlILL AODRRSS
01'1047A SF'!D FF A ADRRS3 FCH $F'F GLORAL AnDRESS
~Hl~48f1 8Flr. (l11- fI CO~!T:lL rCB Sr·l(1 RECEIVED CONTROL I"ORD STOHAGF. LO
fH1049/1 BF1F rr, ". RFf,!CN'l' FCH $"r
1'l~[150A OF2" 00 /I TF"CN'I' FCB $0\)
0~051A 1'1"21 55 fI OUTAOD fCf; $55
1'l0052.'IBF22 110 " OUTC'rL fCI! $Or.

Figure 11. Non-Priority Mode Program Listing (Sbeet 1 of 12)



PAGE 0~2 NOPRIORT.SA:l NOPRI

00"'53A BF23 00 A DNMIM FCB $00 DMA CHAN o CONTROL REG IMAGE
00054A BF24 00 A N1AlIM FCB $00 DMA CHAN 1 CONTROL REG IMAGE
00055A BF25 00 A CRlIMG FCB $00 ADLC CONTROL REG 1 IMAGE
00056A BF2~ 00 A CR2IMG FCR $00 ADLC CONTROL REG 2 IMAGE
00057A BF27 00 A CR3IMG rCB $fW ADLC CONTROL REG 3 IMAGE
00058A BF28 0'" A CR4I",C FCB $00 ADLC CONTROL REG 4 IMAGE
00059A BF29 00 A SRIIMC FCB $00 ADLC STATUS 1 IMAGE LaC
00060A BF2A 0,0 A SR2IMC FCB $00 ADLC STATUS 2 IMAGE LaC
00061A BF2fl 00 A II~CR'fLFCB $00
00062A BF2C 00 11 SRlIl~2 FCB 00 SAFETY STATSI CHECK
00053A BF2D -0000 A SCRTCH FDB $0000



PAGE 003 NOPRIORT.SA:1 NOPRI

00066A "000 ORG SI'.OOO
00067 00BF A Sr.TDP SFlF
o 0068A "000 86 BF A LDA #$BF
00069A 1\002 IF 813 A TFR A.DP
00070A "004 8E M65 A START LOX HRDII\!T
00071A "007 BF FFF8 A STX SFFF8
00072/\ A00A 10CE 3FFF A HilT LDS ilS3HF SET UP STACK
00073A A00E 1A 10 SEI SET IRQ MASK
00074A A010 86 01 A LoAA #S01 SeT UP OMA IRO CON REG
00075A 1\012 97 55 A STAA DMAICR
00076A "014 97 54 A STAI\ DMI\PCR
00077A A01'i 9E 13 A lOX TXBUF1 Sr.T UP xr~IT ADD CTR IN oMA
00078A 1\018 9F 413 A STX ADRG0H
00079A "" 1A 9E 17 A LDX RXFlUFl SET UP RECV ADD CTR IN OMA
00080A A01C 9F 44 A STX ADRG1H
00081A 1101E 8E 02\"" A LOX ~S201'1 SET UP CHAI~ fl BCR (XMIT)
00082A 1\021 9F 42 A STX 13CRGOH h'ITH 1024 COUNT
00083A A023 86 05 A LDIIA 'S05 Sf.T UP r.HAI~o CaNT REG (XMIT)
00084A Ml25 97 50 A STAA r.NTI<L\'I
00085A NJ27 86 04 A LDAI\ #S0~ SET UP CHAN CoNT REG (Rf.CV)
00086A 1\029 97 51 A STAA C~TI<L1
00087A 1\028 86 C1 A LDAII ~SCl ACCESS CR4
00088A 1\02D 97 00 A STAA ADLCR1
00089A A02F C6 IF A LDAB ff$lF Sr.T UP CONTROL REG ~ IN ADLC
00090A A031 D7 03 A STAR AoLCR4 R flIT I.LS. "IRZ. FLAG~FLAG
00091A /\033 D7 28 A STAB CR4IMG
00092A A035 5F CLR8 SET UP CaNT Rf.G 3 IN AoLC
00093 *FLAG DETECT NOT F::-IAJ3LED
00094A A036 07 01 A STI\8 ADLCR3
00095A M38 D7 27 A STI\B CR3IMG
000961\ AIl3A 86 C0 A LDAA #SCI'I ACCESS Cfl2
00097A A33C 97 00 A STAA IIDLCR1
00098A 1\03E 97 2S A STAA CR1I"IG
00099A /\043 C6 04 A LDAR #Sfl4 Sr.T UP ADLC CoNT REG 2
00130 * 1 BYTr. TI<ANSFEH. FLAG IDLE
00101A A042 07 01 A STI\B AoLCI<2
00102A A044 07 2(, 1\ STAR CI</.IMG SAVF: IN IMAGE
00103A A046 17 0190 /\109 LFlSI< XMIT ENAflLF:S I)M/\MODE OF OPERATION
0011114A A049 96 25 A LD/\A CR1II"G
00105/\ 1\048 80 C0 A SUBA #SC0 TUflN ON XI'IT SF:CTION IN ADLC00106/\ 1\04D 8A fiG /\ ORAA #506 EN/\ IR0 XMIT. AND REr.V.
00107A 1\04F 97 25 A STAA CRlIl~G
011108A /\A51 q7 00 '" STAA /\DLr.R1
00109/\ M53 Ie EI' r.LI
00110A 1\055 20 00 /\1157 FlRA "'AIT



00112
00113
00114

*WAIT IS A LOOP THAT WOULD BE THE NORMAL OPERATIOAL
*PROGRAM CONTROLLING THE MPU AND OTHER FUNCTIONS
*OF TaE SYSTE"1

00117'A A057 12 \vAIT NOP
0A118A A058 12 NOP
00119A MJ59 96 113 ,.. LOA A STATUS
00120A A05B 2E 1'14 AAr,l flGT SOFT
00121A AA5D 12 NOP
00122A A05E 12 NOP
0A123A AA5F 20 FC, A1357 BRA \vAIT

00125 *SOFT ;,OULD BE AN ARI':A '/iHf.REPROflLEMS THAT
0012fi *HAVE OCCURRF:D SUCH AS A LOSS OF CARRIER (DCD)
00127 *A RECEIVED ABORT, TX UNDERRUN, OR A LOSS OF CTS
00128 *;';OULD BE HANDLED IN SETTING UP SPECIAL FRAME
1'10129 *(SEQUENCED F'ORr~AT) TO INDICATE WHAT IS REQUIRED.

00131A A0fi1 0F 11'1 A SOFT CLR STATUS
00132A A063 20 F2 A057 BRA '.'AIT



IH'136
00137
00138
0"139
0"14"
00141
0"142

*HARDWARE INTEMUPT IS THE AREA OF THE PROGRAM
*TIlAT SERVICES THE ADLC AND THE Di'lAO~CE TRANSFERS
*HAVE BEEN STARTED. IF A SYSTEM WOULD NOT USE I~Q
*OR NMI A POLLING ROUTINE WOULD BE NECESSARY
*1'0 SERVE THIS FUNCTION. POLLING HOWEVER \'/OIlLD
*GREATLY RESTRICT THE i'lPUDURING TRANSFERS.

""145A A065 96 sa A HRDINT LOAII CN'I'RU' IS IT FROM DMA
""146A AlJ67 2B 05 M6E BMI HIRQ2 YES-BRANCH
0"147A A069 96 0" A LDAA STATSI IS IRQ FROM ADLC
""148A AIl6B 2B 06 AIl73 BMI HIRQl YES-BRANCH
""149A A"6D 3B RTI , NO-RETURN FROM IRQ

00151 *IF OTHER PERIPHERIALS WERE ENABLED FOR IRQ
0"152 *THEY I'" TURN I,OULD BE POLLED FOR IRQ

00154A A06E 16 I""DD A14E HIRQ2 LBRA flIRQ02
"0155A AIl71 97 2C A STI\A SRlIM2 SAVE FOR SAFF.TY REFORE CLR
00156A AIl73 97 29 A HIRQl STAA SRlIMG SI\VE ADLC STATUS
0"157A All75 9fj 29 A HIRQIA Willi SRIIMG RELOAD STATUS n CONTENTS TO ACC
00158A A077 49 ROLA
0fn59A All78 49 ROLA
01H60A All79 2B 0F M8A RMI TXUNDR TRIINSI"ITTF.R UNDERFLOI'l'
IH1l61A A07B 49 ROLA
00162A A07C 2B 18 Ae9') BMI CTSERR CLEAR TO SEND LOST
00163A A07E 96 29 A IIIHQ3 LDAA SRIIMG
00164A A080 8A 10 A ORAA ~$10 KF.EP IRQ MASI~F.D
00165A Al'1l12IF 8A TAP ACC A TO CCH
00166A 11084 29 If: AflA4 BVS RSTAT2 RRANCH IF SR2 NEEDS SERVICE
00167A 11086 16 01CD A25r, LBRA CLEAR
00168A M89 3F TXLOIID SWI NtEVER SUPPOSED TO BF. IIERE
00169A M811 9G 10 A TXUNDH LD/\A STI\TtJS SET RIT OF TX UNDERRUN
00170 *IN STATUS
00171A AIlRC 8A 40 A ORAA ~$4[J
00172A MSE -97 10 /\ STAA STIITUS
IHll7 3A AC'9CJ96 29 A LOAA SRIIi'lG
lJ0174A A092 80 2CJ A SURII ~$ 2['
001751' A094 20 DD M73 BHII HIRQl
00176A A096 96 If}, II CTSERR LO/\11 ST1'.T'JS
0lJl77A /1.098811 21' A OHIIII *$21'
lJ017flA 1109,\9- 1' /\ ST1'A STAT~S..
00179A AlJ9C 9h 2(; /\ CLI1TXS LO/\A CR2I.'<
0018011 M!9E 8A 40 A OHII.\ ~St1(l
001RIA AOA0 97 01 A ST/I/\ /\DLCfO
lJ0192A MA2 20 T'A 1I07E RHII IIIfW3

0Olil4 'READS ~)T/\T'JS [~SC; 2 or '.rlLCA\Jr, CHI:C":S F0n cpnORS
00185 *on IF "ECf~IVr." FI1I\!·IF '. AS 'fAU':.

Figure 11. Non-Priority Mode Program Listing (Sheet 5 of 12)



PAGE 1'106 NOPRIORT.SA:1 NOPRI

0"187A A0M 96 01 A RSTAT2 LDAA STATS2 Gf.TS STATUS 2 PROM kDLC
"0188A A0A6 97 2A A RSTA2R STAA SR7.IMG
"0189A A0A8 81 "'0 A CMPA 'SIHl
0"190A A0AA 27 17 AIlC3 8EQ RSTA4R
00191A A0AC 8A 11' A ORAA - 'S10
00192A MAE IF 8A TAP
00193A A0B0 25 1B A0CD BCS ADDCK BRANCH IF ADDRESS PRESENT
00194A A0B2 29 2B A0DF BVS FRMVAL BRANCH IF RECV FRAME VALID
00195A A0B4 27 4E A104 RSTAT3 BEQ RIDLE BRANCH IF IDLE DETECTED
00196A A0B6 2B 58 A110 BMI ABORT BRANCH IF ABORT DETECTED
"0197A A0B8 96 2A A RSTA3R LDAA SR2IMG
00198A A0BA 49 ROLA
""199A AilBB 2B 0E MCB 8MI OVRI»I RECEIVER OVERRUN ERROR
00200A A0BD 49 ROLA
00201A A0BE 2B 6E A12E BMI DCDERR DATA CARRIER LOST
00202A A0CIl 49 ROLA
00203A A0C1 2B 5B AIlE BMI FCSERR FRAME CHECK SEQUENCE ERROR
00204A AIlC3 96 29 A RSTA4R LDAA SR1IMG
0"205A A0C5 80 02 A SUBA 'S02
00206A AIlC7 97 29 A STAA SRI IIorG
00207A A0C9 20 B3 A07E BRA HIRQ3
00208A A0CB 20 72 A13F OVRUN BRA OVRN
00209A A"'CD 17 0142 A212 ADDCK LBsn RDMAON TURN ON RECV D~A MODE
0021M MD0 17 0089 A15C LBSR CKADD SEE IF THIS IS OUR ADDRESS
00211A AIlD3 915 29 A LDAII SRlIMG
00212A AlJD5 8!'l "1 A SURA ~$Ol nnll IN SRI
0021311 MD7 97 29 II STAA SRlIMG
00214A AeD9 90 211 A LDIIA SR2IMG
0021511 MDB 80 81 II SUAII #$131 RDII IIND ADO
0021'5A MOD 20 C7 IInll'; BRII RSTII2R
0e21711 /lrof' 17 c,r- ~.,' 1\1:1 r" rr. .'\\1 ~'L IX" ,- !"1T"'r.1l\')f TIJP'l OFF RECV Dr-1AMODE
00218/1 MJE2 06 IE II LDIIB CONTRL INC CONTROL NR COUNT
00219A ME4 C4 E'" II ANDB '$EIl CLEAR IF 7 AND INC TO 1
00220A AllEn C1 E0 II CMPB 'SEll IS IT 7 YET
0"'221A ME8 27 14 AeFE BEQ FMVIIL2 NO-flRANCM
00222A A0EA 06 IE A LDAB CONTRL YES-CLEAR NR COUNT TO ZERO
00223A A0EC C0 EI'I A SUBA '$EA
002241\ A"'EE CB 20 A FMVALl ADDB 'S20 INC NR COUNT
0022511 A0FO 07 IE II STAB CONTRL
"'022611 A0F2 17 "''''BE1I1B3 LBSR RXEND GO PREPARE FOR NEXT FRAME
00227A All1'5 96 211 A LDAA SR2IMG
00228A A0F7 17 0118 11212 LBSR RDMAON
00229A A0FA 80 02 A SUBA '$02
00230A A0FC 20 A8 A0A6 ARA RSTA2R
0023111 AilFE 06 IE A FMVAL2 LDIIB CONTRL
00232A A1"'0 C0 E0 A SUBB '$E0
00233A A1"'2 20 EA MEE BRA FMVALl
"'0234A A1I'l4 17 "'144 /l24B RIDLE LASR IDLE INDICATE THAT AN INACTIVE
00235 *IDLE WAS DEn;CTED
002361'1 1'1107 17 0192 1129C LEISR OUTFRM
00237A AUlA 96 2A A LDAA SR2I'~G
00238A 1110C 80 "'4 A SUBA '$04
0"'23911 1110E 20 9fi A"'1I6 BRA RSTA2R

00241A All'" 17 015D 11270 ABORT LBSR RABORT INDICATE AN ABORT WAS RECEIVED
00242A A113 17 0186 1129C LASR OUTFRM
00243A Al16 96 2A A LDAA SR2IMG



PAGE .lfJ7 NoPHIORT. SA: 1 lIloPRI

00244A Al18 8~ 08 A SUBA #$08
00245A AllA 97 2A A STAll SR2IMG
{HJ246A AllC 20 9A Al'lB8 BRA RSTA3R
00247." AllE 8D 6D A18D FCSERR BSR RDMAOF TURN OFF DMA RECV MODE
00248A A120 17 l'l158A27B LASH CHCERR INDICATE rcs ERROR OCCUR ED
00249A A123 17 0176 A29C LBsn OUTFHM
00250A A126 96 2A A LDAA SR2IMG
00251A A128 80 10 A SUflA #$10
00252A A12A 97 2A A STAA SH2IMG
00253A A12C 20 95 MC3 BRA RSTMR
00254A Al/.E 8D 5D AIRD DCDEIlR ASR RDMAOF TURN OFF DMA RECV MODE
00255A A130 17 0153 A2fl6 LASH DCDLST DATA CARRIER DETECT FROM
00256 *~ODEM WAS LOST
00257A AD3 17 rn61; A29C .LBSR oUTFRM
00258A A136 96 2A A LDAA SH2IMG
00259A A138 80 20 A SUBA #$20
00260A ADA 97 2A A STAA SR2Ir~G
130261A A13C 16 FF79 MBB LBRA RSTA3R
00262A A13F 17 014F A291 OVRN LASH OVRUNI SET flIT TO INDICATE OVERRUN
13~263A A142 17 0157 A29C LASR OUTFR'"
002114A A145 96 2A A LnAA SR2IMG
00265A A147 80 4l'l A SUflA #$4rJ
0021;6A 11149 97 2A A STAA SR2II'1G
00267A A14B 15 FFI1A AeB8 LARA RSTA3R



PAGE lil08 NOPRIORT.SA:l NOPRI

00269 *DMA SERVICE II~TERUPT

00271A A14E 96 26 A HIRQ02 LOAA CH2I"'G SET LAST DATA BIT IN CR2
00272A A150 8A 1,~ A ORAA_ nSlIl (AUTO RESET)
130273A 1\152 97 01 II STAA AOLCR2
00274A A154 80 4A AlAr BSR TDMAOF TURN OFF DMA ",00f.
00275A A156 17 a0CC A225 LASR TDMAON LOAD DMA ADDRESS REG AND BCR
002761\ A159 8D 7E AID9 BSR X~HT
00277A A15Fl 3B RTI
00278
00279 *
00280 *
130281 *
00282 *
00283 *.
00284 *
00285 *
00286 *
00287 *THIS ROUTINE FETCHES THE ADDRESS FROM MEM BUFF
00288 * AND COMPAR,;S IT THE STATION ADDRESSES.
00289 *IF CORRECT IT SETS 'I'HEADD. RECV. BIT IN THE
00290 *RXFRAM. IF NOT THIS STATIONS RECV. CLR SYNC
00291 *IS SET AND THE RECV BEGINS LOOKING FOR TilE
00292 *FLAG CONDITON AGAIN TO SYNC ON.

00294A A15C 34 /14 CKADD PSHB
00295A A15E 06 12 A LDAB RXFHAM FIND OUT BUFFER ADDRESS
00296A A1613 C5 01 A BITR #$01
00297A A1h2 27 04 A168 BEQ BUFCKI
00298A A164 9E 19 A LPX RXBlJF2 LOAD HIGH ADD BUFF
00299A Aln6 20 02 AHA BRA BUFCK2
00300A Aln8 9E 17 A BUFCKI LOX RXBUFI
00301A Alr,A E6 84 A BUFCK2 LDAB 0,X GET ADDRESS BYTE FROM BUFFER
00302A A1hC Dl IFl A CMPB ADRESI COMPARE RECV DATA TO POSSIRLE:
00303A A1hE 27 In A180 FlEQ CKAD02 STATION ADDRESSF;S
00304A 1\170 01 lC A CMPB ADRES2
00305A A172 27 (JC A130 FlEQ CKADfl2 YF;S~BRANCH
00306A A174 01 10 A C!'IPR ADRCS3
00307A A17r, 27 08 A180 BE(l CKADD2 YE:S~BRANCII
00308 * NO ADDRESS MATCH THEN CLEAR RECF:IVE SYNC
00309A A178 D6 25 A LOAB C[nII~G
00310A A17A CA 2., A ORAB ff$?vJ CLEAR SYNC IN ADLC
00311A A17C 07 0n A STAB AOLCrn DO IT
00312A Al7E 211 0A A18A BRA CKADD9
00313A A180 0(, 12 A CKIID02 LDAR RXFRA"'l
00314.0, A182 CA ?2 A ORA.B 1$02
003151\ A184 07 12 A STAB RXF RAI-l SET AnD BIT IN RXFRAM
0031o,A l\18~ E5 01 1\ WAR 1,X GET THE CONTROL BYTE
00317A A18S 07 2B A STAR INCHTL SI\VE THE CONTROL BYTE
0031:'IA AIRA 35 04 CKAOD9 PULP.
a0319A AIRC 39 RTS

011321 *TIiIS StJRPOlJTINE TtJHNS OFr OMA CHAt\l 1 ENABLE Aim
00,322 *ADLC fH~O;IVt: '·001::or opeRATION.
0e323A A13D 3~ 02 RD'IIIOP PSIIA

Figure 11. Non·Priority Mode Program Listing (Sheet 8 of 12)



00324A A1AF 96
00325A A191 80
00326A A193 97
00327A A195 97
00328A A197 96
00329A 11199 80
00330A A19B 97
00331A A19D 35
00332A A19F 39

00337A A1AI1 34
003381'. 1'.11'.296
003391'. AIM 80
00340A 1'.11'.697
00341A 1'.11'.897
003421'. A1AA 9(,
00343A A1AC 80
00344A AlAE 97
003451'. A1B0 35
00346A II1B2 39

00348
00349
00350
00351

003531'. A1B3 34
00354A A1B5 96
003551'. A1B7 85
00356A A1B9 27
003571'. AHlB 80
003581'. AIBD 85
003591'. A1BF 27
0036111'.AIC1 80
003611'. A1C3 9E
00302A A1C5 9F
003(,31'.1I1C7 20
003(,4A A1C9 8B
003651'. A1CB 9E
003,,61'.A1CO 9F
003"71'. A1CF 8E
003'>81'.A102 9F
"0369A 1'.111497
0037(lA A106 35
0lB71A A1D8 39

00373
00374
00375
00376

02
12
80
1BA"01
~8
01
17
44
~t)

"1
19
44
FFI'F
46
12
02

LOAA
SUBA
S'1'AA
STAA
LDAA
SUBA
STAA
PULA
RTS

CRUMG
#$09
CRUMG
ADLCR1
DMAPCR
#$02
DMAPCR

CR1IMG
#$10
CRUMG
ADLCR1
DMAPCR
#$01
DMAPCR

RXFRAM
#$80
RXENLJ9
#S86
#$01
RXEN01
#S01
RXBUF1
JlDRG1H
RXEND?
¥-S01
RXBUF2
JlDRG1H
1SFFFF
BCRG 1~
RXFRAI~

*TURNS OFF TX DMA MODE IN ADLC AND DMA CHAN #0
*IS DISABLED

DO IT
GET PCR CONTENTS
RESET CHAN #0 ENABLE BIT
DO IT

*THIS HOUTINE: LOADS THE ALTERNATE RXBUFFER ADDRESS
*1"1'1'0THE DMA, CLEARS THE IN FRAME BIT, AND SETS
*THE POINTER TO THE NEXT RXBUFFER AREA TO BE LOADED
* HITO THE DMA

TEST IF IN FRAME
NOrBRANCH-LEAVE ROUTINE
YES-CLEJIR IN FRAME: BIT &1'.00 & CO
TEST HI OR LO ADDRESS NEXT
BRANCH TO LOAD LOW ADD
RESET ADO START BIT IN RXFRAM
LOAO LOI~ JlDDRESS

*SUHROUTINE '1'0LOAD THE TXFIFO WITH THE ADORESS
"AND CONTHOL WORDS, AND TO ENABLE THE ADLC IN
*THE TX DMA ~OOE OF OPERATION. (XMIT SECTION OF THE
*ADLC IS ONCE TUE INITIAL SEQUENCE HAS BEEN PERFORMED.)

TDMAOF PSIlA
A LDAA
A SUBA
A STAA
A STAA
A LDAA
A SUBA
A STAA

PULA
RTS

PSIIA
LOAA
BITA
BEQ
SUBA
BITA
BEQ
SU'BA
LOX
STX
BHA
ADOI'.
LOX
STX
LOX
STX
STAll
PULA
RTS

A
A

AID6
A
A

A1C9
A
A
II

A1CF
A
A
A
II
JI
A



PAGE 010 NOPIlIORT.SA:l NOPRI

00378A AID9 34 02 xrHT PSHA
0"'379A AIDB 34 "'4 PSIIB
0038M AIDD D15 11 A LDAB TXFRAr~ DETEHMINE '.oIHICHTXBUF 'ro USE
00381A AIDF C5 01 A BITB #$111 IS IT U
00382A AIEl 27 114 AlE7 BEQ XMIT2 Yf;S~-BRANCH
0"'383A AIE3 9E 15 A LOX - TXBUF2 NO~~~IT'S #2
00384A AlES 20 02 AIE9 BRA XMIT3
o 0385A AlE7 9E 13 A XMIT2 LOX TXBUFl
00386A AIE9 96 113 A XMIT3 LD1IA ADRESI ADDRESS BYTE SET UP
00387A AIE8 A7 84 A STAA "',X
00388A AIED 30 01 INX
00389A AlEF 96 IE A W1I11 CONTHL CONTROL WORD SET UP
00390A AIFl 84 0E A ANDA ~$rE TEST IF 7 FRAMES SENT
00391A 1I1F3 81 I1E A CMpA ff $0~~
00392A AIFS 27 15 A20C BEQ XMTCLR YES~BRANCH
00393A AIF7 9f5 IE A LDAA CONTRL NO~CONTINUE
00394A AIF9 813 02 A XMITI ADOI', #$02 INCREMENT THE NS COUNT
111l395A AIFB A7 84 A STAA 0,X LOAD IT OUT
111l396A AIFD 97 IE A STAA CONTRL SAVE THE NE\~ CONTROL WORD
""'397A AIFF 96 25 11 LDAA CRUMG
111l398A A231 8A 10 11 ORAA tSl11 ENA8LE O"lA MODE OF OPERATION
111l399A A203 97 110 A STAll ADLCRI DO IT
111l411M A235 97 25 11 STAA CRUMG
111l4111AA207 35 04 pULB
1104112A A2JJ9 35 32 PULA
111l403A A2118 39 RTS
111l4114AA20C 96 IE A XMTCLR LDAA CONTRL
111l435A A2"'E 811 0E A SUBA t$IlE CLR NS FRAME COUNT
111l4116AA210 20 E7 )l,lF9 BRA XMITI

110408 *ROUTINE TO 'tURN RECEIVER OPERATIONS OVER TO
110439 *THE OMA CONTROLLR.

011411A A212 34 32 RDMAON pSHII
00412A A214 9f5 54 II LOAA OMAPCR TURN ON OM1I CHAN 1 (RECV)
111l413A A2115 8A 02 A ORAA #$02
110414A Jl.21897 54 A STAA DMAPCR
110415A A21A 9<i 25 A LDAJI. CR1IMG TURN ON ADLC TO OM 1'.MODE
1104115A A21C 8A 08 A ORAA #$08 OF OPEHATION
111l417A A21P. 97 25 A STAA CR1IMG
111l418A A220 97 110 A STAA AOLCH1 DO '1'1
110419A A222 35 02 PULA
011420A A224 39 RTS

0"'422 *SllBllOUTHIE TO LOAD TIlE ALTF;H"IATE TX BUFFER
00423 *ADDRESS INTO THE ADDRESS REG OF THE O~'A CHAI>I [l

0042511 A225 34 02 Tor-liON pS111I
0042fiA A227 % 11 A LOA II TXFHJI.,~ GET TX FHAMF: STATUS
0042711 11229 85 01 A BITA #$01 TEST h!IJICH HUFFEIl "1'0 USE
0042811 A228 2G' 08 A?35 [lNE TIWON1 AI1Al,CH NOT !5ET
00429A A22D 8A 01 A ORAA #$01
""'430A A22F 9E 15 A LOX TXHllF2 SELECT TX HUFFER ~2
00431A A231 9F 4\' A STX AORG0f! SET UP ADD REG IN D~'A



PAGE 011 NOPRIORT.SA:l NOPRI

li"'432A A233 20 ~G /\238 BRA TD'~ON2
~0433A A235 8~ 01 A T!)I~ONI SUBA H~l
00434A A237 9E 13 /\ LDX TXBUFl SELf.CT TX RUFFER ffl
00435A /\239 9F 40 /\ STX /\DRG~H ~ET UP ADD REG IN D"'/\
00436A A23B 97 11 A TD~lON2 ST/\A TXFHAI~
00437A /\230 8E 0400 A LOX ;1$0400 SET UP BCR HI DII'A
00438A A2 4~1 9F 42 ,•. STX BCRG ~Il DO IT
0~439A A242 96 54 A L[)A/\ D~\APCR F:~IABLE eHAN ;1 I1~ DMA
00440A A244 8A 01 A OR/\A #$01
00441A A24(, 97 54 A STAA DM/\PCR
00442A A248 35 ~2 PULA
00443/\ A24A 39 RTS

00445 ·SUBROUTINE TO SET THE INACTIVE IDLE BIT IN THE
00446 ·STATUS SOFT'NARE REG ISTER

0~448A A24B 34 02 II)LE PSIlA
00449A /\24D 96 10 /\ L[)AA STATUS
0~450A /\24F 8A 01 A ORAA #$01 SET INACTIVE IDLE BIT
00451A A251 97 10 /\ STAA STATUS
0~452A A253 35 02 PULA
00453A /\255 39 RTS

00455 ·SUBROUTINE TO CLEAR RX STATUS

00457A A25(, 9fi 00 A CLEAR LD/\/\ STATSI SAFETY CHECK OF STATUSI
00458/\ A258 91 2C A CMPA SHIIM2 TO ~IAKF: SURE OF 'ol0 NEW STATUS
00459A A25A 2(, 07 A2<;3 BNE No'rCLR NEW STATUS?-,-BRANCH
00460A A25C 9<; 26 A LDA/\ CR2I"'G CLEAR ReCEIVER ST/\TUS
00461A A25E 8A 20 A ORAA #$20
0~4G2A /\25~ 97 ~1 A STAA ADLCR2
~0463A A2(,2 313 RTI
0~4G4A A2fj3 D6 2C A NOTCLR LOAB SRI 1M2
~045511 A2o,5 53 COMB GF:T THE OLO STATUS
~0465A A26G D7 2D A STAB SCRTCH /\NO COMPARE IT TO THE NEI,
00467A /\2(,8 94 2D A A:-JDA SCRTCH GET RID OF OLD STATUS
00468A /\2(,A I" FEfl6 /1073 LPRA HI ROI - GO BACK AND SERVICE NE'.'" STATUS
0~469A /\26D 1") FE03 Mn3 LPRA HIRQl

00471 ·SllBROUTII~E TO Sl::TTYE ABORT BIT IN THE STATUS
00472 ·SOFT'ARE IlEGISTER

00474A /\270 34 ~2 RAfiORT PSHA
00475/\ A272 9G 1~ A LDAA STAT'.JS SfT ABORT BIT
0~47r,A A274 8A 02 A OHAA ~$~l2
0~477A A276 97 11~ A STAA STATUS
00478A A278 35 ~2 PULA

0V)480A A27A 39 nTS
00481 ·SUIlf10UTI',E TO SET THE res CRIWH BIT IN THF
00482 ·ST/\TUS ~;OFT'NARE HEGISn~l,

Figure 11. Non-Priority Mode Program Listing (Sheet 11 of 12)



PAGE 012 NOPRIORT.SA:l NOPRI

00484A A27B 34 ~2 CkCE'~R PSHA
00485A A27D 96 10 A LrJAA STATUS SET FCS EHROR BIT
00486A A27F 8A 04 A ORAA ~$O4
00487A A281 97 10 A STAA STATUS
00488A A263 35 02 PULA -
00489A A285 39 RTS

00491 *SUBROUTINE TO SET THE DeD ERROR BIT IN THE
00492 *ST1ITUS SOFTWAHE HEG ISTEll

00494A A286 34 ~2 DCDLST PSIIA
00495A A288 96 1~ A WAA STATUS
00496A A28A 8A ~8 A ORAA ~$(10
00497A A26C 97 10 A STAA STATUS
00498A A28E 35 02 PULA
00499A A290 39 RTS

00501 *SUBROUTINE TO SET RECEIVE OVERHlIN BIT IN STATUS
00502 *SOFTI"ARE HEGISTEH AND CLEAR THE RECEIVEH STATUS

00504A A291 34 02 OVHUNI PSIIA
00505A A293 96 10 A LDAA STATCJS SET RX OVEHRUN BIT 1'1/ STATUS
00506A A295 8A 1~ A ORAil ~$lfl
00507A A297 97 10 A STAA STATUS
o0508A A299 35 02 PULA
00509A A29B 39 RTS

00511 * SUBHOUTINE TO REMOVE THE ADDRESS,
IHl512 * CONTROL, AND IN FHAME BITS FROM THE
00513 * SOFT1,,'ARE HEGISTEH RXFRAI~•

00515A A29C 34 ~2 OUTFRM PSBA
0051~A A29E 96 12 A LDAA RXFRAM
~0517A A2M\ 85 80 A BITA #$80 CK IF IN FHA!~E
00518A A2A2 27 04 A2A8 BE(1 OUTHi9 NO-llIlANCH
00519A A2M 80 86 A SUBA ,1$8" YES,..DECLI\REEND OF FRA'~F.
00520A A2A6 97 I? A STAA RXF!lAI~ SAVE IT
00521A A2M 35 02 OUTFM9 PULA
00522A A2AA 39 RTS
00523 EI\lD
TOTAL ERRORS 00000--l]0rrr.
TOTAL ,'iARNHIGS0~O(W--0""OlJ



,~.
",,'
ToO',~,

~im:a=-m.

T.~OO :J2
T.II01l1
ToA02Xl
1.1I0:I1t

'"""12 /110';
n ,
" ..
"





AN·831

AN IEEE·488 BUS INTERFACE
USING DMA

By
Mike Newman

Manager Technical Marketing

INTRODUCTION
This application note provides information about using

the MC6809 processor to form a Talker/Listener IEEE-488
System. An overview of a data transfer operation, the
General Purpose Interface Bus (GPIB), and some direct
memory access techniques are given for review purposes
prior to the actual system implementation.

The Talker/Listener device consists of an MC6809 pro-
cessor, an MC68488 general purpose interface adapter
device, and an MC6844 direct memory access controller.
Hardware and software considerations are discussed. The
listing of an example program is also given.

DATA TRANSFER OVERVIEW
The standard method of transferring data between

memory and a peripheral device is to have the transfer con-
trolled by a processor. To perform this transfer, the pro-
cessor initiates a read instruction which places the data byte
in the accumulator of the processor followed by a write in-
struction completing the transfer. The generalized sequence
needed to transfer a data 'byte between a peripheral device
and memory is as follows:

I. The peripheral device alerts the processor when a data
byte is to be transferred. The processor recognizes this
through either an interrupt sequence or a polling pro-
cedure.

2. The processor executes, a load instruction to read the
data from the peripheral device and loads it into an ac-
cumulator, which is used as a temporary holding
register.

3. The processor executes a store instruction to write the
data from the accumulator into the appropriate
memory location.

This sequence shows that at least two software instructions
(load and store) are required for each data transfer and that
additional software is required to recollnize when it is time to
transfer each data byte.

In an interrupt driven system, the processor also needs to
recognize the interrupt request, complete the current instruc-
tion, stack the appropriate internal registers, and enter an in-
terrupt hlll'ldier routine to determine what course of action is
necessary concerning the interrupt.

The MC6809 allows three different types of interrupts, in-
terrupt request (IRQ), fast interrupt request (FIRQ), and
non-maskable interrupt (NMI). The entire machine state is
saved for IRQ and NMI. This can take up to 20 E clock
pulses. The FIRQ is a faster responding interrupt in that only
the contents of the condition code register and the program
counter are saved. This can take up to 12 E clock pulses. If
any other internal registers need to be saved when using
FIRQ, they need to be saved via software.



An alternate to using interrupts is to use a polling pro-
cedure to recognize when a data byte is to be transferred. In a
polling system, the processor monitors the status of the
peripheral device using a software polling routine. This
routine normally consists of one or more load instructions,
each of which is followed by test instructions (e.g., bit test).
If the processor is dedicated to continually monitoring the
peripheral device, then a polling procedure provides a faster
response thlin the interrupt driven system. Even though the
polling procedure can handle data at a faster rate than the in-
terrupt procedure, it still requires a set of software instruc-
tions to handle each data byte. Since many systems do not re-
quire extremely high data rates, either of these procedures
should be more than adequate.

A direct memory access (DMA) method of operation is re-
quired when data needs to be transferred at a high rate (ap-
proximately 10K bytes per second). For example, when a
peripheral device is receiving data from a high-speed disk
system. This method of operation does not use processor
software to perform the transfer; therefore, the maximum
data rate is only limited by either the processor system clock
or the peripheral device speed. Within the DMA method of
operation there are two modes, halt burst and cycle stealing.
The advantages and disadvantages of these modes will be
discussed later. To use DMA, a processor with special DMA
features and a device called a direct memory access controller
(DMAC) is needed. Some peripheral devices may have DMA
features included; therefore, a separate DMA device is not
required. The MC6844 direct memory access controller is a
device that is designed to perform the data transfer between
memory and a peripheral in the most efficient manner. It
does this by automatically performing the necessary
read/write sequence and sending the data byte directly from
the peripheral device/memory to memory/peripheral. The
processor is free to do other things at this time.

To use the DMA method of operation, the controller must
first be initialized (direction of data transfer, starting
memory location, etc.) by the processor. Then, once a
transfer is requested by the peripheral device, the appropriate
handshake sequence needs to occur allowing the processor to
give up control of the system to the DMAC, remove itself
from the bus, and allow the transfer to take place. Once the
transfer is complete, the DMAC returns' control to the pro-
cessor and removes itself from the bus. The timing for the
handshake between the processor and DMAC and the actual
data transfer must be very precise in order to maximize the
transfer rate. The MC6809 provides the necessary handshake
signals and timing to allow DMA operations to occur with
maximum efficiency.

GENERAL PURPOSE INTERFACE BUS OVERVIEW
The purpose of the IEEE-488 Standard is to allow the in-

terconnection of programmable instruments with a minimum
amount of engineering. The intent is to remove the need for
adapters and numerous types of patching cables when dif-
ferent types of instruments are connected together in a
system. The IEEE-488 Standard allows system configura-

tions using programmable instruments, calculators, and
other types of peripheral devices produced by different
manufacturers. The IEEE-488 Standard provides a set of
rules for establishing an unambiguous communications link
which produces a high degree of compatibility, while main-
taining flexibility between independently manufactured pro-
ducts. The standard defines a special bus structure known as
the general purpose interface bus (GPIB). Any device
meeting the specifications described in the standard is direct-
ly compatible with the GPIB without the need for an
adapter. The GPIB can be thought of as the communications
link between two or more instruments, as shown in Figure 1.
The devices on the bus are considered to be either listeners,
talkers, or controllers. Listeners receive data from talkers or
controllers; talkers send data to listeners; controllers control
and synchronize the devices on the bus.

This communications link is a parallel bus in contrast to
the serial links commonly associated with most other types of
data commuications. Bit-parallel, byte-serial format is used
for communications on the GPIB. Bit-parallel refers to a set
of concurrent data bits being transmitted simultaneously,
and the byte-serial- refers to consecutive bytes being carried
over the data link in a serial fashion. The GPIB consists of 16
transmission lines which are categorized into:

I. eight data bus lines
2. three data byte transfer control or handshake lines
3. five general interface management lines.
The eight data bus lines are used to transfer data from

talkers to listeners. They are also used to transfer interface
messages from a controller (when used) to various devices.
All transfers are asynchronous and occur according to the
three-wire handshake. This handshake synchronizes the
talker readiness to transmit data with the listeners readiness
to receive data.

At any point in time, an individual device on the GPIB is
either idle, monitoring the activity on the bus, a talker send-
ing data to listeners, a listener receiving data from the talker,
or a controller controlling the activity of the bus.

A minimum system may consist of just one talker and one
listener. 'For example, a dedicated voltmeter could be output-
ting data to a dedicated printer. In such a system it is
necessary for the two devices to have interfacing options that
allow local messages to assign them as either a talker or a
listener. This assignment is most likely made at power-up and
does not change thereafter.

Many devices are both talkers and listeners. A program-
mable multimeter, for instance, is a listener when receiving
its programmed instructions and a talker when sending its
data to another device such as a printer or disk. There can be
many listeners at one time, but only one talker.

Controllers are used in systems where it is desirable to be
able to change the functions of devices that can be both
talkers and listeners. The word controller in the context of
the IEEE-488 Standard refers to a special device that con-
nects to the GPIB. It is a complete unit in itself and directs
the flow of data by assigning devices to be either listeners or
talkers. It can also interrupt data flow and command specific



/ ~UI II/I
Instrument ~
Controller

( f-- trl

I-- I--

Instrument /lTalker ,
~

( [> -
IH

/-
Instrument '\J

Listener

( '\
./

!
MInstrument Listener/Talker

K "- 1/1 11a
Control

"-
ernal -V f'..",
nment

~ ~ GPIB
MC6B09 Address Lines -V Interface-

~'"F => -,

r RAM/ROM I

T
Ext

Enviro

Data Byte
Transfer
Control
andshakel

General
Interface
anagement

DAV
NRFD
NDAC
IFC
ATNSRGREN
EOI



actions to be taken within the devices. The word controller
does not refer to a processor on the instrument side of the
GPIB.

The controller alters activity on the bus by sending inter-
face messages. The active controller is the only device
capable of sending interface messages. It does this in one of
two ways:

I. Uniline Messages - The controller can send a message
over anyone of the five general interface management
lines.

2. Multiline Messages - The controller can send a
message over the eight data bus lines. It does this by
asserting the attention (ATN) general interface
management line signifying to all devices on the bus
that the eight bus lines contain a multiline message
rather than data.

These messages are interface commands which do not in-
teract directly with the measurement process of an instru-
ment. They interact only with the interface logic within con-
nected devices. The primary purpose of these messages is to
carry out the proper protocol in setting up, maintaining, and
terminating an orderly flow of device dependent messages.
(Device dependent messages refer to the information being
sent by the addressed talker device to the addressed listener
devices and not the messages used to control the interface.)
The multiline and uniline messages are used to address
devices to be talkers or listeners, to tell a device to ignore or
not ignore front panel settings, to inquire about any prob-
lems the device has, to reset the interface circuitry, to begin
making a measurement, etc.

Addresses are assigned to each device so it can respond to
addressed commands. Using this address, the controller can
pick out a specific device and instruct it to be either a talker
or listener. The controller does not assign addresses; this
must come from some external means such as a set of switch-
es attached to the device or a subroutine resident in the soft-
ware controlling the device. The address is placed in the
GPIB interface for the device during an initialization se-
quence. Once resident in the interface circuitry, the device
can respond to addressed commands. The address is a 15-bit
digital number that allows the controller to talk to a par-
ticular device. . .

A talker sends a data byte over the GPIB to a listener or
listeners using an asynchronous three-wire handshake. The
transfer begins when the talker asserts data available (DA V)
and is completed when the slowest listener accepts the data
byte by asserting data accepted (DAC). The third handshake
line, ready for data (RFD), is used to let the talker know that
the listeners are ready for data. There are actually four states
in a data transfer.

1. The talker generates a new byte.
2. The states of the data bus signal lines settle.
3. The listeners accept the data.
4. The listeners become ready for the next byte.
Since there can be many listeners (maximum of 14; 14

listeners plus one talker for 15 devices maximum), it is possi-

ble to have some that respond very quickly (e.g., a disk) and
some that respond slowly (e.g., a teletype) to the same data
byte. In this case, the overall speed of transmission over the
bus is governed by, and cannot exceed the response rate of
the slowest active listener.

The following example is given to demonstrate the com-
mand structure of the GPIB bus and how this relates to the
internal processor system of a device. In this example, a
device assigned a GPIB address of 3 is to send a block of data
using DMA to a device assigned a GPIB address of 1. One
procedure for establishing this link is as follows:

1. Once connected to the system (other devices may also
be connected to this system), the power to each device
is turned on. The unique GPIB address for each device
is placed in its respective general purpose interface
adapter(MC68488) during a power-on initialization se-
quence by the processor along with other appropriate
initialization procedures.

2. The GPIB controller takes control of the bus by asser-
ting ATN and, with the appropriate interface com-
mands, clears all devices on the bus. Remember that
the GPIB controller only talks to the general purpose
interface adapter (MC68488) and not directly to the
device processor. It is up to the MC68488 to alert the
processor through either a polling or an interrupt
routine when the processor needs to take action.

3. The GPIB controller makes device 3 a listener and
sends it information con~erning the upcoming DMA
block transfer. The MC68488 interprets these bytes as
data and flags the processor on a per byte basis. The
processor software interprets these data bytes as device
dependent messages. These messages provide informa-
tion such as the precise data to be sent, the format of
the data, mode of processor transfer - DMA or non-
DMA, etc.

4. The GPIB controller clears device 3 and makes
device I a listener. Step 3 is repeated to device I;
however, in this case the information pertains to device
I as the recipient of the block of data.

5. The GPIB controller leaves device I in the listen mode
and assigns device 3 to be a talker. The GPIB con-
troller now releases control of the GPIB, by negating
ATN allowing the data transfer to take place.

6. The tillker now sends the data in a byte-per-byte se-
quence to the listener. Each byte is accepted by the
listener according to the asynchronous handshake.

7. When the last byte is sent, the talker alerts both the
listeners and the controller that the nex~e is the last
byte of the data block by asserting the EOI general in-
terface management line. The end of a data string can
also be indicated by a special sequence of data
characters (e.g., carriage return followed by line feed)
which are interpreted in software.

8. The GPIB controller can now reconfigure the bus for
the next data transfer.



DIRECT MEMORY ACCESS MODES OF OPERATION
The MC6844 (DMAC) is capable of three modes of DMA

transfer, they are: three-state cycle steal, halt cycle steal, and
halt burst. Only the halt burst and three-state cycle steal
modes were considered for this system controller since the
MC6809 can handle these modes efficiently. The
characteristics of these modes are:

Halt Burst Mode - In this mode, the processor is
halted and removed from the bus (the appropriate out-
put lines placed in the high-impedance state) while a
block of data is transferred between memory and the
GPIB. The DMAC manages the control lines (e.g.,
R/W, address lines, etc.) and keeps track of how many
bytes have been transferred, returning control to the
processor when the last byte has been sent. Therefore,
if the DMAC has been programmed for a 16K byte
transfer, the processor is removed from the bus at the
beginning of the transfer and is not brought back on
the bus until all 16K bytes have been transferred. This
mode of operation provides the direct memory access

.system with the highest data transfer rate capability;
however, even though the DMAC can operate at this
high data transfer rate, the actual transfer rate cannot
exceed the rate at which the GPIA can issue request.

The main advantage of the halt burst mode is the
high data transfer capabilities. The main disadvantage
is that the processor is halted during the entire
transfer.

Tbree-State Cycle Steal - In this mode, the pro-
cessor is neither halted nor removed from the bus for
any extended length of time. Rather, the operations of
the processor are temporarily suspended and the pro-
cessor removed from the bus (the appropriate output
lines are placed in the high-impedance state) while the
DMAC transfers one byte of data. At the end of this
transfer, control is given back to the processor. If a
block of data is being transferred, the processor is
placed back on the bus between each transfer for at
least one processor clock cycle. This method of direct
memory access operation is slower than the halt burst
mode, but does not cause the processor to relinquish
control of the bus for long periods of time.

The MC68488 GPIA cannot issue direct memory access
transfer requests at a high enough rate to take advantage of
the high data transfer rate capabilities of the halt burst mode.
This is due to the inherent functionality of the GPIA and the
IEEE-488 bus. The GPIA must acknowledge each data byte
on the bus before it can issue the next transfer request. This
can take up to seven processor clock cycles. In addition, the
data on the GPIB is transferred in an asynchronous fashion
and cannot be transferred at a rate faster than it can be-ac-
cepted by the slowest listening device. In many applications
the data rate on the bus can be very slow; and as a result, the
transfer requests being issued to the DMAC for the device in
question could be occurring at a rate considerably slower
than one every seven processor clock cycles. If the halt burst

mode were used, the MC6809 would be inactive during the
non-DMA time that the DMAC is waiting for a transfer re-
quest from the GPIA. To take advantage of the non-DMA
time and allow the MC6809 to do processing during this
time, the three-state cycle steal mode of operation was
chosen. Now the processor can be brought back on the bus to
perform tasks in between DMA transfers.

SYSTEM OVERVIEW
The DMA system given .in this application is essentially

divided into seven major circuits as shown in Figure 2. The
following paragraphs provide a brief description of each of
these circuits. A description of how these circuits are inter-
connected as a working system is also provided.

MC6809 MICROPROCESSOR - The MC6809 is an ad-
vanced member of the MC6800 microprocessor family. It has
special DMA capabilities that allow highly efficient DMA
data transfers. During non-DMA conditions, the MC6809
continues to operate the system. The MC6809 initializes the
other circuits in the system (e.g., MC6844, MC68488, and
the display). At other times, it can be used to execute special
purpose programs.

MC6844 DIRECT MEMORY ACCESS CON·
TROLLER - The MC6844 requests control of the bus from
the MC6809 and issues the appropriate commands (via the
RlW line, grant line, and address lines) to perform data
transfers. The direct memory access controller never actually
receives the data, it directs the flow of the data from one
place to the other at the correct time and in the required
direction. After the transfer is complete, the MC6844 returns
control to the MC6809.

MC68488 GENERAL PURPOSE INTERFACE
ADAPTER - The MC68488 provides the interface between
the IEEE-488 bus and a processor controlled system. After
initialization, the GPIB system controller places the
MC68488 in either a talk mode when it is to send data or in a
listen mode if it is to receive data.

SYNCHRONIZATION CIRCUITRY - The syn-
chronization circuitry performs two functions: I) It syn-
chronizes the DMA request signal from the DMAC with the
quadrature (Q) signal from the MC6809 by ensuring that the
DMA request is not presented to the MC6809 DMA/BREQ
input during the last quarter cycle of the E signal. 2) The end
or identify (EOI) line on the general purpose interface byte is
used by a talker to indicate to the listeners that the next data
byte received is the last byte of a block. In this system, this
line is applied to the synchronization circuitry to disable
DMA transfer requests to the MC6809. The EOIinput to the
synchronization circuitry is used only when' DMA transfers
are being made from the GPIA to memory.



cs cs D
MC6809 MC6844 MC68488 R

MPU
DGRNT

DMAC GPIA I
BAoBS

V
TxRQ DMA Request E

DMA/BREQ
R

TxSTB DMA Grant S
DRQT

DISPLAY SYSTEM - The display system provides a
visual indication of: how many blocks of data have been
transferred, whether the device is a talker or a listener, and
whether the device is in a local or remote state.

DEVICE ADDRESS SWITCHES - This set of toggle
switches is isolated from the data bus by buffers. They are
used to select the device address for the GPIB, i.e., the ad-
dress that the GPIB controller uses when sending addressed
commands. These switches are manually set to the desired
address. The MC6809 initialization program reads the ad-
dress by enabling the buffers and places it in the MC68488.

OPERATION
This system allows bidirectional data transfers in either a

non-DMA mode or a three-state cycle steal DMA mode.

The software is a simplified test program which
demonstrates the DMA capability of the system and is not in-
tended as a general purpose application program. The test
program only allows data transfers in the DMA mode. After
the initialization sequence, the MC6809 simply monitors the
GPIA for the direction of data transfer. The DMAC is not
initialized during the system initialization sequence. The soft-
ware initializes the display and GPIA and then enters a
monitor loop leaving the DMAC disabled. When the direc-
tion of transfer is established, the MC6809 branches to a
routine that initializes the DMAC accordingly. For system
simplicity, the characteristics of the transfer (e.g., number of
bytes to be transferred and beginning memory address) are
constants in the DMAC initialization routine. The only
variable is direction and this is determined by monitoring the
address status register of the GPIA.



The DMAC is not initialized until the direction of transfer
has been established by the GPIB controller. The controller
does this by sending either my talk address (MTA) or my
listen address (MLA). When the GPIA receives either- an
MTA or MLA, it sets the appropriate talker active state
(TACS) or the listener active state (LACS) status bit in the
address status register. The MC6809 polls the address status
register for status information and initializes the DMAC to
transfer data from memory to GPIA if the TACS bit is set
and from GPIA to memory if the LACS bit is set.

INITIALIZATION SEQUENCE - A power-on reset
places the display system, DMAC, and GPIA in a reset state.
During the initialization routine shown in Figure 3, the
display system and GPIA are initialized.

Figure 3. Initialization Routine Flow Chart

The display system has an MC6821 peripheral interface
adapter (PIA) which drives two seven-segment displays and
three indicator lights. During initialization, the PIA lines
that control the seven-segment displays are programmed as
outputs and set to zero causing the displays to read a $()().In
addition, the lines that control the indicator lights are pro-
grammed as outputs and set to zero keeping the indicator
light off.

The GPIA is initialized next. The first step is for the
MC6809 to read the address selected by the address switches
and place this value in the GPIA address register (R4W).
This is the value that the GPIB system controller will use to
send addressed commands to this device. The next step is to
remove the GPIA software reset by writing a $()()to the aux-
iliary command register (R3W). Until the software reset is
removed (bit 7 of R3W written to zero), the only register in
the GPIA that can be accessed is the address register. After
R3W is written with $()(),the MC6809 programs the address
mode register (R2W) with a $80. This deselects certain status
bits in the interrupt and command status registers from being
set. The GPIA ignores any conditions on the GPIB that

cause the GET status bit in the interrupt status register to be
set and also any conditions that prevent the UACG, UUCG,
and DCAS status bits in the command status register from
being set. The interrupt mask register is then set up to enable
interrupt capability on certain conditions. The. interrupt
mask register is programmed with $86. This allows interrupts
to occur if the END status bit is set or the CMD status bit is
set. A summary of interrupt and command status registers is
given in' Figure 4.

Since bit 7, R2W was set during initialization, the only bits
in the command status reigster that can cause the CMD
status bit to be set are remote local change (RLC) or serial
poll active state (SPAS). The RLC status bit is used to deter-
mine the state of the remove local indicator light. The serial
poll active state feature is not used in this system, and if this
bit gets set and causes an interrupt, the system software goes
to a trap routine and displays $E4 on the display.

MONITORING SEQUENCE - After the initialization
sequence, the MC6809 software enters the monitor loop
shown in Figure 5. The primary purpose of this routine is to
set the indicator lights to indicate how the GPIA has been ad-
dressed (talk or listen) and initialize DMAC. The first pro-
cedure that is executed in the monitor loop is a reset and set
of the GPIA interrupt mask register. Since the GPIA inter-
rupt structure is edge sensitive to the setting of its status bits,
the reset/set sequence of the interrupt mask register ensures
that if a second interrupt bit gets set while a prior one is still
set, this second interrupt is not missed. Now the address
status register (R2R) of the GPIA is monitored. If the LACS
bit is set, the listen status indicator is turned on and the
DMAC initialized to transfer data from the GPIA to
memory. If the TACS bit is set, the talker indicator light is
turned on and the talker memory buffer is loaded with
"dummy" values for the example test transfer. The DMAC
is now initialized to transfer data from memory to GPIA.

After the direction of DMA transfer is established and the
DMA controller initialized, the program enters the wait loop
shown in Figure 6. The system enters this loop and waits for
a DMA transfer request to be issued by the GPIA. The wait
loop is not a necessary part of the system and in many ap-
plications can be replaced by the MC6809 performing some
task. While in the wait loop, the software checks the address
status register for any change in the addressed state. The
following conditions result:

I. If there is not a change in address status of the GPIA,
no action is taken and the program continually cycles
through the wait loop.

2. If the GPIA is unaddressed (e.g., receiving an unlisten
or untalk command), the program turns off the
DMAC and goes to the monitor loop. This unaddress-
ed condition is detected by monitoring the my address
(ma) status bit in the GPIA.

3. If the addressed state changes from talker to listener or
from listener to talker during a DMA block transfer,
the wail loop branches to a trap routine and $EI is



This bit is set if any of the other bits in RORare set
and the mask bits are enabled in ROW. This bit is
used to generate IRQ.

In the Talker mode this bit indicates when a byte can
be written to R7W. When set it will issue a DMA
transfer request. Interrupt for this bit is disabled.

When set this bit indicates that either UUCG,
UACG, RLC, SPAS or DCAS are set in command
status register (R1R). Interrupts enabled for this bit.

When set this bit indicates that the EOImanagement
line is asserted and GPIA is in LACS. Interrupts
enabled for this bit.

In the listener mode this bit indicates the reception
of a data byte from the addressed.talker. When set a
DMA request is issued. Interrupt for this bit is disabl-
ed.

This bit is deselected in this system by bit 7, R2W. Is
always low and thus can not cause a CMD interrupt.

Device is in Remote state when REM= 1 and Local
state when REM= O. Any change in this bit causes
RLC bit to be set.

This bit reports the LOCK state for the
Remote/ Local feature. This bit is not used in this
system.

This bit is set if GPIB control places device in Serial
Poll Active State. If set CMD interrupt occurs and
software enters a Trap routine.

These bits are deselected in this system by bit 7,
R2W, are always low and thus do not cause a CMD
interrupt.



Set up DMAC to Receive

1. Address Register
2. Byte Count Register
3. Channel Control Register
4. Interrupt Control Register
5. Priority Control Register

{must be done lastl

Initiahze DMAC to Send
1. Address Register
2. Byte Count Register
3. Channel Control Register
4. Interrupt Control Register
5. Priority Control Register

Imust be done lastI



LISTENER TRANSFER SEQUENCE - When the
GPIA enters the listener active state, the LACS bit in the ad-

dress status register is set. The MC6809 software monitors
this register and as soon as it finds the LACS bit set, the
DMAC is enabled. The byte count register is loaded with a
number larger than the actual number of bytes to be transfer-
red during DMAC initialization. Rather than having the byte
count register decrement to zero to end the block transfer,
the talker asserts the end or identify (EO I) management line
to end the transfer. Asserting EOI causes the GPIA to
generate an interrupt as an end of block transfer indication
and prepare to receive the final byte via software as shown in
Figure 7.

After the DMAC is initialized, the software will enter the
wait loop. When the GPIA receives a data byte it issues a
transfer request to the DMAC. The DMAC, in turn, issues a
transfer request (DRQT) to the synchronization circuitry. It
synchronizes this request with the Q clock from the MC6809
and issues a.DMA/BREQ to the MC6809 during the Q high

displayed. Should this type of change occur, an error
condition is trapped by the software and no additional
block transfers are allowed to occur. The system pro-
gram must be restarted.

Any change in the address status requires intervention by
the GPIB system controller. This does not occur during most
block transfers. It is 1?ossible, however, for the controller to
take over the bus synchronously and untalk/unlisten the
devices (condition 2 above). This might occur in response to
a service request from some device in the system. Most likely,
condition 3 will never occur (changing the talker/listener
state immediately to the listener/talker state during a block
transfer). If this does occur, the software enters a trap
routine and SEI is displayed.



time. The low input on the MC6809 DMA/BREQ pin stops
instruction execution at the end of the current cycle (E
pulse). The processor address and data lines go to a high-
impedance state and the BA and BS output lines go to a I to
indicate that the present cycle is the dead cycle used to
transfer control to the DMAC. The BA and BS outputs are
ANDed to become a DMA grant input to the DMAC. Once
the DMAC has bus control, it issues a DMA grant to the
GPIA. During the E pulse, while DMA grant to the GPIA is
high, the data is actually transferred. The GPIA releases the
transfc;r request line to the DMAC. The DMAC releases the
DMA/BREQ input to the MC6809 and, after one dead cycle,
the MC6809 removes the high-impedance state from the ad-
dress and data lines and takes control of the bus. The pro-
cessor is free to perform other tasks. The transfer uses three
E pulses (one pulse for the transfer and one dead cycle before
and after the transfer). Each data byte is transferred using
this same procedure.

Figure 7. Receive Last Byte Routine Flow Chart

Prior to receiving the last byte of data, the GPIB talker
drives the EO! line low. The EOI line is an input to the syn-
chronization circuitry and, when asserted, prevents a DMA
request from the DMAC to the MC6809 from being issued.
This ensures that the MC6809 does not release control of the
bus'to the DMAC for the last byte transfer. In addition, the
EO! line causes the END status bit in the GPIA to be set
which in turn sends an interrupt to the MC6809. When the
MC6809 software detects the END status bit set, it branches
to a special routine, and the last byte is transferred to
mem.ory via processor software. The last byte is transferred
by software since the processor must be used to read the

status of the MC68488 for the occurrence of an EOI. The
software also disables the DMAC. The software returns to
the monitor loop when the last byte is in memory. Reception
of this last byte causes the GPIB talker to release the EO!
line.

TALKER TRANSFER SEQUENCE - The GPIB system
controller instructs a device to send data by sending its talk
address (MTA). When the MC68488 is made a talker, it
moves into the talker active state and the TACS bit in the ad-
dress status register is set. If set, the MC6809 initializes the
DMAC to transfer data from memory to GPIA. The DMAC
byte count register is loaded with the number N-l, where N is
the number of bytes to be transferred. A DMA transfer is
used for N-l bytes. The last byte (N) is sent to the GPIA via
MC6809 software. The last byte is sent this way because just
prior to sending the last byte the MC6809 must set the forced
end or identify (feoi) bit in the auxiliary command register of
the GPIA. This causes the EO! management line to go low
and alert the listener(s) that the next byte is the last byte of
the block. Figure 8 is a flowchart of the send last byte
routine.

Set feoi in GPIA.
This Asserts the EOI

GPIBManagement Line

Send Last Byte to
GPIAData-Out
Register IR7WI



As soon as the MC68488 enters the talker active state, a
transfer request is issued indicating that the MC68488 is an
active talker and the output buffer is empty. Each time the
byte written to the GPIA output buffer is accepted by the
listener{s) on the bus, another transfer request is issued. The
transfer request handshake sequence between the MC68488,
MC6844, and MC6809 is the same in the talker mode as it is
for the listener mode.

INTERRUPT HANDLING - There are two sources of
interrupts, the DMAC and the GPIA. When an interrupt oc-
curs, the software checks to see if the DMAC caused the in-
terrupt, as shown in Figure 9. The DMAC only generates an
interrupt when the byte count register decrements to O.Recall
that, in the listener mode, the byte count register is program-
med with a hex number larger than the number of bytes to be
transferred. In the talker mode, the byte count register is pro-
grammed with N-I, where N is the number of bytes to be
transferred. Therefore, the only time the DMAC can
generate an interrupt in this system is when the GPIA is in
the talker mode and is ready to transfer the last data byte
from memory to GPIA.

If a DMAC interrupt occurs, the software checks the R/W
bit in the DMAC channel control register. If this bit is not
set, the DMAC is programmed to transfer data from GPIA
to memory indicating that the GPIA is programmed to be a
listener. In this instance, the byte count register was initializ-
ed with a number too small for the block size being transfer-
red. The system enters a trap routine and SE2 is displayed. If
the R/W bit is set, the system is in a talker mode and it is time
to send the last byte of the block. The software enters the
send last byte routine.

If a DMAC interrupt did not occur, then the GPIA is
checked. If the GPIA INT status bit is not set, then one of
two conditions has occurred. Either an extraneous interrupt
was produced by another device such as a PIA or the GPIA
has produced a "ghost interrupt." Ghost interrupts can oc-
cur in this system if the GPIB controller performs an illegal
sequence of events or if the GPIA is placed in the serial poll
active state (SPAS) and then removed from this state before
the MC6809 interrupt software can check the GPIA status.
Should any of these conditions occur, the software enters the
trap routine and SE3 is displayed.

'If the GPIA caused the interrupt, the software first checks
the CMD bit in the interrupt status register. If the END bit is
not set, the GPIA interrupt occurred from some other source
in the interrupt status register. This implies that the interrupt
mask register was incorrectly initialized and SE3 is displayed
and the program trapped. If the END bit is set, then the last
byte of the block is to follow. The program turns off the
DMAC and then begins monitoring the BI bit in the interrupt
register for the occurrence of the last byte.

If the GPIA caused the interrupt and the CMD bit was set, '
the software checks the command status register. All the bits
in the command status register except the RLC and SPAS
bits have been deselected in the initialization sequence.
Therefore, the software only needs to check the RLC bit and,
if it is not set, can assume that the interrupt was caused by

SPAS. Since the SPAS feature of the GPIB is not used in this
system, this occurrence causes the software to enter a trap
routine. If the RLC bit was set, then the software checks the
REM bit to see if the device is in local or remote and operates
the remote/local indicator light accordingly.

DATA RATE - The data rate in this type of system is a
function of the response of the device being communicated
with. During the testing of this operation, a Hewlett Packard
GPIB Emulator which has a TTL response rate was used
(negligible when compared with the 6809/6844/68488
system). Because of this, the data rates for the system in this
application are primarily a function of the 6809/6844/68488
system and any increase from combining the response rates
for devices on both sides of the communications link can be
considered negligible. The data rate differs slightly depen-
ding on whether the GPIA is a talker or a listener. This time
difference is a result of the GPIA itself. The data rate as a
listener is measured from the time the GPIA made the ready
for data (RFD) line true for one transfer to the time RFD is
made true for the next transfer. This time is II E-clock cycles
which results in, for a one megabyte E clock, a transfer rate
of 99K bytes per second.

The data rate as a talker is measured from the time the
GPIA made DAV true for one transfer to the time DAV is
made true for the next transfer. This time is eight E-clock
cycles and results in a transfer rate of 12SKbytes per second.

SYSTEM HARDWARE
The system hardware is designed to maximize the efficien-

cy of DMA transfers and to provide an orderly processor bus
control exchange between the processor and the DMAC. As
mentioned earlier, there are two handshake sequences, for
each DMA transfer. The handshake between the peripheral
device and the DMAC is to request and grant a DMA
transfer. The handshake between the processor and DMAC
is to exchange control of the processor bus. This control ex-
change must occur in an orderly fashion to eliminate bus
contention. System clock cycles called "dead cycles" are pro-
vided before and after the actual DMA transfer cycle. It is
during these dead cycles that the device in control of the pro-
cessor bus releases control and goes into a high-impedance
state and the other device assumes control by coming out of a
high-impedance state. As shown in Figure 10, the timing is
designed so that each exchange occurs in one cycle to max-
imize system efficiency and yet prevent both devices from
trying to be in control o'f the processor bus at the same time.
There is a time during each dead cycle where both the pro-
cessor and DMAC are off the bus and the processor bus and
control lines are in the high-impedance state. To prevent a
spurious write or read during this time, a signal called
DMA VMA is generated which disables the chip select of all
peripheral devices.

To ensure that the entire post dead cycle has a DMAVMA,
a signal called first quarter (FQ) is used to provide DMA V-
MA for the first quarter of every MC6809 E clock period.
Since the first quarter is not used by peripheral devices, this
operation' does not pose any system problems.



Read DMAC
Channel Control

Register

Read GPIA
Interrupt Status

Register

Read GPIA
Command Status

Register

Read GPIA
Interrupt

Status Register

Reset
REN Indicator Light



DMA Dead
DMA Cycle Post-DMA

Cycle

-t-------I------+--<Wl /If@; //J1/M
I I
I I
I I
I I
I I

During data chaining operations on the DMAC, an extra
post dead cycle occurs during the data chain process itself.
The DMA VMA signal is not generated for this extra dead cy-
cle. To prevent spurious read/write operations, the DMA re-
quest line from the MC68488 is input to the synchronization
circuitry. This allows the MC6809 to take control of the pro-
cessor during the extra data chaining dead cycle.

To immediately begin a DMA transfer sequence, the
MC6844 must have a request at the TxRQ input within 120
nanoseconds of the rising edge of E in the cycle just before
the pre-DMA dead cycle. Otherwise, the DMA transfer se-
quence will occur one cycle late. This does not affect pro-
cessor efficiency but slows the response time to the peripheral
requesting attention. The MC68488 issues its request to the
MC6844 within this time, as well as synchronously with
respect to E. Figure II is a timing diagram for the system
showing'the relationship between MC6809, MC6844, and
MC68488 request and grant signals.

The GPIA provides the necessary handshake lines to allow
it to be used in a DMA mode. These control lines (DMA
Grant and DMA Request) are used to control the transfer of
data bytes to and from memory with the aid of a DMAC.
The DMA control lines as well as the specialized operation of
the R/W line and register select lines (RSO, RS I, RS2) in this
mode allow a DMAC such as the MC6844 to connect directly
to the GPIA without any additional gating circuitry. A DMA
request automatically causes the GPIA to select register 7, in- -
vert RlW, and proceed with the data transfer when a DMA
Grant occurs. Therefore, no R/W inverters or data bus
drivers are needed.

SYNCHRONIZATION CIRCUITRY - The syn-
chronization circuitry is shown in Figure 12. During a
transfer the gating of EOI and DQRT prevents the data
transfer request ~ the DMAC) from being applied to the
processor when EOI is asserted. With no transfer request ap-

plied to the MC6809 it resumes a normal operation. In
parallel with the assertion of EOI, the MC68488 has issued
an interrupt request (IRQ) to the MC6809 to service a last
byte condition signified by the presence of EOI. The MC6809
selects register 7 and moves the last byte of data itself. Now
the system software will turn off the DMAC and enter the
monitor loop. This method of detecting the last byte is used
because the processor may not know the message length. The
EOI indication provides more versatility for sensing the last
byte of a block of data and is readily available on the GPIB
as an option for instruments and controllers. In addition, the
TxRQ input removes the DMAC from the bus and puts the
MC6809 on the bus during the second post-DMA dead cycle
that occurs during data chaining operations.

With the system in a typical transfer mode, the transfer re-
quest signal DRQT is gated to the synchronization
circuitry. The purpose of the circuitry at this time is to delay
the transfer request until the next high Q. Thus, not only
should the signal be clocked through on positive edges of Q,
but it should also be allowed to appear directly at the
DMAIBREQ input of the MC6809 when Q is high.
Therefore, the flip-flop latches on positive edges and, during
the positive half of Q, passes the signal directly to the
MC6809. This enables the system to work both in its present
format as well as with other peripherals which may signal
their transfer requests later in time.

TIMING DESCRIPTION - This description assumes in-
itialization of peripherals and controllers and a typical
character transfer to/from memory. Both transfer types are
shown - the byte from memory (talker mode) and a byte to
memory (listener mode). To alleviate any timing losses on the
IEEE-488 bus, a Hewlett Packard GPIB emulator with an
automatic high-speed receiver/transmitter is used as the
"other end" sender/receiver. This TTL device has an inter-
nal delay in both modes of 80 nanoseconds (due to the ready-
ing of new data while the MC68488 receives/talks).



IMC6844IDGRNT
[IMC68091 BAoBSJ

IMC68441 TxSTB
[IMC684881 DMA GRANT)

~-> ~-->



MC6809 DMA/BREQ
Pin 33

LISTENER - Refer to Figure 13. With the GPIA in the
listener mode, the ready for data (RFD) handshake line goes
high <D as the GPIA is ready for another byte. One emulator
box delay (80 ns) later, data is valid on the bus G). Approx-
imately two clock cycles later, the GPIA has taken the byte
and RFD goes low.

Three and a half clock cycles later, the GPIA issues a re-
quest to the system using the DMA request line Q). Approx-
imately 300 nanoseconds later, the MC6844 issues DRQT.
The synchronization circuitry passes the request instantly
since Q is high, and the MC6809 receives a DMAIBREQ in-
put. At the beginning of the dead cycle (if the 125 nanosec-
ond lead time on DMAIBREQ was observed), the BA and
BS lines both go high to indicate that the bus is in a high-
impedance state and is available. With the BA and BS signals
ANDed together and sent to the DGRNT input of the
MC6844, the DMAC readies the bus for transfer by output-
ting: the address for the memory store, a write condition on
the RlW line, and in the next cycle, a TxSTB to the DMA
grant line of the GPIA. As soon as DMA grant is received,
the TxRQ is removed from the MC6844 by the GPIA and,
300 nanoseconds later, DRQT is also brought low. By the
falling edge of E on the DMA cycle, the GPIA has
automatically selected register 7. It has inverted RlW (so that
the "write" of the received data to memory means "read"
from the GPIA), and on the falling edge of E, the data is
latched into memory at the address that the MC6844 has
already snpplied. Now that a byte has been taken from
register 7, the GPIA prepares to receives a new byte from the
GPIB. In the post DMA dead cycle, a data accepted (DAC)
signal is put on the bus @. After one (SO ns) emulator box
delay the GPIA gets a "Not Valid" indication on the DAV
line a>. From that time to a new RFD signal ®, the internal
delay time in the GPIA is required to reset all latches and
begin again.

TALKER - The processor bus timing when the GPIA is
in the talker mode is the same as for the listener mode ..The
rate that transfer requests are genera'ted by the GPIA is
directly related to how quickly the listener can accept the
data. Figure 14 shows the system timing when the GPIA is
programmed as a talker.

As soon as the data from the last transfer is accepted at the
emulator and a DAC is received <D, the GPIA sends out its
DMA request for a new byte from the MC6844. Three cycles
later when the DMA' occurs Q), the GPIA begins to move
that data to the--GPIB. One and one-half cycles later @, the
GPIA issues DAV, and the emulator issues DAC 80
nanoseconds later. After a response time to "Data Not
Valid" (approximately 2 cycles), the emulator is ready for a
new byte from the GPIA @.

SYSTEM SOFIW ARE
The software shown in this application is not intended to

be a general purpose application program. It is an example
program showing how the MC68488 can be used with the
MC6809 in a DMA system. The memory map for this system
is shown in Figure 15.

TRAP ROUTINE - The software has a trap routine
which displays a code on the system display. Once the system
enters the trap routine, it remains in this routine. If an EX-
ORciser system is used, then the Restart key has to be used to
restart the program at the monitor loop location ($0079). A
list of the display codes are given below.
Code DescrlpdoD
El The LACS/TACS bit in the GPIA is set, but the

listener/talker software flag bit (PWMG) is not set.
This condition could occur uring a DMA block
transfer if the GPIA system controller readdresses



<D GPIAep iRequest

Through
RFD

r--Response

Through
Systems 0
Request~

I
I

I
t

II
I I Ready

Ifit-- - 1 Cycle

DAV
IEmulatorBoxl

Not
Valid I

~ ~ Box ResponseTime 180nsl
I
I
I
I
I
I ••

+
I GPIA Delay~ ~ Max 100ns

I 11 ... _DMA RequestIGPI_A_I________________________ I _

BA.BS IMC6809_1 gl~il~I~_=__=__=__===
IMC6B44TxSTBI

DMA Grant (to GPIAI

Request Dead I DMA I Dead
Accepted (Pre·DMAI Cycle IPost-DMAI

Total GPIA
CyclingSpeed

With EmulatorBox
10E Pulses



DAC
IEmulat".r Box)

GPIA Delay
Previous Byte From Last

Acceptance to
New "Not Valid" I

I"" ~I
I

Box Response Time~ r--
I

I---...J
I
I
I

I GPIA Request Delay

I~From RFD IEmulator Boxl
to DMA Request

I

I

Request I Dead I
Accepted IPre-DMA)

I Dead I
(Post-DMAI

®:<D
o ~I

1 I...-!'cceptance-+l I
Response I I

I
I
I
I

I
I
I Valid Not Valid

I
I
I



MemoryFunction MemoryLocation
MC68488Registers $E06O-$E067
MC6844Registers $E04O-$E056
DisplaySystem (PIA Registers) $E070-$E073
Main Program GRGat ooסס$
ReceiveMemory Buffer $DBOO-$D8FF
Talker MemoryBuffer $DBOO-$DBFF

the GPIA to be a talker when it was a listener or vice
versa.

E2 The DMAC caused the interrupt, but the system was
not programmed to be a talker. Under normal opera-
tions, the DMAC should only interrupt the MC6809
when the system is in the listener mode. If it inter-
rupts when the system is in the ,listener mode, then
the count in the DMAC byte count register was ex-

ceeded by the actual number of bytes in the block
received. The byte count register must be initialized
with a larger number or the block of data to be
transferred must be broken up into smaller blocks.

E3 Neither the DMAC nor the GPIA interrupt bits are
set. The interrupt was caused by another device or
the GPIA produced a "ghost interrupt." In this
system the only way the GPIA produces a "ghost in-
terrupt" is if the GPIB system controller places the
GPIA in the serial poll active state (SPAS) and then
removes it from this state before the MC6809 can res- .
pond to the interrupt.

E4 The SPAS bit is set. This occurs if the GPIB system
controller sends the serial poll enable command and
then sends the device talk address placing the GPIA
in the serial poll active state.

EXAMPLE PROGRAM LISTING - The following pro-
gram listing is an example program to show how the
MC68488 can be. used with the MC6809 in a DMA mode.



PAGE .., GPIA2 .SA:iJ ::;1'11.1

01HHH ~C~qIlPfl (;,PIA)
IH'11112 (,,'11'9 - OMA SVSTr"
il909] e/')"/7'!
091104
9011"5
9B906 rJA/ll r,PIAl
0110117 OPT tl.f ••e. ,AI'S
o lHlJ118ADAI10 O~(; "D~""I~
eBI'IA9
l'l001llJ *THE FOLLOWI\lC ART: r,PIA nr.~IS'rq~ flt''''RrS~'
0ellJll *LOCATIO"'S
0Bi'lli
IH'Ifl13 Ei'I"~ A •• R EQU SF:\~t; i' I ;J'j~ RlllJP':" Hf"
90014 EllJ"llJ A Rfl~, r.oU $E"(,(: 1:,1T":flH'JPT 'At,Sl: 'l~T
1il1l01') £0"1 A RIR <OU Hl'l;l CO,,'MA','" ST".T'I~ :It'"
o A111I) F:A"? , "211 Eell SF:~-:2 Al"f)PESS 5',l.T'!S 'If":
011017 E"62 A R2\~ £Oll ~ F:(''' 2 AO:JPfSC; ~nnf. fl~~<.
001118 EO"] A R]1l F.nl! <:[1'1;) IdrXII.LII.f,v ~('\MMA"" PI':":
90111q Ei'lfi] A R3h' F.QU <:£i'''',} A'IXILl.lI.fl't ~O""''''~:: :;f~-:
06021lJ EI1I'i": A R41l <OU "U(,'; ,.[')[')prs~' c~,I TO' p~,
9HI021 F:AI;II A R41-,' E(lil !':E.''';4 ,/I[')OiH"S5 flf!";I'"';'''''
ellJP22 F.'11'i5 A RS' f.(lll t,r,'';5 Sf-II I.III. POLL ;'1':('
0f11lJ23 E"(,5 A :1:SI" EOll ~F,l<;5 5fllI !'L P'1LL Ilr-; ("flIT' I
1101124 £0"" A RfiR rnU <:F:,1;;S:; COM~',II,>::'PII;':,";-ilill\J ;,r:-
t1l0i125 £1'11;6 A R"'I" n.m n:,l-;t; PM1,ALJ.P.l. P(lU, n"~
B1'I1'l2,,) F:l'lfi7 A R7R E(l1J Sr.I"';? n~TI\ I~ flr:-;
~1'I1lJ27 f.~fi7 A R7\,J r.OU <:;r,rq f',i\'.b, mJ7 Ilf.r

W
01HI26
00~29 *THEFOLLOWlo.JC ARt rWlIc r:F:r:I<;TEP fln"flf.S~ t~(:.TI(l~·~

<0 0"030W illJ~]l E1lJ5i'1 A CHCON F.Oll ~C:~S(' CHlI~'I'.L rO~'j"01 flr.r.
911932 f."511 A PRICON E::'U $El'l51l PRI01H'fY CO"TR01. R~:"
0"933 EIl55 A I!'ITCON <0U !':EC":;5 IN';'r:RRUr"lT r0"lT'l~I: r,f'~
0"i134 E~411 A lI()[')H.1 EOU !" r~' II,' HIGH Of!!"F:1l ,11"'1' P"T"
9 I'lI'J35 £1'141 A I\DnL~ <OU !"F:,1ill L~\>' ()IlN:r: A[')!:'RF:S<;;I'''TI':
1I1'J03fi r.IU2 A AYTl::lhl F:OU srrJl" nr.H Of'H)F.R P-YT<' ("nl'·''j'

001']7 E1'J4] A flYiF.Lil EQU SF:il4] -1.010: O"~Ell PYif: <,1)';7
G9llJ38 Ei'l4C A ADml] r.ou srr..:c "lIr,H OR:"'EI' lI"'r fwn;
001139 EI'J4D A AonL3 F:QlI sr,rllo l.("J\<:OR~E!l ,IIf''''Rf~S I'YTi'
01lJe4i'1 F:i'l4E A flVTF:H] r.ou $r...,IlF. 11101 CR"'r:n flYir: COU',''T'
09041 F:BI1F A AYiEU E01J !r.ClIIF l.tll,; m~[')F:ll Iwn; ("r)IJ';T
09042 f.1'I56 A !'lCHAPJ rou s EI~5li f)A';"b, CHAIN flr.~
1'10043
1391'144 *THf.FOl.LOIJING ARE PIA Rf.GIS'r";H AT'f.'lll:S!"
001'45 *LOCATIONS
9004S:;
0111'147 EIHI A CRA F0lJ SEnl CONiROL I'lFr. A
1l904R Ein] A CkO EOU <:;F:.'73 C('I\liROL nfG P
00049 Eil1(l A PRA <OU Srl'l 7,~ PF:Il!PHf.RIIL ;H:~ A

01lJ050 EI'I72 A PRR f.('I1I, SEI'72 PF:RIPllfRAL nF:" ,
00951 £070 A DnA EOIl SF.i'l7" :'ATA f'IRF.CTI0N Ilri, A

iHI052 Eil72 A no. EOU SF:~72 O/liA nI11F.CiI0~ Rrc ,
iH'I953
91'1"54,11,oA0" lhwr A LAYCNT fOB $AllJfF ~1I}f \10. LISiF:N RVTF.s
1100551. 01'102 Al'lfE A TAYCN1' FDA SlHlFf': N-I Of N TALI< P.YTF~
ilJ8ilJ5l'iA D004 081''' A l."'F"lPi fDO $f)~i'H' LI~TE~ ••• 1': .••• pur Pt'lINT'"F/
iHI057A 0066 DBrt9 A 'fMEMPT FnB $[)IlPP TALI< "'f.f'l RIlF' I'OI"'TFQ
lIilJ9581. 00ilJS " A RF:NON fCO ~r4 R<N L{"Hi ON "LASY.

""059A 0099 FB
001160A 0001. 111
1100611. 000B FE
1100621. 0"0C 02
0iIl06]" 01100 FO
01lJ064" Oel'lE 6]
9006')1. D0AF 86
l'JelJ"61. Oell'l 8~
90067
0091l8A DA11 "001
0I1l069A 01'1'- 01lJA!
01'0701. DAD llJAAl
09071
00012
001'173
0eeH
011ilJ75
099l7"1. 0P.14 1A 11'1
00e77
00078
"0079
0008ilJ1. 01'11; 4f'
90061A 0017 R7 nA12
9llJV-a21. DiHA BE 00"4
0008]" OIlJID H'I8E nilJ"llJ
900841. OA21 A7 84
lh)0R5A 0(123 3(': 1~
:'i',~"(,r D;~25]1 3r
1;(liHI7f' [),~77 I"~

'<
l'I1Pl?,1,/1. il111", A7 "'1'''091,11, Ojl)2 )' If
"""9/." OP34 )1 ·]F

06693/\ [')031; " f,
01'1094
01'1995
A~091'i
1I1lJ997A 0038 8'1 Erfi4
IH1P19tlA DA3Pi 87 EIl611
009199A DA3E tl" ••IlA1001. Ol'llll'l 87 F.1l"]
0Bl91A DA4] Bfi DAH'
0011ll21. 004fi n7 E"'''2
001'n
01Jle4A 01'149 Bfi Ofl0F
A01051. IHIllC 87 Ei'l"0
00106
ilP.lr.7
lHHA8
1lJi'l109A OilJ4F 86 ,.
9011AA 0051 .7 E91l
91'11111. 00')4 Pi7 E97]
00112" 0057 8fi ff
00113,11" 0P!59 87 Efl1e
011114,11, OilJ5C R7 EPln
00115,11" 01l5F 86 "01JlHi1. 0061 .7 EAll

A RENOFF FCl:l
A T1.LKQ"l fcn
A TAL'<OF FCij
A LISTON FCB
A LISTor FCij
A 5CALF,H FCB
A MASK fCR
,II. DSEL FCR

REN LICHT r)FF "'AS\,:
T"LI< Uf",HT 0 •• "'ASK
iALK l.IGHT ')Ff MA5Y
LI5TF."l LIr,HT ON "1,/1.S!<:
LISTI::N LIGHT OFF "ASK
ALOCK OI<;PLAY pnr5CALfJ;
CPIA INTEHlmPi ~,';I"
nF.S~:Lf.r.'T<; STAT'Jf> :II,;:

"OMP
l.MF.I'IP7
LAYClOJT
'.x
-'.
-1,'(
1.~'," 1

5f:T CO"'P TO zrflf'
Gf;"!' LI<;T. Mf~' P('lI"i~:~
CF;'r LISi. I'WT~: COU'J';"
CLEAfl MFI·' LOC"TIr'l'J

CLRA
~i,\
Lnx
Lny

LOOPI S7A"

,
/I LGnl'? <:.TA
1\ 1..1\:(
II, Lf.AY

001'311 BI':F

rl.rrp r,""lr·\'['I"·"
•..nv" T'1 "fXT '·f .•' I.,~("~~!f"'l"

I~ 7:HS LlI~T L:1CA';'II,W 0F' 1'~";'F
If "C'l', CLF:A'l "':rw"ril



PA(';F. MI] GPIA2 .'>A:" (;PIAI PIlr,r ~",,4 GPI.'-' .sA:11 ~PIAI
Cill17fo. [1,%4 f7 E1l7] A STB CRB SEl.ECT PERI PH. REG B ,~,~17 5,11 ~,~P-9 r l " A LOA 'SoH
\'~II?1I Oi'67 8G ," A LOA tSAit >~i'1 7'>11 rll'S!" 97 filS" , STA PRICON ENABLE CH. A TRANSFER REQUESTiH1119A n~"'J P7 f;JI7V' A S1A PRA 11'311. PORT A TO ZERO ,l,~ 1 77 A O,~L'E ;:>J " D!:'q BRA WAIT
,~i'12i'A D,~"C H7 Ei'72 A STA PRB INlT PORT B TO ZERO ,',~ 1 7A
..lit!? 1 ,~,! I 79 ·SET UP DMAC FOR TAl.K ROUTINF;\~.~1 ) 2 "ASSISTPo(j INTERRUPT PROCf.DURf. ,l'll ~;~
ol.~I) ]

EN'ABLE SYS. INTF.RRlIPTS
.~,~1,0 1,\ :",'F.l ",r, 1:'\'11] A TACS LOA PIAIM:::;

.H'J,?4A ['I<'I';F lC " , ANf'lCC '$F:F ."~ 1 0I2A ~11E] R~ D,',ll) A ANaA LISTOF T'JRN Off LISTEN LIGHT,:,~ J,? 5A n,~71 8" OC A LOA tl7. ~,~i~31' "'~Fl fl,A f);:r", A ORA TALKON TURN ON TAl.K LIGHT;lV'J,?(,l\ ["i!?) 1(' 3o.fltlF.1 Lf.AX IRO,PCR ,~,'1? t." :,,~r9 87 ":Vl72 A ST". PRB SF:ND TO FRONT PANEL,!,~J,?7A 1'1'77 )f '>1<'1 i'.~PSA [',~F.C H7 D,~1 J A 5TA PIArMlj UPDATE PIAI/llG
i~"1 ')f'f, N176 ,'9 , FCH , ,',11'>(,
,1\~1 ')9 · "I~137 "!..')Ao TAl.IO':R ",r.M BllffER
i',11),l "fP-.l.l. THROUGH TO MONITOR ,~i"1 '>11,11,~" rl" I'F. ["'i'.lo; A LOX T"IEMPT GE'r ""F:JlIIPOINTER;~••1 ) 1

,:.' 1.'>QA !"~r2 1" f-\E t;,~\~? A LOY TPYCNT Gf.T NO. OF BYTES,~;~1 ) ..• ·""MONITOR"· .' ':~1o),~ll I'"~fr; Cr, u,J A LO' 4SP~7011]]
" 1'1 '" 1,\ 'V F~ ~~7 " A LOOP) STB O,X STORr- DATA BYTE IN ME/l'I1"'1)<1.'" [','7'.' pI; ",~ A ""ONIT LOA '500 ,"~ 1 "'211 :"IF A "(; I'lCH INC. NO. TO flr:: 5TOREf)llnJ'iA O~7f\ P.7 F:~"il A STA Ri'lR RESf:T GPIA IRG MAS\( .~,~i"')11 :',~FH ],~ IF , LF:.'-X -1 ,X Of.C. Al)f)RE~~ POINT~R

1l"13"A r:,'7E ~(, Olh1f A LOA ,",ASK .1,~1 o)/',. 8,' Fl" ) 1 " , Lf.AY -1,Y ')ECRIMENT BYTE COUNT,1,'1 ]7A ui~81 Po7 E"'>" A STA Ron SET GPIA IRQ ""ASK '.~,~1 aS" ::1,'ff 2<: F7 D0FR BNE LOOP] If NOT LAST DO ANOTHER(l~ 138 · ,~,) 1 '"<:P. ,. 1 ,,'1 p ~ nIl,''; A LOX T""r.MPT GF:T TAl.K BUF ADO.
(l.~1 )9 "CHECK GPIA TO SEE IF ACTIVE TALKER/LISTENER ,~\~1 0;:7'" [I I "4 MF Fi'I!" A STX AnD1Hl PUT IN DMAC CHl\NNEl. ",1>:14(' ,I ~1 '1"'" (' l \'7 I'>F E"4<": A STX Ao1H1) PUT IN O/l'lAC CHANNI::L ]\~i1l41A r,;JIBI! F" F:A"i2 A LOOP7 LOR R?R LOAD GPIA "DO. STATUS ,'.~ 1 "'~A (' 1 .~!'. pf: r..1,~7 , LOX TAY(;NT GET NO. OF HYTF:S ,
J,~14?P-. (h~37 CS " A BITS '5114 IS LACS SET ,:,' ,,1 ;!,. ~'1 ,':") Pol" ."'12 A STX 6YTEHtl PU7 IN OMAC CHAtJNf:L 11
,~(lI4)/I 0"89 2"i " nrlA9 BNF. LACS IF YES. SET UP DMAC ~,~~;'lA ')111" !'Sf Er4~ , STX FlYTEH] PUT IN DMAC CHANNEL )W I iH'I"'-A <l1~8B F\/; oro A LOA PIAIM(; IF NO, ,'~ ),'},B. ;,11) n.') .~S A LOA ·S",S S'EI.ECT UP COUNT. TSCCD ""14S" ["J~9£ ~4 NhlD A ANDA LISTOF TURN OFF LISTEN LIGHT ,);>;:>,')11 :)1 J.5 R7 E,lS;' , STA CHCON STIOAL , &- "'F:" RF.Af)./>.
.H1l4(;fI D<19.1 R7 E~72 A STA PRO SEND TO fRONT PANEL ,~" , \~~I\ :- 1 1 '"l P:', ~ 1 A LOA ~S~1 SEI-F:CT IIW O"l nF:lH)
\'i'l!47A rJi"'94 R7 n"13 A STA PIAI"'G UPDATE PIAIMG .~.~2."51\ :111"" 1>7 F:''''5 A SiA INTCON PUT IN f)"'AC
,11~14F1A 0(11)7 C5 ,. A BI'rB tS08 IS TAC5 SET '?:':',':';A ['"1 In FI'; ,~,~ A LOA 'SMI DISAALE OATA CHAINING
,li'14QA 01'99 ?f; 45 D0F.;J1 FlNF. TACS IF YES, SET UP DMAC ,~;>2i' 7 A Jl!. F fl7 E,lS<: A STA OCHAIN FEATURE OF I')MAC,JIllS"" !l,~9P. FIr, 1)1"13 A LrA PIAIM('; IF' NO, ~ ,\?,~? J'I. ;)1 ~2 rl; .'1 , LOA HAl
0f1151A D'~9E ,VI ['Jr~IR A ANDA TALKOf TURN OFF TALK LIGHT ,'" 2,'9/\ r 1 ~4 ~,7 £"S4 A STA PRICON E'lA8LF: CII n TRA"lSFEH
~n152A D.~,al P.7 E(l72 A STA PRB SEND TO FRONT PA~IF:L ,'i1}!.',.. ['"117 ~i' I~'~ 1"'l)9 RRA Io'AIT
>H"HS)" ;)"A~ 67 f)i113 A STA PIA.IMG UPDATE PIAI/l'IG ,',1211
tHl1"'I!A !)~A7 2\1 OH o(l84 RRA LOOp7 , TEST GPIA ADD STATUS ,~,1) 1 ~ "\>,'AIT LOOP - 'HAlTS fOR A PMA RF:OUE~T TO OCCUR. TALK/L
M'15S ~·r7.1 3 . CONDITION RECOGNIZEn AND OMAC HAS BEF:N S
~.~j Sf, "SET UP DMAC FOR LISTEN ROUTINE \1,~21 j ACCO~DING(.Y. ••••'A.IT LOOP l\LSO CHECI(S fOR A
;1'l.lS7 · ,lr71S I"l CPIA AnDRESS 5TP-TUS.
(H1156A D~P-,9 BI; 0,11) A l.ACS LOA PIAIMG 01,'21 ~ If ADDRESSED DIF'F'ERENTLY THAN IT WAS
iJi'1S911 O"AC H4 OMJ:\ A ANOA TALKOF TURN OfF TALK LIGHT ~ ,? 21 7 \"'HEN WAIT l.OOP ENTERRf.o AN f.1 TRAP
11~1"r.A r,~Ar HA D~OC A ORA l.IsTON TURN ON LISTEN LIGHT J,~ 21 ~
JIH"JA DilFl2 B7 re72 A STA PRR SE~D TO fRONT PANEL l'r ~ 1 q WIL[. FIE PRODUCF.,",.
'H'10')2A :;;01':5 87 01:13 A STA PIAIMG UP DATE PIAIMG "'~'2,'
"~I"i]A DiH,e Be: D0M A LOX LM£MPT GET LIST. START ADD lli'2711l oPq A(, E('(,2 A ',\'AIT LOA R" l.OAD GPIA ADD. STATllS
Crl1';4A D~BA FlF E1Il4" A STX AOOH~ PUT IN OMAC CHA/"II"IEL 11 ,~,~227A 1)12C A'i •.. A BITA ,Sfl0 IS MA BIT SET
"IHI5SA 00B£ FlF EPilC A STX ADDH) PUT IN DMAC CHANNEL ) \1>122]11 DIU: 27 n D152 REO on If 'la, GO TURN OFF OMAC
VliHfj"A DIIlCI HE DllloliJ A LOX LFlYCNT GET NO. OF RYTES IlI'V4
(H!1"7A DllC4 BF E042 A 5TX AYTEH0 PUT IN DMAC CHANNEL 91 iHI225A 013l' 8S ~4 A AIT,"- tS;JI4 IS LACS flIT ~f.T00.10581'. D0C7 HF E~4E A STX BYTEH) PUT IN DI"IAC CHANNEL ) ~M2'>A D11'. n jj 11115 REI) TACHIT IF 'la, GO TEST 'rp-cs
OP.1"i9A OOCA B,<; 04 A LOA ISA4 5ELECT UP COUNT, TSC O;:2:'7A ['11)4 R:> OVl13 A LOA PIAI"'C IF YF;S, SEE IF LISTF:N FLAG SETiHH 7f)A iJrlCC ij7 EA50 A 5T" CHCON STEAL. &- I'IEI"I WRITE ~112;:>P.A 0117 RS " A PITA 1$02 IS LlSTF.N FLAG SET
11~17IA DACf f!" Rl A tDA '$81 SELECT IRQ ON DENO .1~'.79A 0139 2t; Ef. DI29 B!'IIE •..••.AIT IF YF.S, ALL IS 'OK' - CHECK R2
,HH 72'" Diill)l Fl7 £05S A STA INTCON PUT IN DMAC i'loil2]~Jl :)13\'. FI"; eo A TRAP 1 LOA ~sr~ IF NO, ALL IS NOT OK
0i'l17]A D0D4 8<) ,. A LOA ,S0A oil;JI;»IA Dl)~ 87 I::l~q A STA PRICON TURN OFF OMAC
ilAI74A DAofj 67 EeS" A STA DCHAIN DISABLE nATA CHAIN FEATURE ,h~2J;lA 0111' 8(, '1 , LOA 'SEI L:)AO ACC A WITH TRAP CODE



80233A 0142 16
06234A 0145 85
8023SA 0147 27
8lil236A 0149 B6
90237A 014C 85
iHt238A o14E 21;
1lHt239A 0158 28
88248A 0152 86
U241A 0154 B7
90242A 0157 16
88243
e0244
e824S
""246
""247
1Je248
""249
802se
""251
i1B2S2A 01SA 86
""2S3A. 0150 85
ee2S4A. olSF 27
802S5A. 0161 85
""256A. 0115) 27
802S7A. oHiS 86
liHli258A. 0167 87
00259A. o16A. 28
IHI26l/lA. 016C 86
80261A. 016£ 2l/l
lIllIl262
00263
00264
8lIl26SA 0170 Bl5
0lil266A 017) 85
011l267A 0175 27
1Jl1l268,. 0177 85
00269A. 0179 26
0lIl270A. 017B 85
U271A. D170 27
88272A 017F 85
0l/l27)A. 0181 26
90274A. 0183 86
0l/l275A. 0186 2l/l
90276" 0188 86
60277A 018A. 28
ee278A. D18C Bfi
06279A. 018F 85
lIl828S" 0191 27
118281A. 0193 85
1i!8282A 0195 27
iJ82S3A. 0197 2iJ
ee2S4A 0199 86
8l1l28sA. 0198 20
8iJ286
l1l0287
8l1l288
lIl8289A DUD 86
lIl8298A 019F 87

""9B OlE0 LBRA
918 A. TACBIT BIT'"
EB 0129 BF:Q
0013 A LOA
01 A 81TA
09 0129 BNE
£9 0138 BR"
80 A OFF LOA
El/l54 A 5TA
FF1F 0079 LBRA

GO TO TRAP ROUTINE
IS TACS BIT SET
IF NO, GO Tf.5T ADDRESS STATUS
IF YES, CHECK TALK
IS 'fALK FLAG $ ••T
IF YES, ALL 'Or.'
IF NO, GO SET El I)ISPLAY
TURN OFF OMAC

TRAP
'S08
:-IAIT
PIAIMG
'$01
WAIT
TRAPI
H00
PRICON
MONIT

***INTERRUPT ROUTINE**

*CHECK f'OR OMAC INTERRUPT

US0 A IRQ LOA CHCON LOAD DMAC CONTROL REG•• A BITA 'S9A I S I RO FROI'! CHAC
.F D170 BEQ GPI" IF NO, GO CHF:eK CPI/\

•• A BITA 'SA 1 IS OMA IN TALK ~OOE
.7 D16C BEQ TRAP2 IF NO, GO TO TRAP2•• A LOA jSl/lB IF YF:S,
EIIlS4 A sTA PRICON TURN OFF OMAC
31 0190 BRA TALAST GO SP,ND LAST BYTE
E2 A TRAP2 LOA ISE2 LOAD ACC A ~'HTH TFlAP2 CODE
7. 01£0 BRA TRAP GO TO TRAP ROUTI NE.

*CHECK FOR GPIA INTERRUPT

E060 A CPIA LOA ROR GE7 CPIA IRQ STATUS•• A BITA ISf'Hl IS IRQ f'RO~ GPIA
II 0188 BEQ TRAP) IF '10, GO TO TRAP3 ROllTINf.
.4 A BITA 'SA4 IS om BIT SET
II OHIC BNE RLe If' YF:S, IS nLC SF.:'r

0' A BITA 'S02 If' NO, GO TO TRAP3•• 0188 BEQ TRAP) If' ~O, GO TO TRAP3., A at RITA HIH IF END IS YES, IS RI
2A DIAD BNE LILAST IF YES, GET [,AST ~YTE
EI'lti0 A LOA ROR IF NO, WAn ROR
F7 017F BRA B' AND 'fEST IH AGA.IN
£3 A TRAP3 LOA ISE3 LOAD ACC A WITH TRAP) CODE

" OlEA BRA TRAP GO TO TRAP ROUTINE
E061 A RLC LOA R1R GET GPIA COMMAND STATUS
.B A BITA 'S08 IS RLC SET•• 0199 BEQ TRAP4 IF NO, GO TO TRAP4
4. A BIT" '$40 IF YES, IS REM SET
38 0102 BEQ REMon IF NO, TURN Of'F REN LIGHT
21 olBA BRA REMON IF YES, TURN ON REN LIGHT

" A TRAP4 LOA ISE4 LOAD ACC A WITH TRAP4 CODE
43 OlEA BRA TRAP GO TO TRAP ROUTI NE

*SEND LAST BYTE AS A TALKER

., A TALAST LO" ISlIl1
E063 A ST' R3W SET feoi

•.04'"
84
E"117 A
FEeC 0"79

CA"~1A 11>." fiE
~},l2n1'l DIAC, ,1,7

1l>J29)1I 01~7 P7
'hl?9f.A JIAA H
",1295
i'tl29::;
M'297
~n9~A nlAD 8(,
,",,12991'1 OlAf' B7
~,13C~A C1B2 RE
~"3"L~ DiBs p,.,
,1'~)~2A olA3 A7
olt13iD
C(1).J4
i!'Cln5
\~ r. ),~(,
\liD,17" DiFlA I'\l'>
~.JI13,lS/\ n1F1D SA
i1l1)119A D1C~ H7
.H3lil,A. Ole) 117
.1;:1)11
110312
ihH))
i'ci'314A [llefi ~I;
i~"315A DlCI! 1:l7
il,~31:;A !11CB B"i
n317A DlCE H7
e~31q/\ DlfH 38
1:10319
iHl32i1
~11321
>1~322A oD2 t'l5
,1.132),11 D1n5 84
,''U204A DID!! B1
,1.1325,1, Dl DB B7
,hH2r;A olDE 20
,1;)327
."iH2e
JIl)329
"A33~A D1Eil B1 E"'N A TRAP
"'''))1,1, ClE) 211 f'lJ OH'"
"''''332
Tf)TAL ERRORS l'lAA"'0--00iHHl
Tf)TAL "ARNINGS iJ0ih10--00iHhlJ

ADOHO
",X
R7W
"'ONIT

A LILAST LOA
A STA
A LOX
/\ LOA
A STA

t$Ail
PRICON
ADOH0
R7R
_,X

TURN OFf' OMAC'
LOAD LAST BYTE ADDRESS IN X RE
GET LAST 8YTE
STORE IT

A RE"'ON
A
A•

RENON
PIAIMG
PIAIMG
PRB

A RESET"! LOA
A STA
/\ ~ LOA
A STA

RT!

A REMOf'f' LOA
A ANDA
A STA
A S1A

01C6 BRA

RENOFf'
PIAIMG
PIAIf'"C
PRB
RESET'"

GET RENOf'F MASK
TURN OFF REN -BIT
UPDATE PIAIMG
TURN REN OFF



AN·834

USING THE MC68000 AND THE MC6845
FOR A COLOR GRAPHICS SYGTEM

By
David L. Ruhberg

Microcomputer Systems Engineer
Motorola Semiconductor

Probably the slowest link in most computerized control
systems is the display of information for human interpreta-
tion. The commonly used black and white monitor can
display an adequate amount of information in most cases.

In applications where a large amount of information must
be displayed in the same screen area, a color graphics system
can easily provide this information by using a wide range of
contrasting colors. Until recently the high cost of
sophisticated components and color monitors required to
generate and display color information has probably been
the main prohibitive factor in development of these systems.

Recently the cost of components and color monitors has
moderated to the point that using a color graphics system of-
fers a viable solution to information display, ranging from
the video games market to complex control systems.

A state-of-the-art color graphics system using the
MC68000 16-bit microprocessor (MPU) with an economical
MC6845 CRT controller (CRTC) is described in this applica-
tion note. Hardware improvement is evident in data move-
ment occurring in 16-bit words and multiply and divide com-
mands while software compatibilities are greatly enhanced

through the use of a processor that executes instructions
which can operate on 8-, 16-, or 32-bit operands.

The general approach to a color graphics system is
straightforward and almost identical to a black and white
graphics system. A typical black and white graphics system is
shown in Figure I. The MPU has two responsibilities to the
graphics system: first, to initially program the CRTC, and
second, to transfer data to the display RAM.

Once the clock circuitry is running, the CRTC is initialized
and the address lines to the dislay RAM begin incrementing
sequentially. As this occurs, the appropriate data from the
display RAM is loaded into the shift register and then gated
out serially by the dot clock input to the shift register. The
display monitor then interprets the data as either turning a
particular pixel on or off.

A color graphics system (Figure 2) uses the same principle
as the black and white system except that it has to control
three color guns (red, green, and blue) instead of just one.
Therefore, there is an increase in the amount of hardware in-
volved, but not in complexity. The software becomes more



involved due to the fact that more information is being
handled and displayed. The basic display system works on
the principle that three bits (one for each color) controls each
pixel instead of just one as in a black and white system. If
two guns are on, the resulting color is a combination of the
two. If all guns are on, white is the result. With this con-
figuration a total of eight colors, including black and white,
are available. Since the three bits needed to control a pixel do
not fit into an eight-bit byte evenly, the unused bits could be
used to obtain more colors or some other function. In addi-
tion, color systems usually require a separate sync input.

Clock Circuitry
r:---:l
I "I I
I I
I

CATCI I
ClK I I

IL..: ::.J
Display Enable

HSync

VSync

The versatility of the internal architecture of the MC68000
(Figure 3) enhances the effectiveness of the color graphics
system. Besides containing a 32-bit program counter yielding
16 megabytes of direct addressing range, the MC68000 also
contains eight 32-bit data registers (Do-D7) and seven 32-bit
address registers (Ao-A6), The eight data registers are used
for byte (8-bit), word (l6-bit), and long word (32-bit) data
operations. The seven address registers and the stack pointer
may be used for word and long word address operations. In
addition, all address and data registers may be used as index
registers.

Dot

Clock

o



Display Enable

HSync

VSync

Dot

Clock

o
Green Video

Blue Video

Sync Signal



31 1615 87 0
DO
01

02
03 Eight

04
Data
Registers

05
06

07

31 1615 0

I AO

I A1

I A2 Seven

I A3 Address

I A4 Registers

I A5

A6

~
-------------~

Two StackUser Stack POinter
Supervisor Stack POinter A7 Pointers

L
_______________ ..J

31 0

I I Program
Counter

15 87 0 Status
ISystem Byte: User Byte I Register

SYSTEM HARDWARE DESCRIPTION AND
FEATURES

This graphics system consists of two boards: a CPU board
and a video board. The CPU board contains the processor,
scratch-pad RAM, stack RAM, the program EPROM, and a
terminal interface. The video board contains the CRTC,
display RAM, multiplexers and buffers, parallel-to-serial
shift registers, and the Df A drivers for the color display
monitor.

An MC68000 Design Module (MEX68000KDM) is used as
the CPU board. The resources available on the MC68000
Design Module allow more design time to be spent on the
unique features of the system. The major portions of the
system provided by the Design Module are the MPU
(MC68000), the address decoding for the EPROM, a ter-
minal interface, and all the software functions provided by
the resident monitor (MACSbug). Included in the MACSbug
is a transparent down-load feature which allows the system
to communicate through the terminal to another system. The
other system can provide the access to the floppy disks need-

ed by this color graphics system for saving a full screen of
data at a time.

The video board (Figure 4) contains more of the unique
hardware features of the color graphics system. The video
board can be separated into seven areas: the clock circuit,
CRT controller, the DTACK circuit, the bus multiplexers
and buffers, the display RAM, the shift registers, and the
Df A converter drivers.

The clock circuit generates the five timing signals used
throughout the video board; they are: a dot clock, a CRTC
clock, a 2X dot clock, a shift register load, and a <1>2signal.
The dot clock is used to drive the serial shift registers. The
CRTC clock is used to drive the CRTC. The 2X dot clock
and the shift register load are gated together to generate the
parallel load (PLOAD) and chip select (PCS) signals for the
shift registers and display RAM, respectively. The <1>2signal
is also used to control accesses to the display RAM. A timing
diagram of these signals is shown in Figure 5.







Display Dot
Enable Clock

Parts List
Ul-4 MC6880A/MC8T26A

from Luminance U5-8 M C6887I MC8T97
Shift Reg. U9 MC6845

U10-U12 SN74LSl58
U13-15 MC3459

U111a U16 SN74LSl38
+5V +5V U17, 23, 110 SN74LS08

CLK U18,28 SN74LS30
U19, 24, 25, 111, 112 SN74LS74
U20 SN74LS195

12 Q U21,27 SN74LS04from Blue 11 9
Shift Reg. U22 SN74LSl33

U23 SN74LS08
U24,25 SN74LS74

U111b U26 SN74LS195
Blue U27 SN74LS04

U28 SN74LS30
U29 SN74LS05
U30-U37 SN74LS245 10 MHz Oscillator
U38-U101 MCM2147 01-03 2N3904

- '=" U102-U109 SN74LS165 04-07 2N5338
CLK +5V U110 SN74LS08 R1-R4 1 kO

U111, Ul12 SN74LS74 R5-R9 10 kO~
U113 SN74LS86 R10-R13 (Variable I 10 kO0

I\.l 3 0 U114 SN74LS175
from Green 2 5 U115 SN74LS32 S1 5-Position Switch
Shift Reg.

U112a
Green

10k
All D Flip-Flops Configured for Power-Up Reset as Shown +5 V

(Where Possible)

'=" ':' S

CLK
+5V +5V D 0

11 CLK
0 CDfrom Red 12 9 10 kO

Shift Reg.

U112b Red IO.1I'F
U29c

R13

5 R7 10 k
6 10 k

':" -
Figure 4. Color Graphics System Schematic (Sheet 3 of 3)



U24bQ 1
1--

__ ----'I
1600 ns (.1____ l,-----~ _

The MC6845 CRT controller (CRTC) is a programmable
controller used to prepare the information in the display
RAM for use by a video display monitor. The CRTC
generates the signals required to provide data at the ap-
propriate times. Since the length and period between these
signals varies from system to system, the CRTC is designed
to be programmed by an MPU. In this system the internal
registers are accessible synchronously through hex ($) address
locations $IFFFD and $IFFFF. After programming, the
CRTC provides the addresses, horizontal and vertical sync
signals, and the display enable signal to the display system.
The addresses, output by the CRTC in conjunction with the
parallel chip select (PCS) signal, are responsible for the cor-
rect data getting to the serial shift registers at the correct
time. The horizontal and vertical sync signals, after being
"exclusively ORed," generate the sync signal required by the
color display monitor. The display enable (DE) signal is
gated (U28) into either the clock circuitry to inhibit the
parallel load and PCS signals or is gated (ANDed at UIIO, if
a low represents black on the screen) with the data stream to
keep the guns in the CRT off during vertical and horizontal
retrace. In some cases, DE must be delayed due to specific re-
quirements of the CRT being used. A one-shot on the output
of the DE pin is usually more than adequate for providing
the delay.

The DT ACK circuitry is used to return an asynchronous
data transfer acknowledge (DT ACK) signal to the MC68000
from a synchronous device (the display RAM). The q,2 signal
from the clock circuitry in conjunc'tion with address lines
AI5 and AI6 develop the DTACK response required by the
MC68000. When the display RAM address is between
$1OOOO-$17FFF, the DTACK signal is returned in 400

nanosecond increments from zero up to 1600 nanoseconds
after the enabling signal goes out to the multiplexers. This
time is selected by the RAM speed switch, Sl. Returning
DT ACK to the processor is the asynchronous access method
by which the MC68000 can access external devices (RAM,
ROM, and peripherals). This access method was chosen over
the synchronous access method used to address the CRTC
because it is faster and, since this is a highly repetitive opera-
tion, any time saved here will be significant in the overall
speed of the system. The synchronous access method is used
to access the CRTC since the CRTC is only initialized once
and this method uses fewer components.

The multiplexers and buffers are used to feed the various
control signals to the rest of the system. Multiplexers UIO,
UII, and UI2 determine which address bus will access the
display RAM. When the control signal is high, the MC68000
has access to the RAM and when low, the CRTC has access.
Buffers UB, U14, and UI5 are used to drive the large
number of devices on the address bus. Data buffers U3O-U37
are used to isolate the four banks of RAM from each other.
Buffers are also used for almost all the signals coming onto
the video board. These board buffers interface with the
modified EXORciser bus which the Design Module uses.
This bus has only sixteen address lines coming from the
Design Module, so address line AI7 must be run separately
to keep the display RAM from being accessed at the same
time MACSbug or the controller program is accessed (ad-
dresses ooסס$2 and $22(00).

The display RAM is organized into four banks (red, green,
blue, and luminance). However, the address lines are con-
figured so that consecutive words are located in consecutive



banks of RAM. This was done to allow 'the programmer to
visualize accessing one 16-bit wide bank at a time instead of
accessing red, green, blue, and luminance banks all at the
same time. The memories used are 4K x I static RAMs
(MCM2147) which simplify some of the chip select circuitry.
Dynamic RAMs could be used and should definitely be con-
sidered in a production system since they lower the hardware
cost as well as power consumption. They were omitted in this
application to simplify the system configuration. It should be
noted that the CRTC keeps incrementing its address lines
during horizontal and vertical retrace to keep the dynamic
RAM refreshed. The speed of the static memories is not
critical due to the presence of the speed selection switch ex-
plained earlier. As far as the CRTC and the serial shift
registers are concerned, the memory looks like one
4K x 64-bit bank of RAM.

Shift registers UI02-UI09 consist of eight 8-bit, parallel-
load, serial shift registers. They are configured to look like
four 16-bit shift registers, one for each of the color guns and
one for luminance. With the RAM and shift registers con-
figured in this fashion, the RAM is accessed only 25 percent
of the time. This means that the RAM has four times the
amount of setup time and slower RAM can be used. The dot
clock then clocks the data out to be gated with display
enable.

Conversion from digital to analog voltages in this system is
needed because a luminance bit is used to obtain more colors
than are possible with the three guns digitally. The luminance
bit is used to indicate half luminance when set and full
luminance when clear. When all guns are off, the screen is
black and the state of the luminance bit has no effect. Since
the color display monitor uses an analog input on each gun,
any number of colors may be obtained if the supporting
hardware is provided. The Df A conversion used in this
system was done to save space. A cleaner method would be to
use special Df A converters and special line drivers for this
function.

SOFTWARE DESCRIPTION AND CONSIDERATIONS
The software included to exercise this system consists of

five basic commands:
CM - Clear Memory
BX - Box Draw
Q8 - Random Line
ED - Edit
BAt ... Provides the capability of saving (BA) a screen on
SHI floppy disk and calling (SH) it back.

The clear memory (CM) command clears the screen. The
box drawing (BX) command draws continuously concentric
boxes which close in on each other. This gives the effect of
running up a hallway. The random line (Q8) drawing com-
mand picks random points and connects them together until
they form a multisided polygon and then it continues to
repeat that shape, all the while collapsing in on itself and
changing colors. A scaling function has been implemented to
keep the figure occupying a major portion of the screen. The
edit (ED) command allows the user to draw figures on the
screen using the cursor controls on the terminal and allows a
choice of colors. The BA command is used to store a screen
full of data on floppy disk while the SH command is used to
call it from the floppy disk and display it on the screen.

Each of the routines which write to the display RAM use
the basic data layout for every pixel on the screen. Each pixel
is controlled by four bits. Each bit corresponds to either
luminance, blue, green, or red, as shown in Figure 6.

MSB LSB

I Luminance I Blue Green Red

Bits {

3 2 1 0
7 6 5 4
11 10 9 8
15 14 13 12

A memory map for this application is given in Figure 7. A
listing of the software is given at the end of this application
note.

The resolution of the display in this application is
256 x 256 pixels. The density could be doubled in both direc-
tions to 512x512 by quadrupling the memory. This can be
easily done if dynamic RAM is used since 4K x I and 16K x I
dynamic RAM can be arranged in the same basic configura-
tions. As space was one of the design criteria in this applica-
tion, some of the more straightforward approaches were not
taken.

0<XXl0,....---------, Vectors and
06FF 1----------1 MACSbug RAM

22000 t---------j
22902 /---------'"""i Graphics Program

Thanks to Don Voss of Motorola Microsystems for his
suggestions on the hardware and his splendid job on the soft-
ware.



10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

o
o

520
530
540

000200F6
00021BC2
00021F18
000200EE
00001000
00001001

" 00001002
00001003
00001010
00001011
00001012
00001014
00001016
00001018
00001080
00001100
00001800

000000 20780578
000004 227C00001800
00000A 21C90578
00000E 3018
000010 0C40FFFF
000014 6706
000016 32C0
000018 2208
00001A 60F2
00001C BIFC00022000
000022 6M8
000024 207C00022082
00002A 60E2
00002C 3280
00002E 207C00022002
000034 303C0000
000038 13C00001FFFO
00003E 1218
000040 4E71
000042 13C10001FFFF
000048 5240
00004A 0C400010
00004E 66ES
000050 227C000229F6
000056 247C00001100
00005C 303C0302
000060 1409
000062 5340
0,00064 66FA
000066 6014
000068 207C00010000
00006E 323C2000

ORG $0000
*
*
*MACSBUG EQU $200F6
OUTPUT2 EQU $21BC2
FIXBUF EQU $21F18
MSG EQU $200EE
Xl EQU $1000
Yl EQU $1001
X2 EQU $1002
Y2 EQU $1003
COLOR EQU $1010
NCOLOR EQU $1011
OCOLOR EQU $1012
NUMPT EQU $1014
SCALE EQU $1016
RANAOO EQU $1018'
ARRAY EQU $1080
TABLECH EQU $1100
CMOTAB EQU $1800
*
SETUP MOVE.L $578,A0

MOVE.L #CMOTAB,Al
MOVE.L Al,$578

SETUPI MOVE (A0)+,00
CMP #$FFFF,00
BEQ.S SETUP2
MOVE 00, (AI)+
MOVE.L (A0)+,(Al)+
BRA SETUP 1

SETUP2 CMP.L #$22000,A0
BPL.S INIT
MOVE.L #$22082,A0
BRA SETUPI

INIT MOVE 00,(Al)
MOVE.L #$22002,A0
MOVE #$0000,00

INITI MOVE.B 00,$lFFFO
MOVE.B (A0)+,01
NOP
MOVE.B 01,$lFFFF
AOO #1,00
CMP #$0010,00
BNE INITI
MOVE.L t$229F6,Al
MOVE.L tTABLECH,A2
MOVE *770,00

SETUP21 MOVE.B (Al)+, (A2)+
SUB U,00
BNE SETUP21
BRA.S RETURN

CM MOVE.L i$10000,A0
MOVE #$2000,01



SETUP4.S MC68000 ASM REV= 1.0F- COPYRIGHT BY MOTOROLA 1978 PAGE 2

550 000072 4280 CLR.L D0
560 000074 20C0 CLRM MOVE.L D0,{A0)+

0 000076 5341 SUB U,Dl
0 000078 66FA BNE CLRM
0 00007A 4E71 NOP

580 00007C 4EF9000200F6 RETURN JMP MACSBUG
590 000082 43 NTABLE DC.W 'CM'
600 000084 00022068 DC.L $22068
610 000088 53 DC.W 'SH'
620 00008A 000220E2 DC.L $220E2
630 00008E 42 DC.W 'BX'
640 000090 0002218A DC.L $2218A
650 000094 45 DC.W 'ED'
660 000096 000221E8 DC.L $221E8
670 00009A 42 DC.W 'BA'
680 00009C 00022454 DC.L $22454
690 000M0 51 DC.W 'Ql'
700 0000A2 00022498 DC.L $22498
710 0000A6 51 DC.W 'Q2'
720 0000A8 000224M DC.L $224M
730 0000AC 51 DC.W 'Q3'
740 0000AE 000224B0 DC.L $224B0
750 0000B2 51 DC.W 'Q4'
760 0000B4 000224BC DC.L $224BC
770 0000B8 51 DC.W 'Q5'
780 0000BA 000224C8 DC.L $224C8
790 0000BE 51 DC.W 'Q9'
800 0000C0 00022606 DC.L $22606
810 0000C4 48 DC.W 'HP'
820 0000C6 000226AC DC.L $226AC
830 0000CA 51 DC.W 'Q8'
840 0000CC 00022818 DC.L $22818
850 0000D0 FFFF DC.W $FFFF
860 *870 *880 *890 *900 0000D2 27 CRTC DC.B $27
910 0000D3 20 DC.B $20
920 0000D4 22 DC.B $22
930 0000D5 A3 DC.B $A3
940 0000D6 20 DC.B $20
950 0000D7 06 DC.B $06
960 0000D8 IF DC.B $lF
970 0000D9 IF DC.B $lF
980 0000DA 10 DC.B $10
990 0000DB 07 DC.B 7

1000 0000DC 00000000 DC.L 0
1010 0000E0 0000 DC.W 0
1020 *1030 *1040 0000E2 61000004 SH BSR SHQ
1050 0000E6 6094 BRA RETURN
1060 0000E8 4EB900021BC2 SHQ JSR OUTPUT2
1070 0000EE 227C0003FF21 MOVE.L #$3FF21,Al

406



1080 0000F4 61000078
1090 0000F8 0C00000D
1100 0000FC 6708
1110 0000FE 0C0000FF
1120 000102 66F0
1130 000104 6040
1140 000106 61000066
1150 00010A 0C00000A
1160 00010E 67F6
1170 000110 0C000000
1180 000114 67F0
1190 000116 0C0000FF
1200 00011A 672A
1210 00011C 4EB900021F18
1220 000122 2CFC4552524F
1230 000128 2CFC52203B43
1240 00012E 2CFC4845434B
1250 000134 2CFC2046494C
1260 00013A 2CFC45202020
1270 000140 4EF9000200EE
1280 000146 207C00010000
1290 00014C 103C0055
1300 000150 6100002A
1310 000154 61000018
1320 000158 1200
1330 00015A 61000012
i340 00015E E140
1350 000160 1001
1360 000162 30C0
1370 000164 B1FC00017F80
1380 00016A 66E8
1390 00016C 4E75
1400 00016E 1011
1410 000170 02000001
1420 000174 67F8
1430 000176 10290002
1440 00017A 4E75
1450 00017C 1E11
1460 00017E 02070002
1470 000182 67F8
1480 000184 13400002
1490 000188 4E75
1500 00018A 4240
1510 00018C 3200
1520 00018E 3400
1530 000190 363C003F
1540 000194 207C00010000
1550 00019A 61000016
1560 00019E 5543
1570 0001A0 6A02
1580 0001A2 60EC
1590 0001A4 5240
1600 0001A6 5241
1610 0001A8 5242
1620 0001AA D1FC00000202

SH1 BSR INPUT
CMP.B "#$0D,D0
BEQ.S SH2
CMP.B #$FF,D0
BNE SH1
BRA.S SH3

SH2 BSR INPUT
CMP.B #$0A,D0
BEQ SH2
CMP.B it0,D0
BEQ SH2
CMP.B t$FF,D0
BEQ.S SH3
JSR FIXBUF
MOVE.L t'ERRO',{A6)+
MOVE. Lit' R ;C' , (A6)+
MOVE.L i'HECK', (A6)+
MOVE.L it'FIL', (A6)+
MOVE.L it'E ',(A6)+
JMP MSG

SH3 MOVE.L #$10000,A0
MOVE.B #$55,D0
BSR OUTPUT

SH4 BSR INPUT
MOVE.B D0,D1
BSR INPUT
ASL 8,D0
MOVE.B D1,D0
MOVE.W D0, (A0)+
CMP.L #$17F80,A0
BNE SH4
RTS

INPUT MOVE.B {A1),D0
AND.B #1,D0
BEQ INPUT
MOVE.B 2{A1),D0
RTS

OUTPUT MOVE.B (A1),D7
AND.B it2,D7
BEQ OUTPUT
MOVE.B D0,2{A1)
RTS

BX CLR 00
MOVE 00,01
MOVE 00,02

BX3 MOVE it$3F,D3
MOVE.L it$10000,A0

BX1 BSR SHOW
SUB #2,03
BPL.S BX2
BRA BX3

BX2 ADD n ,D0
ADD n,OI
ADD n,D2
AOD.L t514,A0



1630 0001B0 60E8
1640 0001B2 3803
1650 0001B4 30C0

o 0001B6 5344
o 0001B8 66FA

1670 0001BA 3080
1680 0001BC 3803
1690 0001BE E544
1700 0001C0 01FC00000080
1710 0001C6 3081

o 0001C8 5344
o 0001CA 66F4

1730 0001CC 3803
1740 0001CE 3080
1750 000100 3100

o 000102 5344
o 000104 66FA

1770 000106 3803
1780 000108 E544
1790 00010A 91FC00000080
1800 0001E0 3082

o 0001E2 5344
o 0001E4 66F4

1820 0001E6 4E75
1830
1840
1850
1860 0001E8 11FC00801000
1870 0001EE 11FC00801001
1880 0001F4 11FC00001011
1890 0001FA 6100014E
1900 0001FE 61000004
1910 0002~2 60F6
1920 000204 61000230
1930 000208 0C010020
1940 00020C 6A48
1950 00020E 0C01000B
1960 000212 673C
1970 000214 0C01000A
1980 000218 673E
1990 00021A 0C01000C
2000 00021E 673E
2010 000220 0C010008
2020 000224 673E
2030 000226 0C010001
2040 00022A 673E
2050 00022C 0C010003
2060 000230 6756
2070 0002~2 0C010004
2080 000236 6738
2090 000238 0C010000
2100 00023C 673E
2110 00023E 0C010005
2120 000242 6732
2130 000244 0C010011

BRA BX1
SHOW MOVE 03,04
BX11 MOVE 00,(A0)+

SUB U,04
BNE BXll
MOVE 00, (A0)
MOVE 03,04
ASL 2,04

BX22 AOO.L i128,A0
MOVE 01, (M)
SUB #1 ,04
BNE BX22
MOVE 03,04
MOVE 00, (A0)

BX33 MOVE 00,-(A0)
SUB #1,04
BNE BX33
MOVE 03,04
ASL 2,04

BX44 SUB.L t128,A0
MOVE 02, (A0)
SUB #1,04
BNE BX44
RTS

*
*
*EO MOVE.B t$80,X1

MOVE.B t$80,Y1
MOVE.B to,NCOLOR

E01 BSR BLINK
BSR CMO
BRA EOI

CMO BSR REAOK
CMP.B t$20,01
BPL.S RTS
CMP.B t$B,Ol
BEQ.S UPARROW
CMP.B t$A,Ol
BEQ.S OWARROW
CMP.B t$C,OI
BEQ.S RTARROW
CMP.B #$8,01
BEQ.S LTARROW
CMP.B #$1,01
BEQ.S CM01 CHARMOOE
CMP.B t$3,01
BEQ.S CM02 NCOLOR
CMP.B #$4,01
BEQ.S CM03
CMP.B lt$00,01
BEQ.S CR
CMP.B #$5,01
BEQ.S CM04
CMP.B #$11,01



SETUP4.S MC68000 ASM REV= 1.0F- COPYRIGHT BY MOTOROLA 1978 PAGE 5

2140 000248 660A BNE.S RTS1
2150 00024A 588F AOO.L #4,A7
2160 00024C 6000FE2E BRA RETURN
2170 000250 53381001 UPARROW SUB.B il,Y1
2180 000254 4241 RTS1 CLR 01
2190 000256 4E75 RTS RTS
2200 000258 52381001 OWARROW AOO.B U,Y1
2210 00025C 60F6 BRA RTS1
2220 00025E 52381000 RTARROW AOO.B #1,X1
2230 "00262 60F0 BRA RTS1
2240 000264 53381000 LTARROW SUB.B #I,X1
2250 000268 60EA BRA RTS1
2260 00026A 588F CM01 AOO.L #4,A7
2270 00026C 60000132 BRA CHAR ED
2280 000270 588F CM03 AOO.L #4,A7
2290 000272 600001A8 BRA DOT
2300 000276 588F CM04 AOO.L #4,A7
2310 000278 6000FF80 BRA E01
2320 00027C 5E381001 CR AOO.B #7,Y1
2330 000280 llFC0 0001000 MOVE.B #0,X1
2340 000286 60CC BRA RTS1
2350 000288 610001AC CM02 BSR REAOK
2360 00028C 267C00001011 MOVE.L #NCOLOR,A3
2370 000292 0C010052 CMP.B #'R' ,01
2380 000296 6758 BEQ.S RED

,2390 000298 0C010047 CMP •B #'G' ,01
2400 00029C 6758 BEQ.S GREEN
2410 00029E 0C010042 CMP.B #'B',Ol
2420 0002A2 6758 BEQ.S BLUE
2430 0002M 0C010057 CMP •B #'w' ,01
2440 0002A8 6758 BEQ.S WHITE
2450 0002AA 0CeJ1005A CMP.B #'2',01
2460 0002AE 6758 BEQ.S BLACK
2470 0002B0 0C010059 CMP. B #'Y' ,01
2480 0002B4 6758 BEQ.S YELLOW
2490 0002B6 0C010040 CMP.B # 'M' ,01
2500 0002BA 6758 BEQ.S MAG
25HJ 0002BC 0C010043 CMP.B #'C' ,01
2520 0002C0 6758 BEQ.S CYAN
2530 0002C2 0C010054 CMP.B #'T',Ol
2540 0002C6 6758 BEQ.S OREO
2550 0002C8 0C010048 CMP.B #'H',Ol
2560 0"02CC 6758 BEQ.S OGR
2570 0002CE 0C01"04E CMP •B #'N' ,01
2580 000202 6758 BEQ.S OBLUE
2590 000204 0C010045 CMP •B #'E ',01
2600 000208 6758 BEQ.S OWH
2610 00020A 0C010055 CMP.B #'U',01
2620 00020E 6758 BEQ.S OYEL
2630 0002E0 0C01002C CMP •B #',',01
2640 0002E4 6758 BEQ.S OMAG
2650 0.Ql02E60C010056 CMP.B # '.v',01
2660 0002EA 6758 BEQ.S OCYAN
2670 0002EC 4241 RTS2 CLR 01
2680 0002EE 4E75 RTS

409



SETUP4.S MC68000 ASM REV= 1.0F- COPYRIGHT BY MOTOROLA 1978 PAGE 6

2690 0002F0 16BC0009 RED MOVE.B #$9,(A3)
2700 0002F.4 60F6 BRA RTS2
2710 0002F6 16BC000A GREEN MOVE.B #$A,(A3)
2720 0002FA 60F0 BRA RTS2
2730 0002FC 16BC000C BLUE MOVE.B i$C,(A3)
2740 000300 60EA BRA RTS2
2750 000302 16BC000F WHITE MOVE.B i$F, (A3)
2760 000306 60E4 BRA RTS2
2770 000308 16BC0000 BLACK MOVE.B U,(A3)
2780 00030C 60DE BRA RTS2
2790 00030E 16BC000B YELLOW MOVE.B i$B,(A3)
2800 000312 60D8 BRA RTS2
2810 000314 16BC000D MAG MOVE.B i$D, (A3)
2820 000318 60D2 BRA RTS2
2830 00031A 16BC000E CYAN MOVE.B i$E, (A3)
2840 00031E 60CC BRA RTS2
2850 000320 16BC0001 DRED MOVE.B il, (A3)
2860 000324 60C6 BRA RTS2
2870 000326 16BC0002 DGR MOVE.B i2,(A3)
2880 00032A 60C0 BRA RTS2
2890 00032C 16BC0004 DBLUE MOVE~B i4,(A3)·
2900 000330 60BA BRA RTS2
2910 000332 16BC0007 DWH MOVE.B i7,(A3)
2920 1110033660B4 BRA RTS2
2930 000338 16BC0003 DYEL MOVE.B i3,(A3)
2940 00033C 60AE BRA RTS2
29511l0011l33E16BC0005 DMAG MOVE.B i5, (A3)
2960 000342 60A8 BRA RTS2
2970 000344 16BC011l06 DCYAN MOVE.B 16, (A3)
2980 000348 6filA 2 BRA RTS2
2990 *3000 00034A 12381000 BLINK MOVE.B X1,D1
3010 00034E 14381001 MOVE.B Y1,D2
3020 000352 61000226 BSR GETADD
3030 000356 4643 NOT D3
3040 000358 0C03000F BL2 CMP.B #$F,D3
3050 00035C 6706 BEQ.S BLl
3060 00035E E84B LSR 4,D3
3070 000360 E849 LSR 4,D1
3080 0011136260F4 BRA BL2
3090 000364 11C11012 BL1 MOVE.B D1,OCOLOR
3100 000368 103C000F BL3 MOVE.B i$F,D0
3110 00036C 12381000 MOVE.B X1,D1
3120 000370 14381001 MOVE.B Y1,D2
3130 000374 610001DE BSR DSP
3140 000378 610000D0 BSR DLY
3150 00037C 4200 CLR.B D0
3160 00037E 610001D4 BSR DSP
3170 000382 610000C6 BSR DLY
3180 000386 10381012 MOVE.B OCOLOR,D0
3190 00038A 610001C8 BSR DSP
3200 00038E 610000BA BSR DLY
3210 000392 10390003FF01 MOVE.B $3FF01,DI1l
3220 III III III 398 III 2 III III III III III 1 AND.B i1,D0
3230 011l039C67CA BEQ BL3

410



3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480

o
o

3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770

0003A0 31F81l1J001002
0003A6 61A2
0003A8 6100FE5A
0003AC 4A01
0003AE 67F0
0003B0 61000004
l1J003B46l1JEA
0l1J03B604010020
0003BA E741
0003BC 267C000011~0
0003C2 0281000003FF
0003C8 D7C1
0003CA 3C3C0004
0003CE 4245
0003D0 0B13
l1J003D26636
0003D4 52381002
00l1J3D85245
0003DA 0C450010
0003DE 6618
0003E0 52381003
0003E4 11F810001002
0003EA D7F80002
0003EE 5346
0003F0 66DC
0003F2 50381000
0003F6 4E75
0003F8 0C450008
0003FC 66D2
0003FE 52381003
000402 11F810001002
000408 60C6
00040A 10381011
00040E 12381002
000412 14381003
000416 6100013C
00041A 60B8

00041C 10381011
l1J0l1J42012381000
0l1J042414381001
000428 61l1J0012A
00042C 6100FF1C
000430 6100FDD2
000434 6l1JE6

000436 12390003FF01
00043C 02010001
00044l1J67F4
000442 12390l1J03FF03
0l1J04484E75
l1Jl1Jl1J44A3C3C00FF
l1Jl1Jl1J44E5346

CHAR ED MOYE X1,X2
BSR BLINK
BSR CMD
TST.B D1
BEQ CHARED
BSR CHAR
BRA CHARED

CHAR SUB.B *$20,D1
ASL 3,D1
MOYE.L *TABLECH,A3
AND.L *$3FF,D1
ADD.L D1,A3
MOYE H,D6

CHARED1 CLR D5
CHARED2 BTST D5,(A3)

BNE.S SET
CHARED3 ADD.B *1,X2

ADD U,D5
CMP U6,D5
BNE.S CHARED4
ADD.B *1,Y2
MOYE.B X1,X2
ADD.L $2,A3
SUB U,D6
BNE CHARED1
ADD.B *8,X1
RTS

CHARED4 CMP *8,D5
BNE CHARED2
ADD.B H,Y2
MOYE.B X1,X2
BRA CHARED2

SET MOYE.B NCOLOR,D0
MOYE.B X2,D1
MOYE.B Y2,D2
BSR DSP
BRA CHARED3

*DOT MOYE.B NCOLOR,Dl1J
MOYE.B X1,D1
MOYE.B Y1,D2
BSR DSP
BSR BLINK
BSR CMD
BRA DOT

*READK MOYE.B $3FFl1J1,D1
AND.B *1,D1
BEQ READK
MOYE.B $3FF03,D1
RTS

DLY MOYE *$00FF,D6
DLY1 SUB U,D6



3780 000450 66FC
3790 000452 4E75
3800
3810
3820
3830 000454 207C00010000
3840 00045A 227C0003FF23
3850 000460 247C0003FF21
3860 000466 1212
3870 000468 02010002
3880 00046C 67F8
3890 00046E 103C0065
3900 000472 1280
3910 000474 1212
3920 000476 02010002
3930 00047A 67F8
3940 00047C 3018
3950 00047E 1280
3960 000480 E048
3970 000482 1212,
3980 000484 02010002
3990 000488 67F8
4000 00048A 1280
4010 00048C BIFC00018000
4020 000492 66E0
4030 000494 6000FBE6
4040
4050
4060
4070 000498 2C7C000225AC
4080 00049E 3E3C0010
4090 0004A2 602E
4100 0004A4 2C7C000225BE
4110 0004AA 3E3C0010
4120 0004AE 6022
4130 0004B0 2C7C00022500
4140 0004B6 3E3C0010
4150 0004BA 6016
4160 0004BC 2C7C000225E2
4170 0004C2 3E3C0010
4180 0004C6 600A
4190 0004C8 2C7C000225F4
4200 0004CE 3E3C0010
4210 000402 61000006
4220 000406 6000FBA4
4230
4240
4250
4260 00040A 3C3C0080
4270 00040E 61000034
4280 0004E2 4E96
4290 0004E4 48E76000
4300 0004E8 0241007F
4310 0004EC 0242007F
4320 0004F0 61000068

BNE OLYl
RTS

*
*
BA MOVE.L #$10000,A0

MOVE.L #$3FF23,Al
MOVE.L #$3FF21,A2

Ll MOVE.B (A2),01
ANO.B #$2,01
BEQ Ll
MOVE.B #$65,00
MOVE.B 00, (AI)

LOOP MOVE.B (A2),01
ANO.B #$2,01
BEQ LOOP
MOVE (A0)+,00
MOVE.B 00, (AI)
LSR 8,00

L2 MOVE.B (A2),01
ANO.B #$2,01
BEQ L2
MOVE.B 00, (AI)
CMP.L #$18000,A0
BNE LOOP
BRA RETURN

*
*
*Ql MOVE.L #$225AC,A6

MOVE #$10,07
BRA.S RUN

Q2 MOVE.L #$225BE,A6
MOVE #$10,07
BRA.S RUN

Q3 MOVE.L #$22500,A6
MOVE #$10,07
BRA.S RUN

Q4 MOVE.L #$225E2,A6
MOVE #$10,D7
BRA.S RUN

Q5 MOVE.L #$225F4,A6
MOVE #$10,07

RUN BSR RUNI
BRA RETURN

*
*
*RUNI MOVE #128,D6

BSR RANO
RUN2 JSR (M)

MOVEM.L 01/D2,-(A7)
ANO #$7F,01
AND Jt$7F,D2
BSR OSPLY



SETUP4.S MC68000 ASM REV= 1.0F- COPYRIGHT BY MOTOROLA 1978 PAGE 9

4330 0004F4 4401 NEG.B Dl
4340 0004F6 61000062 BSR DSPLY
4350 0004FA 4402 NEG. B D2
4360 0004FC 6100005C BSR DSPLY
4370 000500 4401 NEG.B Dl
4380 000502 61000056 BSR DSPLY
4390 000506 4CDF0006 MOVEM.L (A7)+,Dl/D2

0 00050A 5346 SUB #1 ,D6
0 00050C 66D4 BNE RUN2
0 00050E 5347 SUB #1 ,D7
0 000510 66C8 BNE RUNI

4420 000512 4E75 RTS
4430 *
4440 *
4450 *
4460 000514 6100001C RAND BSR RANDI
4470 000518 3200 MOVE D0,Dl
4480 00051A 61000016 BSR RANDI
4490 00051E 3400 MOVE D0,D2
4500 000520 61000010 RAND2 BSR RANDI
4510 000524 0200000F AND.B #$F,D0
4520 000528 67F6 BEQ RAND2
4530 00052A 0C000008 CMP.B #$08,D0
4540 00052E 67F0 BEQ RAND2
4550 000530 4E75 RTS
4560 000532 10381019 RANDI MOVE.B RANADD+l,D0
4570 000536 E500 ASL.B 2,D0
4580 000538 D0381018 ADD.B RANADD,D0
4590 00053C E140 ASL 8,D0
4600 00053E 10381019 MOVE.B RANADD+l,D0
4610 000542 E540 ASL 2,D0
4620 000544 D0781018 ADD RANADD,D0
4630 000548 06403619 ADD #$3619,D0
4640 00054C 31C01018 MOVE D0,RANADD
4650 000550 E048 LSR 8,D0
4660 000552 4E75 RTS
4670 *
4680 *
4690 *
4700 *DSPLY(C,X,Y)
4710 * D0=COLOR
4720 * Dl=X 8-BITS
4730 * D2=Y 8-BITS
4740 *
4750 000554 48E7F080 DSP MOVEM.L D0-D3/A0,-(A7)
4760 000558 600C BRA.S DSPI
4770 *
4780 00055A 48E7F080 DSPLY MOVEM.L D0-D3/A0,-(A7)
4790 fiHH155E06010080 ADD.B #128,Dl
4800 000562 06020080 ADD.B #128,D2
4810 000566 0240000F DSPI AND #$F,D0
4820 00056A 6100000E BSR GETADD
4830 00056E C243 AND D3,Dl
4840 000570 8041 OR Dl,D0
4850 000572 3080 MOVE D0, (A0)

413



SETUP4.S MC6811J11J11J ASM REV= 1.I1JF- COPYRIGHT BY MOTOROLA 1978 PAGE II1J

48611J 11J11J11J5744COFI1JI11JF MOVEM.L (A7)+,011J-03/AI1J
48711J 11J11J11J5784E75 RTS
48811J 11JI1J11J57A11J24111JI1JFF GETAOO ANO t$FF,Ol
48911J 11JI1J11J57E363CFFFI1J MOVE t$FFFI1J,03
4911J11J 11J11J11J582E142 ASL 8,02
49111J 11J11J11J5840242 AOO 02,01
49211J 11J11J11J58611J28111J11J011JFFFF ANO.L t$FFFF,Ol
49311J 11JI1J11J58C 3411Jl MOVE 01,02
49411J 11JI1J11J58E E449 LSR 2,01
49511J 11J11J11J5911JE341 ASL 1,01
49611J 11J11J11J592 211J7CI1JI1JI1JI11JI1JI1JI1JMOVE.L t$ll1Jl1Jl1Jl1J,AI1J
49711J I1JI1JI1J598 01Cl AOO.L 01,AI1J
49811J 11JI1J11J59A11J24211J11J11J3 ANO #3,02
49911J 11JI1J11J59E6711J8 BEQ.S OSPLYI
511J11J11J11JI1J11J5AI1JE9411J OSPLY2 ASL 4,011J
511JI11J 11JI1J11J5A2E95B ROL 4,03

I1J 11J11J11J5A4 5342 SUB U,02
I1J 11J11J11J5A666F8 BNE OSPLY2

511J311J 11JI1J11J5A8 321liJ OSPLYI MOVE (AI1J) ,01
511J411J 11JI1J11J5AA4E75 RTS
511J50 *511J611J *511J711J 11J11J05AC 3611Jl EQUI MOVE 01,03
511J811J 11J11J05AE 3811J2 MOVE 02,04
511J90 11J011J5BI1J4883 EXT 03
51011J 0011J5B2 4884 EXT 04
51111J 11JI1J11J5B4E64B LSR 3,03
51211J 11JI1J11J5B6E64C LSR 3,04
51311J 11JI1J11J5B89411J3 SUB.B 03,02
51411J 11J11J05BA 9211J4 SUB.B 04,01
5150 11JI1J11J5BC4E75 RTS
51611J *51711J 11J11J05BE 3611J2 EQU2 MOVE 02,03
51811J 11JI1J11J5CI1J4883 EXT 03
51911J 11JI1J11J5C2E64B LSR 3,03
52011J 11JI1J11J5C49211J3 SUB.B 03,01
52111J 011J11J5C6 3801 MOVE 01,04
52211J 011J11J5C8 4884 EXT 04
52311J 11JI1J11J5CAE64C LSR 3,04
52411J 11JI1J11J5CC0411J4 AOO.B 04,02
52511J 11JI1J11J5CE4E75 RTS
5260 *52711J *52811J 11J11J05011J 3611J2 EQU3 MOVE 02,03
5290 11J11J11J5024883 EXT 03
5311J11J 11J011J504 E24B LSR 1,03
53111J 011J0506 0211J3 AOO.B 03,01
53211J I1JI1JI1J508 3811Jl MOVE 01,04
53311J 011J050A 4{l84 EXT 04
53411J 11JI1J11J50CE24C LSR 1,04
5350 11J011J50E 9411J4 SUB.B 04,02
5360 011J05EI1J 4E75 RTS
5370 *53811J 11JIIJ11J5E23611J2 EQU4 MOVE 02,03
53911J 11JI1J11J5E44883 EXT 03

414



5400 0005E6 E64B
5410 0005E8 9203
5420 0005EA 3801
5430 0005EC 4884
5440 0005EE E64C
5450 0005F0 9404
5460 0005F2 4E75
5470
5480 0005F4 3602
5490 0005F6 4883
5500 0005F8 E24B
5510 0005FA 9203
5520 0005FC 3801
5530 0005FE 4884
5540000600 E44C
5550 000602 D404
5560 000604 4E75
5570 000606 2C7C000225AC
5580 00060C 3A3C0002
5590 000610 61000044
5600 000614 3E3C0020
5610 000618 6100FEC0
5620 00061C 6100002C
5630 000620 48E70402
5640 000624,6100008E

.5650 000628 4CDF4020
5660 00062C 6100001C

o 000630 5345o 000632 66DC
5680 000634 61000034
5690 000638 DDFC00000012
5700 00063E BDFC00022606
5710 000644 670001D2
5720 000648 60C2
5730 00064A 283C000AFFFF
5740 000650 5384
5750 000652 66FC
5760 000654 4E75
5770 000656 4280
5780 000658 323C2000
5790 00065C 207C00010000
5800 000662 20C0

o 000664 5341
o 000666 66FA

5820 000668 4E75
5830 00066A 48E7FFFE
5840 00066E 4EB900021F18
5850 000674 2CFC53482053
5860 00067A 2CFC4C494445
5870 000680 1CBC0020
5880 000684 6100FA62
5890 000688 61C0
5900 00068A 4EB900021F18
5910 000690 2CFC5348204D
5920 000696 2CFC41534B20

LSR 3,D3
SUB.B D3,D1
MOVE D1,D4
EXT D4
LSR 3,D4
SUB.B D4,D2.
RTS

*EQU5 MOVE D2,D3
EXT 03
LSR 1,D3
SUB.B D3,D1
MOVE 01,04
EXT 04
LSR 2,04
AOO.B 04,02
RTS

Q9 MOVE.L #$225AC,A6
Q91 MOVE #2,05
Q92 BSR CMQ

MOVE #$20,07
BSR RUN1
BSR OLYQ
MOVEM.L D5/A6,-(A7)
BSR HP1
MOVEM.L (A7)+,05/A6
BSR OLYQ
SUB #1 ,D5
BNE Q92
BSR LOGO
ADO.L #$12,A6
CMP.L #$22606,A6
BEQ Q8
BRA Q91

DLYQ MOVE.L #$000AFFFF,04
OLYQ1 SUB.L #1,04

BNE DLYQ1
RTS

CMQ CLR.L 00
MOVE #$2000,D1
MOVE.L #$10000,A0

CMQ1 MOVE.L 00,(A0)+
SUB #1,01
BNE CMQ1
RTS

LOGO MOVEM.L 00-D7/A0-A6,-(A7)
JSR FIXBUF
MOVE.L #'SH S',(A6)+
MOVE.L #'LIOE',(A6)+
MOVE.B#' ',(A6)
BSR SHQ
BSR OLYQ
JSR FIXBUF
MOVE.L #'SH M',(A6)+
MOVE.L #'ASK " (A6)+



SETUP4.S MC68000 ASM REV= 1.0F- COPYRIGHT BY MOTOROLA 1978 PAGf: 12

5930 00069C 6100FA4A BSR SHQ
5940 0006A0 4CDF7FFF MOVEM.L (A7)+,D0-D7/A0-A6
5950 0006A4 283C0010FFFF MOVE.L i$~010FFFF,D4
5960 0006AA 60A4 BRA oLYQl
5970 *5980 0006AC 61000006 HP BSR HPI
5990 0006B0 6000F9CA BRA RETURN
6000 0006B4 267C00001080 HPI MOVE.L iARRAY,A3
6010 0006BA 619A BSR CMQ
6020 0006BC 4241 CLR Dl
6030 0006BE 4242 CLR 02
6040 0006C0 363C00FF MOVE #$FF,D3
6050 0006C4 3803 MOVE o3,D4
6060 0006C6 6100FE6A BSR RANDI
6070 0006CA 02000007 ANo.B *7,D0
6080 0006CE 5A00 ADO.B #5,00
6090 000600 E340 ASt 1,00
6100 000602 llC01014 MOVE.B 00,NUMPT
6110 000606 6100FE5A BSR RANOI
6120 00060A 0200001F ANO.B #$IF,00
6130 00060E 00000005 OR.B i$5,00
6140 0006E2 llC011316 MOVE.B O13,SCALE
61513 130136E64245 CLR 05
6160 0006E8 6100FE48 H6 BSR RANOI
6170 0006EC 024000FF ANO #$FF,00
6180 0006F0 17805000 MOVE.B o0,0(A3,05)
6190 0006F4 B240 CMP 00,01
6200 0006F6 6M2 BPL.S HI
6210 0006F8 12013 MOVE.B 013,01
6220 0006FA B640 HI CMP 00,03
6230 0006FC 6B02 BMI.S H2
6240 013136FE1600 MOVE.B 00,03
6250 1300700 61013FE30 H2 BSR RANOI
6260 130137040241300FF ANO #$FF,00
6270 000708 1781350131 MOVE.B 00,I(A3,05)
62813 13131370CB4413 CMP D0,02
6290 00070E 6M2 BPL.S H3
6300 000710 1400 MOVE.B 00,02
6310 000712 B840 H3 CMP 00,04
6320 000714 6B02 BMI.S H4
6330 000716 1800 MOVE.B 00,04
6340 000718 BA381014 H4 CMP.B NUMPT,05
6350 00071C 6704 BEQ.S H5
6360 00071E 5405 AOO.B #2,05
6370 000720 60C6 BRA H6
6380 00000722 H5 EQU *
6390 0~0722 9203 H8 SUB.B 03,01
6400 000724 9404 SUB.B 04,02
6410 000726 4245 CLR 05
6420 000728 97335000 H61 SUB.B 03,0(A3,05)
6430 00072C 99335001 SUB.B 04,I(A3,05)
6440 000730 BA381014 CMP.B NUMPT,05
6450 000734 6704 BEQ.S H9
6460 000736 5405 AOO.B i2,05
6470 000738 60EE BRA H61

416



6480 00073A 4243
6490 00073C 203C0000FF00
6500 000742 024100FF
6510 000746 80C1
6520 000748 4245
6530 00074A 16335000
6540 00074E C6C0
6550 000750 E04B
6560 000752 17835000
6570 000756 BA381014
6580 00075A 6704
6590 00075C 5405
6600 00075E 60EA
6610 000760 203C0000FF00
6620 000766 024200FF
6630 00076A 80C2
6640 00076C 4245
6650 00076E 16335001
6660 000772 C6C0
6670 000774 E04B
6680 000776 17835001
6690 00077A BA381014
6700 00077E 6704
6710 000780 5405
6720 000782 60EA
6730 000784 31D31000
6740 000788 3E3C001C
6750 00078C 54381014
6760 000790 1A381014
6770 000794 37935000
6780 000798 3C3C0004
6790 00079C 6100FD94
6800 0007A0 0240000F
6810 0007A4 67F2
6820 0007A6 0C000008
6830 0007AA 67EC
6840 0007AC 0C00000F
6850 0007B0 67E6
6860 0007B2 4245
6870 0007B4 12335000
6880 0007B8 14335001
6890 0007BC 6100008A
6900 0007C0 BA381014
6910 0007C4 6748
6920 0007C6 12335002
6930 0007CA 14335000
6940 0007CE 024100FF
6950 0007D2 024200FF
6960 0007D6 9242
6970 0007D8 16381016
6980 0007DC 024300FF
6990 0007E0 C3C3
7000 0007E2 E049
7010 0007E4 D3335000
7020 0007E8 12335003

H9 CLR D3
MOVE.L #$FF00,D0
AND #$FF,D1
DIVU D1,D0
CLR D5

H12 MOVE.B 0(A3,D5},D3
MULU D0,D3
LSR 8,D3
MOVE.B D3,0(A3,D5}
CMP.B NUMPT,D5
BEQ.S H11
ADD.B #2,D5

.BRA H12
H11 MOVE.L #$FF00,D0

AND #$FF,D2
DIVU D2,D0
CLR D5

H14 MOVE.B 1 (A3,D5) ,D3
MULU D0,D3
LSR 8,D3
MOVE.B D3,I(A3,D5}
CMP.B NUMPT,D5
BEQ.S H13
ADD.B #2,D5
BRA H14

H13 MOVE (A3},X1
H131 MOVE #$IC,07
H132 ADO.B #2,NUMPT

MOVE.B NUMPT,D5
MOVE (A3},0(A3,05)

H15 MOVE #4,06
BSR RAN01
AND #$F,00
BEQ H15
CMP.B #$8,00
BEQ H15
CMP.B #$F,D0
BEQ H15

HP6 CLR 05
H17 MOVE.B 0(A3,D5},D1

MOVE.B I(A3,05) ,D2
HP17 BSR LINE

CMP.B NUMPT,D5
BEQ.S H16
MOVE.B 2(A3,05} ,01
MOVE. B 0 (A3,05) ,D2
AND #$FF,OI
ANO #$FF ,1).2
SUB 02,01
MOVE.B SCALE,D3
ANO #$FF,D3

.MULS D3,01
LSR 8,01
AOD.B 01,0(A3,D5}
MOVE.B 3(A3,D5},01



7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280
7290
7300
7310
7320
7330
7340
7350
7360
7370
7380
7390
7400
7410
7420
7430
7440
7450
7460
7470
7480
7490
7500
7510
7520
7530
7540
7550
7560
7570

0007EC 024100FF
0007F0 14335001
0007F4 024200FF
0007F8 9242
0007FA 16381016
0007FE 024300FF
000802 C3C3
000804 E049
000806 D3335001
00080A 5445
00080C 60A6
00~80E 5346
000810 66A0
000812 5347
000814 6682
0008U 4E75
000818 6100FE9A
00081C 283C000~FFFF
000822 6100FE2C
000826 60F0

000828 12290002
00082C 9211
00082E 650A
000830 13410004
000834 42290006
000838 4E75
00083A 137C00010006
000840 4401
000842 13410004
000846 4E75

00000848
000848 48E7FFFE
00084C 227C00001000
000852 13410002
000856 13420003
00085A 1211
00085C 14290001
000860 6100FCF2
000864 61C2
000866 5289
000868 61BE
00086A 5389
00086C 1211
00086E 14290001
000872 4A290004
000876 6766
000878 4A290005
00087C 67000088
000880 16290004
000884 B6290005

AND i$FF,D1
MOVE.B 1(A3,D5) ,D2
AND t$FF,D2
SUB D2,D1
MOVE.B SCALE,D3
AND #$FF,D3
MULS D3,D1
LSR 8,D1
ADD.B D1,1(A3,D5)
ADD #2,D5
BRA H17

H16 SUB U,D6
BNE HP6
SUB #1 ,D7
BNE H15
RTS

Q8 BSR HP1
MOVE.L #$AFFFF,D4
BSR DLYQ1
BRA Q8

*
*
*DXDY MOVE.B 2(A1),D1

SUB.B (AI) ,D1
BCS.S XNEG
MOVE.B D1,4(A1)
CLR.B n(A1)
RTS

XNEG MOVE.B i1,6(A1)
NEG.B D1
MOVE.B D1,4(A1)
RTS

*
*LINE EQU *
DRAW MOVEM.L D0-D7/A0-A6,-(A7)

MOVE.L #X1,A1
MOVE.B D1,2(A1)
MOVE.B D2,3(A1)
MOVE.B (A1),D1
MOVE.B 1(A1),D2
BSR DSP

DRAWl BSR DXDY
ADD.L U,A1
BSR DXDY
SUB.L U,A1
MOVE.B (A1),D1
MOVE.B 1(A1),D2
TST.B 4(A1)
BEQ.S DXZ
TST.B 5(A1)
BEQ DYZ
MOVE.B 4(A1),D3
CMP.B 5(A1) ,D3



SETUP4.S MC68000 ASM REV= 1.0F- COPYRIGHT BY MOTOROLA 1978 PAGE 15

7580 000888 660000B0 BNE FULMOV
7590 00088C 4A290006 TST.B 6(Al)
7600 000890 6626 BNE.S SXN
7610 000892 4A290007 TST.B 7(Al)
7620 000896 6636 BNE.S SYN
7630 000898 6100FCBA XPYPI BSR DSP
7640 00089C 5201 ADD.B #1,Dl
7650 00089E 5202 ADD.B #1,D2
7660 0008A0 B2290002 CMP.B 2(Al),Dl
7670 0008M 66F2 BNE XPYPI
7680 0008A6 607E BRA.S XYDONE
7690 0008A8 6100FCAA SXNSYN BSR DSP
7700 0008AC 5301 SUB.B #1,Dl
7710 0008AE 5302 SUB.B #1,D2
7720 0008B0 B2290002 CMP.B 2(Al) ,Dl
7730 0008B4 66F2 BNE SXNSYN
7740 0008B6 606E BRA.S XYDONE
7750 0008B8 4A290007 SXN TST.B 7(Al)
7760 0008BC 66EA BNE.S SXNSYN
7770 0008BE 6100FC94 SNP BSR DSP
7780 0008C2 5301 SUB.B #1,Dl
7790 0008C4 5202 ADD.B #1,D2
7800 0008C6 B2290002 CMP.B 2 (AI) ,D 1
7810 0008CA 66F2 BNE SNP
7820 0008CC 6058 BRA.S XYDONE

'7830 0008CE 6100FC84 SYN BSR DSP
7840 0008D2 5201 ADD.B #1,Dl
7850 0008D4 5302 SUB.B #1 ,D2
7860 0008D6 B2290002 CMP.B 2(Al),Dl
7870 0008DA 66F2 BNE SYN
7880 0008DC 6048 BRA.S XYDONE
7890 0008DE 4A290005 DXZ TST.B 5(Al)
7900 0008E2 6742 BEQ.S XYDONE
7910 0008E4 4A290007 TST.B 7(Al)
7920 0008E8 660E BNE.S DXZYN
7930 0008EA 6100FC68 DXZl BSR DSP
7940 0008EE 5202 ADD.B #1,D2
7950 0008F0 B4290003 CMP.B 3(Al),D2
7960 0008F4 66F4 BNE DXZl
7970 0008F6 602E BRA.S XYDONE
7980 0008F8 6100FC5A DXZYN BSR DSP
7990 0008FC 5302 SUB.B #1,D2
8000 0008FE B4290003 CMP.B 3(Al),D2
8010 000902 66F4 BNE DXZYN
8020 000904 6020 BRA.S XYDONE
8030 000906 4A290006 DYZ TST.B 6(Al)
8040 00090A 660E BNE.S DYZN
8050 00090C 6100FC46 DYZI BSR DSP
8060 000910 5201 ADD.B #1,D1
8070 000912 B2290002 CMP.B 2(Al),Dl
8080 000916 66F4 BNE DYZI
8090 000918 600C BRA.S XYDONE
8100 00091A 6100FC38 DYZN BSR DSP
8110 00091E 5301 SUB.B #1,D1
8120 000920 B2290002 CMP.B 2(Al) ,01

419



8130
8140
8150
8160
8170
8180
8190
8200
8210
8220
8230
8240
8250
8260
8270
8280
8290
8300
8310
8320
8330
8340
8350
8360
8370
8380
8390
8400
8410
8420
8430
8440
8450
8460
8470
8480
8490
8500
8510
8520
8530
8540
8550
8560
8570
8580
8590
8600
8610
8620
8630
8640
8650
8660
8670

000924 66F4
000926 32A90002
00092A 1211
00092C 14290001
000930 6100FC22
000934 4CDF7FFF
000938 4E75
00093A 33510008
00093E 16290004
000942 96290005
000946 6208
000948 337C0001000A
00094E 6046
000950 337C0100000A
000956 603E
000958 16290008
00095C 9611
00095E 6402
000960 4403
000962 024300FF
000966 18290005
00096A 024400FF
00096E C6C4
000970 18290009
000974 98290001
000978 6402
00097A 4404
00097C 1A290004
000980 024400FF
000984 024500FF
000988 C8C5
00098A 4A29000A
00098E 660E
000990 B883
000992 6710
000994 620E
000996 3369000A000E
00099C 600C
00099E B883
0009A0 6702
0009A2 62F2
0009A4 337C0101000E
0009AA 12290008
0009AE 14290009
0009B2 4A290007
0009B6 6606
0009B8 D429000F
0009BC 6004
0009BE 9429000F
0009C2 13420009
0009C6 4A290006
0009CA 6606
0009CC D229000E
000900 6004
0009D2 9229000E

BNE OYZN
XYDONE MOVE 2(A1), (AI)

MOVE.B (A1),D1
MOVE.B l(A1),D2
BSR DSP
MOVEM.L (A7)+,D0-D7/A0-A6
RTS

FULMOV MOVE (A1),8(A1)
MOVE.B 4(A1),D3
SUB.B 5(A1),D3
BHI.S FULl
MOVE #$1,10 (AI)
BRA.S FUL4

FULl MOVE #$100,10(A1)
BRA.S FUL4

FUL2 MOVE.B 8(A1),D3
SUB.B (AI) ,D3
BCC.S FUL21
NEG.B D3

FUL21 AND #$FF,D3
MOVE.B 5(A1),D4
AND #$FF,04
MULU D4,03
MOVE.B 9(A1),D4
SUB.B 1 (AI) ,D4
BCC.S FUL22
NEG.B D4

FUL22 MOVE.B 4(A1),05
AND #$FF,D4
AND #$FF,D5
MULU D5,D4
TST.B 10(A1)
BNE.S FULY
CMP.L D3,D4
BEQ.S GREAT
BHI.S GREAT

FUL4 MOVE 10(A1),14(A1)
BRA.S SAME

FULY CMP.L D3,D4
BEQ.S GREAT
BHI.S FUL4

GREAT MOVE #$0101,14(A1)
SAME MOVE.B 8(A1),D1

MOVE.B 9(A1),D2
TST.B 7(A1)
BNE.S NEGY
ADD.B 15(A1),D2
BRA.S 52

NEGY SUB.B 15(Al),D2
S2 MOVE.B D2,9(A1)

TST.B 6(A1)
BNE.(3 NEGX
ADD.B 14(A1),D1
BRA.S S3

NEGX SUB.B 14(A1),Dl



SETUP4.S MC68000 ASM REV= 1.0F- COPYRIGH~ BY MOTOROLA 1978 PAGE 17

8680 0009D6 13410008 S3 MOVE.B Dl,8{Al)
8690 0009DA 6100FB78 FUL3 BSR DSP
8700 0009DE B2290002 CMP.B 2 (AI) ,Dl
8710 0009E2 670A BEQ.S DRAW2
8720 0009E4 B4290003 CMP.B" 3{Al),D2
8730 0009E8 6704 BEQ.S DRAW2
8740 0009EA 6000FF6C BRA FUL2
8750 0009EE 32A90008 DRAW2 MOVE 8 (AI), (AI)
8760 0009F2 6000FE70 BRA DRAWl
8770 0009F6 0000 END

****** TOTAL ERRORS 0-- 0

SYMBOL TABLE

ARRAY 001080 BA 000454 BLl 000364 BL2 000358
BL3 000368 BLACK 000308 BLINK 00034A BLUE 0002FC
BX 00018A BXl 00019A BXll 0001B4 BX2 0001A4
BX22 0001C0 BX3 000190 BX33 0001D0 BX44 0001DA
CHAR 0003B6 CHARED 0003A0 CHAREDI 0003CE CHARED2 0003D0
CHARED3 0003D4 CHARED4 0003F8 CHTAB 0009F6 CLRM 000074
CM 000068 CMD 000204 CMDI eJf1J026A CMD2 f1J00288
CMD3 0f1J0270 CMD4 0f1Jf1J276 CMDTAB f1Jf1J18 f1Jf1JCMQ 0f1J0656
CMQl f1J00662 COLOR f1Jf1Jlf1Jlf1JCR f1Jf1J027C CRTC f1Jf1Jf1Jf1JD2
CYAN 0f1J031A DBLUE f1Jf1Jf1J32CDCYAN f1Jf1J0344 DGR f1Jf1J0326

. DLY f1J0044A DLYI eJ0044E DLYQ fil0064A DLYQl 0f1Jf1J65f1J
DMAG f1Jf1J033E DOT f1Jf1Jf1J41CDRAW f1Jf1Jf1J848DRAWl f1Jf1Jf1J864
DRAW2 f1Jf1J09EE DRED f1J0032f1J DSP f1Jf1J0554 DSPI f1Jf1Jf1J566
DSPLY 00055A DSPLYI f1Jf1J05A8 DSPLY2 0f1Jf1J5Af1JDWARROW 00f1J258
DWH 0f1J0332 DXDY 0f1Jf1J828 DXZ fIlf1J08DE DXZl 0f1J08EA
DXZYN f1Jf1Jf1J8F8DYEL 0f1Jf1J338 DYZ f1J0f1J906 DYZI f1Jf1Jf1J9f1JC
DYZN 00f1J91A ED 0f1J01E8 EDI f1Jf1J01FA EQUI f1Jf1J05AC
EQU2 f1J005BE EQU3 00 f1J5Df1J EQU4 0f1Jf1J5E2 EQU5 0f1Jf1J5F4
FIXBUF 021F18 FULl f1Jf1J095f1JFUL2 f1Jf1Jf1J958FUL21 f1Jf1Jf1J962
FUL22 00097C FUL3 0f1J09DA FUL4 f1Jf1J0996 FULMOV 00093A
FULY f1J0099E GETADD 0f1J057A GREAT f1Jf1J09A4 GREEN f1J002F6
HI f1J006FA Hll f1Jf1J076f1JH12 f1Jf1J074A H13 f1Jf1J0784
H131 f1J0f1J788 H132 filf1J078C H14 0f1Jf1J76E H15 0f1J0798

. H16 0f1J080E H17 0007B4 H2 0f1Jf1J7f1Jf1JH3 00f1J712
H4 000718 H5 fil00722 H6 00f1J6E8 H61 f1J0f1J728
H8 0f1J0722 H9 f1Jf1Jf1J73AHP 0f1Jf1J6AC HPI f1Jf1Jf1J6B4
HP17 0f1J07BC HP6 o f1Jf1J7B2 INIT 000f1J2C INITI f1J0f1J038
INPUT 0f1Jf1J16E Ll f1J00466 L2 f1J00482 LINE f1Jf1Jf1J848
LOGO eJf1Jf1J66ALOOP 0f1Jf1J474 LTARROW f1Jf1J0264 MACSBUG 02f1J0F6
MAG 0f1J0314 MSG f1J2f1Jf1JEENCOLOR f1Jf1Jlf1JllNEGX f1Jf1Jf1J9D2
NEGY f1J009BE NTABLE 00f1J082 NUMPT f1J01f1J14 OCOLOR f1Jf1J1012
OUTPUT 00017C OUTPUT2 f1J21BC2 Ql 0f1J0498 Q2 eJf1J04A4
Q3 0f1Jf1J4Bf1JQ4 o f1Jf1J4BC Q5 0f1J04C8 Q8 00f1J818
Q9 f1Jf1J0606 Q91 f1J0060C Q92 f1J0061f1J RAN ADD f1Jf1J1018
RAND 0f1J0514 RANDI f1Jf1J0532 RAND2 f1J0052f1J READK 00f1J436
RED 0f1J02F0 RETURN 00f1Jf1J7C RTARROW f1Jf1J025E RTS eJf1J0256
RTSI 0f1J0254 RTS2 f1Jf1Jf1J2ECRUN f1Jf1Jf1J4D2RUNI liH1I04DA
RUN2 f1Jf1Jf1J4E282 0f1Jf1J9C2 S3 eJf1Jf1J9D6SAME f1Jf1Jf1J9AA
SCALE 001f1J16 SET f1J004f1JA SETUP 0f1Jf1Jf1Jf1J0SETUP 1 f1J0f1Jf1Jf1JE

421



SETUP4.S MC680lHl ASM REV= 1.0f- COPYRIGHT BY MOTOROLA 1978 PAGE 18

SETUP2 ·00001C SETUP21 000060 SH 0000E2 SH1 0000F4
SH2 000106 SH3 000146 SH4 0"0154 SHOW 0001B2
SHQ 0000E8 SNP 0008BE SXN "008B8 SXNSYN 0008A8
SYN 0008CE TABLECH 0011 00 UPARROW 000250 WHITE 000302
Xl 0"1000 X2 001002 XNEG 00083A XPYP1 000898
XYDONE 000926 Yl 001001 Y2 001003 YELLOW 0003 eJE



AN-836

USING LOW-COST 1 MHz PERIPHERALS
IN A 2 MHz SYSTEM

WITH THE MC68B09 AND .THE MC68B09E
by

Duane Graden and Hunter Scales
NMOS Microcomputer Applications

Motorola Inc.

INTRODUCTION
With the increasing use of HMOS design techniques in

VLSI circuits, the maximum speed of these devices is also on
the rise. There are 2 MHz, "B," versions of the popular
MC6809 and the new MC6809E with external clock. Both the
MC68B09 and the MC68B09E feature a 500 nanosecond cy-
cle time. With a 2 MHz E clock, an add immediate instruc-
tion takes just I microsecond! These fast, efficient pro-
cessors offer designers the opportunity to use a
microprocessor in applications which have been, until now,
too slow.

It would appear that the speed increase necessarily carries
with it a cost penalty. That is, by increasing the speed of the
bus, faster and therefore more expensive memories and
peripherals must be used. However, there are ways to
manipulate the 2 MHz MPU access time to accommodate
slower peripherals and memories.

MPU ACCESS TIME MANIPULATION
The system clocks on the MC6809 can be delayed (stretch-

ed) to allow longer access time for slow memories using the
MRDY input pin. Figure I shows the timing for this input.
The system E and Q clocks are stretched, while E is high and
Q is low, in one-quarter bus cycle increments. One quarter
cycle of the MC68B09 2 MHz clock is equal to 125
nanoseconds. Since the MC6809E requires an external clock
generator, the MRDY signal can be implemented externally
for that processor.

A problem arises when stretching the access time for slow
memories in that the throughput of the 2 MHz system is
reduced markedly because the majority of processor cycles
are, in fact, memory accesses. One solution to this problem is
a compromise: absorb the cost of fast memories to allow the

processor to run all memory cycles at full speed but reduce
the speed of the bus for peripheral access. Since many
peripherals are accessed only infrequently, this approach in-
curs minor impact on total throughput.

Unfortunately, slowing the bus cycle to accommodate slow
peripherals is not as simple as using slow memories. To begin
with, all MC6809 family peripherals require a continuous
system 'clock to function. If the peripherals are specified at
I MHz, this clock cannot exceed I MHz. This requires a
separate, I MHz peripheral clock. This clock may not be syn-
chronous with the main 2 MHz processor clock. Therefore,
the chip enable signals to the peripherals must be delayed un-
til the peripheral clock is low and then meet the chip select
(CS) setup time. In I MHz chips, chip select time is 160
nanoseconds before the rising edge of the clock. Some cir-
cuits, designed to allow the use of an MC6809 peripheral chip
operating at one-half the frequency of the 2 MHz system
clock, are described in the following paragraphs.

USING THE MC68B09 WITH 1 MHz PERIPHERALS
The circuit shown in Figure 2 allows I MHz peripherals to

run with a 2 MHz MC68B09 system by generating an asyn-
chronous peripheral clock (PCLK). When an access of any
I MHz peripheral takes place, the 2 MHz system clocks, E
and Q, are stretched using the MRDY pin. A state machine
then waits until PCLK is low and then chip selects the
peripheral 250 nanoseconds before the rising edge of PCLK.
This provides proper address setup time at the peripherals
before chip selecting them. Clocks E and Q are then released
and the data is latched.

Refer to the timing diagram in Figure 3 and note the signal
relationships during write and read cycles. Initiation of a



\__/
Q __ / \__/

l.....-l _/

peripheral access cycle causes the address decoding logic to
bring the PERAC signal high (D. Signal MRDY is then
brought low (6). While MRDY is low, the high E and low Q
clocks are inhibited from switching states. Allowing for the
address setup time, the peripheral enable (PE) signal is made
true in the center of the PCLK low cycle 0).

Signal MRDY is then raised 375 nanoseconds after the ris-
ing edge of PCLK allowing E to fall 125 nanoseconds later
@. In addition, if the access is a read, PCLK is stretched 125
nanoseconds past the fall of E ~ to ensure valid data from
the peripheral. The delay also allows for some inherent skew
in the processor MRDY to E falling time. If the access is a
write to the peripheral, then E is allowed to fall after PCLK
to ensure that the peripheral clocks in valid data.

Note on Figure 3 that peripheral access (PERAC) may
become active high either during the low or high cycle of
PCLK. If the access occurs during the first quarter of the
PCLK cycle, the E need only be stretched for one 2 MHz bus
cycle (250 nanoseconds) until PCLK falls. However, if the
access occurs during the last three-quarters of the PCLK cy-
cle, then the stretch has to be continued until the next full cy-
cle of PCLK occurs. The best case example, shown in
Figure 3, is a short write, where the write PERAC signal oc-
curs before the end of the first quarter cycle of PCLK. The
worst case is a long read, where the read PERAC signal oc-
curs during PCLK high.

MC6809E CLOCK CIRCUIT
Unlike the MC6809, the MC6809E requires an external

clock generator to provide the 2 MHz E and Q system clocks.
Figure 4 shows a circuit that can generate these clocks. The
circuit also generates an internal PCLK signal used to
develop the chip select (CS) output to the peripherals. This
output ensures that an addressed peripheral is accessed at the
proper time. Two inputs are required by the circuit. These
are the MRDY and the PERAC inputs. Input MRDY is used
to stretch the E and Q clocks during slow (I MHz) peripheral
access cycles. Input PERAC is used to signal that a slow
peripheral access cycle is active.

An 8 MHz oscillator, formed by crystal YI, related 74LS04
U4 inverters, and resistors RI and R2, provides the reference
frequency. Two 8 MHz outputs, 4X and 4X are obtained
from the oscillator. Output 4X is used· to clock binary
counter U7. This counter divides the 4X clock by 2, 4, and 8
to derive the 4 MHz 2X clock, the 2 MHz IX clock, and the
I MHz PCLK, respectively. Clock 2X is routed to flip-flop

U3a, where it is divided by 2 to obtain the 2 MHz Q clock
output. Clock IX is routed via gate U6a to provide the
2 MHz E clock output.

At power-up, flip-flop U3a and U3b are used to establish
the correct clock E and clock Q phase relationship. However,
this synchronization must b~ delayed until the oscillator has
stabilized. An RC network (CI, R3) provides this delay. At
power-up, a momentary low level from the RC network
clears U3b to hold the U3b output low. In turn, the low U3b
output presets U3a to hold the system Q clock output high.
Approximately 50 milliseconds after power-up, the RC net-
work output reaches VT (1.9 V) of inverter U9 and releases
U3b so it can be toggled by clock E. As the D input of U3b is
tied to + 5 V, the next rising edge of clock E toggles the U3b
output from low to high. This action releases the U3a preset
input so that U3a can be toggled by clock 2X. The next rising
edge of clock 2X, and all subsequent rising edges of 2X,
switch the U3a system Q clock output to generate the Q
waveform. The + 5 V at the D input of U3b ensures that the
U3b output remains high and does not interfere with U3a
after synchronization: Since the system reset delay is 100
milliseconds, the 50 millisecond clock delay does not
interfere in any way with system operation.

MC6809E SLOW MEMORY ACCESS
The MRDY input allows the processor to access slow

memories by stretching E and Q. Refer to the timing diagram
in Figure 5 and note that when MRDY is pulled low, E is high
and Q is low. Refer to Figure 4 and note that these conditions
generate a low output at gate U5c. Therefore, a low is present
at the input of U2b. The next rising edge of the oscillator 4X
clock toggles U2b and causes ENABLE to counter U7 to
become inactive, holding E high. The Q clock is also held low
by the low clear input to U3a from U2b. Thus, E and Q are
stretched as long as MRDY is low. Removing MRDY causes
the clocks to be released on the following 4X clock rising
edge.

MC6809E SLOW PERIPHERAL ACCESS
Correct access of slow peripherals dictates synchronization

between the processor clock, E, and peripheral clock, PCLK.
In this case, PCLK is a continuous square wave one-half the
frequency of E. Accesses of the slow peripheral are syn-
chronized by stretching E, thus allowing them to operate at
their full rated bus speed. Only the processor is slow and only
for that cycle.



40 MHz

0 SN74LS74

4 10

PRE 11 PRE
0 PCLK

HOLDC

4X 4X 12

74LS10+5V
1 2 13

4 10

PRE C1 12 PRE R/W
PCLK D D

8 DWNUP

4X Q
11 08

CLR 6 CLR

1 13
CON.j>.

I\) 1 13(]'I

CLR o 5 12 CLR
+5V D D 0

0 8
4X

11

PE PRE PRE

10 SN74LS74

PERAC
12

PERAC
+5V

91011

74LS10



Signal PERAC goes active high to initiate a half-speed
peripheral access cycle. Note on Figure 4 that PERAC is ap-
plied to gate U5a. The other signal input to gate U5a is the
high CON output of flip-flop U2a. When PERAC is high,
CON is used to control stretch time at flip-flop U2b via gates
U5a, U5b, and U5c. If a low input is clocked into flip-flop
U2b by clock 4X, U2b holds the Q clock low with flip-flop
U3a and holds the E clock high with gate U6a. Also note that
chip select (CS) gate U6c determines the CON signal state via
flip-flips Ulb and U2a after clocks IX and 4X. Gate U6c
output state is determined by the E clock state via inverter
U4d and by the PCLK state via flip-flop Ula after clock IX.
Having noted these features, refer to the double-byte
peripheral access timing diagram shown in Figure 6.

When PERAC is high while E is high and Q is low, then
the next rising edge of the AX clock causes STRETCH to
become active (D. Clocks E and Q are held high an~ow,
respectively, as long as STRETCH is low. Chip select (CS) to
the peripheral is not active at this time. PCLK must be low to
ensure a proper chip select setup time (160 nanoseconds).
After PCLK goes low, the next rising edge of clock IX is
used to clock PCLK to generate the active low CS signal (6).
This sequence provides the proper chip select timing.

After CS goes low, STRETCH must be released so that
clock E and PCLK fall simultaneously. This is accomplished
by the CON signal logic with clocks IX and 4X. That is,
when the low CS is clocked by the IX and 4X clocks, CON is
switched low Q). When CON goes low, the next 4X rising
edge releases STRETCH @. In turn, the next 4X falling edge
causes clock E and PCLK to fall at the same time. This ac-
tion clocks the data into the peripheral on a write cycle (or in-
to the MPU on a read cycle).

Signal CS goes high (inactive) when E goes low (2). The
high CS" signal sets the CON signal to high and the stretch
logic is reset for the next access. Steps CD through (2) are
repeated for the second byte access.

SIMPLE CLOCK GENERATOR FOR THE MC6809E
WITH MRDY INPUT

Figure 7 depicts a circuit designed for those systems not re-
quiring the dual frequency clocks. The circuit provides the E
and Q clocks in their proper phases and also an MRDY input
to stretch the clocks for slow memory access. The fundamen-
tal input square wave should be four times the desired E fre-
quency.

Flip-flops U3a and U3b are used to derive the E and Q
clocks. The 4X square wave clocks both flip-flops. The feed-
back of the E output from U3b to the K input of U3a is used
to derive quadrature clock Q. Clock Q is at the same frequen-
cy as clock E but leads it by 90 degrees in phase. Because the
MC6809E requires the input voltage on the E clock (VICH)
to be VCC-O.75=4.25 volts, the E signal to the MPU is fed
through a 7404 inverter. A pullup resistor raises the voltage
to an acceptable level.

The function of the MRDY input is essentially the same as
previously described. A timing diagram for the circuit is
shown in Figure 8. Since the clocks must be stretched while
clock E is high and clock Q is low, the output of the 74LSIO
NAND gate is only low when E is high, Q is low, and MRDY
is low. This allows a low to be clocked through U2a to the
clear input of U3a and the preset input of U3b. In this man-
ner, the E and Q clocks are stretched until MRDY rises and is
clocked through with the 4X clock. The clocks then proceed
normally from there.



PCLK

12+5V
13 1X

Enable

14 2X

74LS04
U4f 4X

13 12

U6e
10 74LS32

U8
7407

1 2

Cl
1.F .I.



PCLK

MRDY

PERAC

STRETCH

PERAC

CS



CLR

J 0
74LS76

U3a
K IT

PRE



AN-839

A DATA COMMUNICATIONS SYSTEM USING
AN MC6809 MPU, MC68652 MPCC,

AND/OR THE MC68661 EPCI
Prepared by
Trey West

Microprocessor Systems Engineering

INTRODUCTION
With the increased use of microprocessors 'and LSI

receiver/transmitter devices in data communication systems,
design engineers are constantly searching for new devices
which will reduce system complexity and enhance system per-
formance. Motorola's MC6809 (or MC6809E)
microprocessor together with one or two LSI devices will
provide the design engineer with such products.

The MC6809 microprocessor ~an be interfaced with the
MC68661 Enhanced Programmable Communications Inter-
face (EPCI) and/or the MC68652 Multi-Protocol Com-
munications Controller (MPCC). Together, these devices
will support most existing data communications protocols.
This application note describes hardware considerations for
interfacing the MC68661 EPCI and the MC68652 MPCC
with the MC6809. Test software is included to illustrate the
effective use of MC6809 instructions to operate ,both devices.

MC68661 ENHANCED PROGRAMMABLE COM·
MUNICATIONS INTERFACE (EPCI)

The MC6866 I EPCI is a universal synchronous/asyn-.
chronous data communications controller device which is an
enhanced version of Signetics 2651. The MC68661 EPCI sup-
ports many serial data communications protocols, both syn-
chronous and asynchronous, in the full- or half-duplex
mode. Programmed instructions can be accepted from the
host MPU while supporting these protocols. Special support
for BISYNC is provided with the inclusion of an MC68653
Polynomial Generator Checker circuit.

The EPCI contains an internal, software programmable
baud rate generator which supports up to 16 commonly used
baud rates. Each version of the MC68661 (- A, - B, - C)
provides a different set of 16 baud rates (since each operates
with a different combination of BRCLK input frequency and
rate divisor). However, by providing an external receiver and
transmitter clock, any baud rate may be used.

When operating in the synchronous mode, the EPCI sup-
ports a 5-, 6-, 7-, or 8-bit character length. In addition, odd
or even parity can be used or the parity control can be disabl-
ed. The EPCI may be programmed to operate in the
transparent mode with DLE stuffing (Tx) and detection (Rx).
The EPCI can also operate in the non-transparent (normal)
mode. Automatic SYN or DLE-SYN insertion as well as
SYN, DLE, and DLE-SYN stripping are provided. Local
and remote maintenance loop-back facilitates system testing.

When operating in the asynchronous mode, the EPCI also
supports a 5-, 6-, 7-, or 8-bit character length with even or
odd parity, or the parity control can be disabled. Stop bit
lengths of one, one and one-half, or two may be used. False
start bit, parity, overrun, and framing error detection are in-
cluded on-chip. The asynchronous mode also includes local
and remote maintenance loop-back to facilitate system
testing.

The MC68661 interfaces quite readily with the MC6809 at
any of the available clock frequencies. The two address lines
(AO, AI) together with the R/W line provide register selec-
tion for software programming of the EPCi. The 8-bit data
bus supports efficient data transfer between the EPCI and
the MC6809 MPU. The complete interface requires only one
TIL "glue" part (a 74LS04 inverter) to supply Reset and
R/W for the MC68661. Baud rate generation is configured
internally under software control provided the proper fre-
quency is applied to BRCLK (pin 20). See Figure I for an in-
terface schematic diagram.

Software for the asynchronous test is shown in Figure 2.
This software provides a full-duplex buffer for a terminal. A
character entered at the terminal is simply echoed back to the
terminal. This simple routine could be modified to perform
the function of a monitor input handler.

NOTE
The frrst initialization routine listed is for the



ASSIST09 (MC6809) monitor only. This routine simp-
ly equates the IRQ vector to a user defined location.

MC686S2 MULTI-PROTOCOL COMMUNICATIONS
CONTROLLER (¥PCC)

The MC68652 MPCC formats, transmits, and receives
synchronous serial data while supporting Bit Oriented Pro-
tocols (BOP) or Byte Control Protocols (BCP). The data
transmission rate is externally controlled and runs from DC
to I MHz (MC68652) or 2 MHz (MC68652--.2). The MPCC
supports SDLC, HDLC, and ADCCP in the BOP mode, and

DDCMP and BISYNC in the BCP mode. Transmitted
character length may be I to 8 bits for BOP and 5 to 8 bits for
BCP. The MPCC provides for programmable SYNC (BCP)
or secondary station address (BOP). Automatic detection
and generation of Flag, Abort, and GA sequences are includ-
ed on-chip. The MPCC also supports zero insertion and dele-
tion for BOP, and SYNC generation, detection, and strip-
ping for BCP. The maintenance mode pin, when asserted,
internally connects the transmitter output and TxC to the
receiver input and RxC, respectively, to expedite system
testing.

MC68661
EPCI TxC

RxC

TxRDY

RxRDY

TxEMT

R/W

RESET

BRCLK

From External
Clock (If Internal
Baud Rate Gen-
erator Not Used)

Modem Control
IIf Modem is
Not Used, then:
CTS, DCD to GND;
DSR to + 5 V; RTS,
DTR Not Connected)

NOTE: BRCLK Frequency
MC68661-A=4.1952 MHz
MC68661-B =4.1952 MHz
MC68661-C=5.0688 MHz



00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026A 0000
00027
00028
00029A 0000 30
00030A 0004 86
00031A 0006 3F
00032A 0007
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042A 0008 1A
00043A OOOA CC
00044A OOOD FD
00045A 0010 3C

.00046A 0012 20

AOOO
A002
A003
AOOO
AOOO
A001

0009
OOOC
8D OFFC
OC
09

10
CE05
A002
EF
FC

TTL
OPT

A SERCOM EQU
A MODRG1 EQU
A CMDREG EQU
A TXREG EQU
A RXREG EQU
A STATRG EQU

*

MC68661 ASYNCHRONOUS
S,LLE=82
$AOOO
SERCOM+2
SERCOM+3
SERCOM
SERCOM
SERCOM+1

MODE REGISTER 1 ADDRESS
COMMAND REGISTER ADDRESS
TRANSMIT REGISTER ADDRESS
RECEIVE REGISTER ADDRESS

*********************************************
* *
* THIS PROGRAM EXCERCISES THE MC68661 EPCI *
* AN INPUT FROM A CRT WILL WILL BE ECHOED *
* BACK TO THE CRT. *
* **********************************************
**********************************************
** VECTOR INITIALIZATION FOR IRQ. THIS
* ROUTINE IS FOR THE ASSIST09 MONITOR
* ONLY.
*

ORG
A VTRSWP EQU
A .IRQ .EQU

LEAX
A LDA

SWI
A FCB

$0000
9
12
$1000,PCR
#. IRQ
VTRSWP

** MC68661 INITIALIZATION ROUTINE.
* ASYNCRONOUS MODE, 2 STOP BITS, 16X EXT
* CLOCK.

#$10
#$CE05
MODRG1
#$EF
LOOP

MASK IRQ
REGISTER INITIALIZATION
LOAD MODE REG 1 AND CMD REG.
CLR IRQ MASK AND WAIT FOR IRQ

A
A
A
A LOOP

0010

ORCC
LDD
STD
CWAI
BRA



PAGE 002 SERIAL .SA:1 MC68661 ASYNCHRONOUS TEST
00048 *00049 *********************************************
00050 * *00051 * INTERRUPT HANOLER. INPUTS CHARACTERS THEN *
00052 * ECHOS THEM BACK THROUGH THE TRANSMITTER. *00053 * *00054 *********************************************
00055 *00056A 1000 ORG $1000
00057A 1000 1A 10 A ORCC #$10 MASK IRQ
00058A 1002 B6 A001 A LOA STATRG
00059A 1005 84 02 A AND A #$02 RECEIVER INTERRUPT?
00060A 1007 26 01 100A BNE INPUT
00061A 1009 3B RTI IF NOT RETURN AND WAIT
00062A 100A F6 ADOO A INPUT LOB RXREG LOAD INPUT CHARACTER
00063A 1000 F7 AOOO A STB TXREG OUTPUT CHARACTER
00064A 1010 3B RTI RETURN AND WAIT FOR NEXT CHAR
00065 END
TOTAL ERRORS 00000--00000
TOTAL WARNINGS 00000--00000

.IRQ OOOC CMDREG A003 INPUT 100A LOOP 0010 MODRG1 A002 RXREG AOOO
SERCOM AOOO STATRG A001 TXREGAOOO VTRSWP 0009

FIGURE 2 - MC68661 Asynchronous Test, Software
(Concluded)



Interfacing the MPCC with the MC6809 MPU is slightly
more involved than the EPCI. The MPCC transfers data on
a 16-bit data bus; however, when the BYTE pin is asserted,
data transfers for the 16-bit internal registers are accomplish-
ed one byte at a time (assuming DOis connected to D8, DI to
D9, etc.). Refer to Figure 3. Data transfers are accomplished
in the following MC6809 sequence: address and R/W are
asserted immediately after CE is asserted (CE is derived from
address decoding, thus the delay is inherent). For a read,
DBEN is asserted and an access time later, the proper data
appears on the bus specified by the register addressed. For a

write, data must be valid 50 nanoseconds prior to the asser-
tion of DBEN. The DBEN signal is generated by ANDing E
with inverted Q. With this pulse, data easily meets the 50
nanosecond setup time. Refer to the timing diagram in
Figure 4 for further clarification. For the MC68652 1 MHz
part, DBEN minimum is specified as 250 nanoseconds;
however, the E.Q signal for a 1 MHz MC6809 will be
somewhat shorter than this. Several I MHz parts were tested
using the design of Figure 3 and all ran successfully at 1.5
MHz; however. since it is not good design practice to violate
a minimum specification, MRDY clock stretching for the

lr
MCl4411 DC to

} Connect
~~15M

2 MHz r TxC TxSO
Baud Rate to SerialL... RxC RxSIDO Generator Interface

Dl MC68652
D2 MPCC

D3 8T97 RxSA ..£Z....,
D3 D3 RxSA DB15

D2 TxU TxU DB14 ~D4 D2
Dl RxA

RxA DB13 ~D5 Dl
D6 DO TxA TxA DB12 ~DO
D7 EN4 EN2 +5V DBll ~

R/W

~
L DB10 ~

74LS05 DB9 PA Byte ~""l DB8
MC6809 I "' CE

MPU ~

H> R/W DB7 ~
A3 DB6 ~
A2 A2 DB5 ~
Al

."l ( Al DB4 ~
AO '1 t AO DB3 ~"1 AG-A2 t DB2 ~

E , E·Q DBl ~I'... I J
DBEN

DBO
J.l?Q.J

Q
+5V Q +5V

~'3.3 k 74LSa:,., (For Test MM
iRCi ""l I Program Only)

f5V
3.3 k 74LS05 TxBE

FIRQ I'... "l RxDA
RESET RESET

TxE

74LS74 - RxE
+5V +5V

74LS08
CS from R/W E 74LS10

Address Decoder
A3~

D Q D Q

CS > >
RESET CLR T(From Reset Circuit! T Dl

DO



I.
\"'------_/

.1
\_-

I

-----:\_-----_/
: k-tDBENH~

: ~ ~-
I I I

_A_d_dr_,_R/_W ~ A"",=, "W""o I :
I I I

Y

l I I
_CE • l I

l- tDDO--1 I J tDHW k
: ~ I Data Valid ~

I I
I.- too -+l .•.1 tDHR ~

I

E·OIDBEN) \

MC68652__J MC6ll652.-2 MC6ll652.-2
Parameter Description MC6809 MC68A09 MC68B09

Min Max Min Max Min Max
tcvc MPU E Clock Cycle Time 1 /,s 667 ns 500 ns

tDBENH Data Bus Enable High Time IE·Q) MPU 180 ns 230 ns 95 ns 130 ns 120 ns

tDBENH DBEN High Time Required by MPCC 250 ns 200 ns 200 ns

tDDO Data Delay from 0 MPU !Includes Delay from 74LS04 for 180 ns 120 ns 90 nso Generation)

too Data Valid Delay from MPCC 200 ns 170 ns 170 ns

tDSR tDBEN - too IMPCC) Data Setup Time 50 ns 30 ns 30 ns

tDSR Data Setup Time Required by MPU 80 ns 60 ns 40 ns

NOTES:
1. All required MPCC setup times IAddress, R/W, Data) are met by MC6B09 at all clock speeds.
2. MRDY clock stretching is required to meet the tDBENH and tDSR specifications in all three cases.
3. Q occurs 20 ns after 0 174LS04 propagation delay).



MC6809 may be necessary. For the faster MC68652-2 part,
DBEN minimum is 200 nanoseconds; however, at 2 MHz the
EoQ signal from the MC6809 is less than this. Again, all
MC68652-2 parts tested ran successfully at 2.5 MHz;
however, in this case MRDY stretching is recommended. The
MC6809 MPU data sheet contains information for the
MRDY signal generation. Future MC68652 devices will pro-
vide for faster DBEN specifications to allow operation
without MRDY.

Interrupt generation may be accomplished by using the
RxDA and TxBE pins from the MPCC. It should be noted
that these pins are NOT open drain and must be buffered
(and inverted) with a 74LS05 open collector inverter before
being connected to the MC6809 MPU.

The MPCC utilizes several pins to relay information con-
cerning the transmitter and receiver state (e.g., transmitter
under run - TxU, receiver status available - RxSA,
receiver and transmitter active - RxA, TxA). While these
pins are all possible sources of interrupts, a register contain-
ing this same information provides for a much cleaner inter-
rupt handler. Also, there are two pins provided to enable the
receiver and the transmitter (RxE, TxE). The schematic
diagram shown in Figure 3 contains hardware constructed
from an MC8T97 and a 74LS74 dual D latch. The MC8T97
allows the MPU to directly read the status of the RxSA,
TxU, RxA, and TxA pins (on OOD3). The 74LS74 allows the
MPU to write and enable either the transmitter or the
receiver via the TxE and RxE pins (on DG-Dl). Addressing
for this register is specified as $XXX8 (read or write) and
follows directly after the internal MPCC register addressing.
(See the software listing in Figure 5 for register bit positions.)

A flowchart for a BOP transmission test is included in
Figure 6. The software listing of the drivers is shown in
Figure 5. This routine transmits up to 50 bytes stored in the
MESSGE buffer to the 50 byte INPUT (receive) buffer. The
number of bytes to be transmitted is stored in BYTECT. This
program uses the RxDA pin to generate an FIRQ if the
receiver is full and the TxBE pin to generate an IRQ if the
transmitter is empty. By using both of these pins, the IRQ (or
FIRQ) service routine does not need to determine the source
of the interrupt, thus providing for mode efficient interrupt
handling. Once the program has completed execution, it
prints "Transfer Complete" if transmission was successful
or "Receiver Error Occurred" if a receiver overrun was
detected. No check is made for transmitter underrun or CRC
error. The CRC may be specified by storing the proper code
in the Parameter Control Sync/ Address Register (high byte).
If CRC is used, provision should be made to read the RERR
bit (bit 15 is the receiver Data/Status Register) to determine
if correct data transfer has occurred.

SUMMARY
The MC6809 MPU, when interfaced with the MC68661

and/or the MC68652, yields a highly efficient data com-
munications system. The powerful MC6809 instruction set
allows for minimum software overhead, thus reducing pro-
cessor time required to operate the communications link. The
MPCC and the EPCI support virtually any existing com-
munications protocol, therefore allowing the designer flex-
ibility even after the hardware portion of the system is com-
pleted.



00001
00002
0eee3
0eee4
ee005
eeee6
e0ee7
00008
eefle9
0001e
e0ell
eee12
eee13
0ee14
0ee15
eee16
00017
0ee18
ee019
e0e2e
0e021
eee22
0ee23
eee24
eee25
0e026
e0e27
e0028
e0e29
00030
00e31
00032
eee33
eee34
eee35
eee36
eee37
e0e38
eee39
eeMe
0ee41
eee42
0ee43
eee44
00e45
0ee46
0ee47
eee48
e0e49
eee5eA 6Dee
00051A 6D0e
0e052A 6De2
eee53A 6D34
eee54A 6D35
ee055A 6D36
eee56A 6D69
0ee57A 6D6B
eee58A 6D8F

ceee
cee1
ce02
cee3
cee4
cee5
cee7
ce08

Fe15
Fe24
Fe27

0ee2
ee32
eel'll
e0e1
ee33
eA
2e
2e

TTL MC68652 BOP TEST PRO~RAM
OPT S,LLE=85,ABS

* THIS PROGRAM TESTS THE MC68652.
* MPCC BASE ADDRESS IS $C000. STATUS FLAGS ARE
* AT $C008 READ (SEE BELOW). RX, TX ENABLE ARE AT *
* $C008 WRITE. TilE MPCC SHOULD BE IN THE MAIN- *
* TANENCE MODE. (FIRQ=RXDA,RXSA; IRQ=TXBE) *

bit 3 bit 2 bit 1 bit e

[~;~~::][~~;;;~[;~~~f;~][;~~;~]
READ STAUS REGISTER (STATFG=$Cee8)

(BITS 4~7 ARE NOT USED)

* bit 3 bit 2 bit 1 bit e *

~ [~~~~~~~][~~~;~~~][;~~~~;~][~~~;~]~
* WRITE STATUS REGISTER (STATFG=$Cee8) *
* (BITS 2-7 ARE NOT USED) ****************************************************
*
*

A RXREG EQU $ceee RECEIVE HOLDING REGISTER
A RXSTAT EQU RXREG+1 RECEIVE STATUS REGISTER
A TXREG EQU RXREG+2 TRANS HOLDING REGISTER
A TXSTAT EQU RXREG+3 TRANS STATUS REGISTER
A PCSARL EQU RXREG+4 CONTROL REGISTER
A PCSARH EQU RXREG+5 CONTROL REGISTER
A PCRII EQU RXREG+7 CONTROL REGISTER
A STATFG EQU RXREG+8 (SEE ABOVE)

** EX BUG I/O ROUTINE EQUATES
*

A XINCHN EQU $Fe15 CHARACTER INPUT ROUTIN~
A XPDATA EQU $Fe24 CR, LF OUTPUT STRING
A XPDAT1 EQU $Fe27 STRING OUTPUT

*
* RAM WORK SPACE
*

ORG $6Dee
A INPTPR RMB 2 TEMP LOC. INPUT BUFFER POINTER
A MESSGE RMB 5e BYTES TO BE SENT
A CNTR RMB 1 NUMBER OF BYTES SENT
A BYTECT RMB 1 NUMBER OF BYTES TO BE TXFERED
A INPUT RMB 51 BYTES RECEIVED
A MESGe FCB $eA,$eA
A FCC / MC68e9-MC68652 DATA COMMUNICATIONS/
A FCC / TEST LINK./



00059A 609A
00060A 609C00061A 60B2
00062A 60B300063A 60B8
00064A 6007
00065A 60EA
00066A 60EB
00067A 6E0B
00068A 6E0C
00069A 6E0F
00070A 6E27
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080A
00081A
00082A
00083A
00084A
00085A
00086A
00087A
00088A
00089A
00090A
00091A
00092A
00093A
00094A
00095A
00096A.
00097A
00098A
00099A
00100A
00101A
00102A
00103A
00104A
00105A
00106A
00107
00108
00109
00110
00111
00112
00113
00114A
00115A
00116A

7000
7000
7004
7007
700A
7000
7010
7013
7015
7017
7018
701A
7010
701F
7021
7024
7027
702A
7020
7030
7033
7035
7036
7038
703B
703E
7041

7044 108E 6036
7048 10BF 6000
704C 7F 6034

10CE
8E
BO
8E
BO
BO
80
C6
30
34
BO
80
AB
B7
F6
8E
BO
8E
BO
A7
5A
26
8E
BF
8E
BF

7500
6069
F024
60B3
F024
F015
30
0A
04
F015
30
E0
6035
6035
60EB
F024
6002
F015
80

F8
7090
FFF6
7068
FFF8

A

A
A

A MESGI
A
A
A
A MESG2
A
A MESG3
A
A

FCB
FCCFCB
FCBFCC
FCC
FCB
FCC
FCB
FCB
FCC
FCB

$00.$0A
I REV 1.4 11-4-81 Twi
$04
$.00 $0A $0A.$0A.$0A7 ENTER NUMBER OF CHARACTERS Tol
I TRANSMIT (01-50): I
$04
I ENTER CHARACTERS TO TRANSMIT: I
$04
$0A,$0A,$07
I RECEIVEO CHARACTERS: I
$04

********************************************
* PROGRAM ENTRY POINT *
* THIS ROUTINE PRINTS THE INITIAL HEAOER *
* ANO PROMPTS FOR THE "BYTECT" INPUT ANO *
* CHARACTER "MESSGE" INPUT *
*******************************************
* ORG

A START LOS
A LOX
A JSR
A LOX
A JSR
A JSR
A SUBA
A LOB

MUL
PSHS
JSR
SUBA
AOOA
STA
LOB
LOX
JSR
LOX
JSR
STA
OECB
BNE IN
LOX #RCVE
STX $FFF6
LOX #TNSMIT
STX $FFF8

*******************************************

A
A
A
A
A
A
A
A
A
A IN
A

7030
A
A
A
A

$7000
#$7500
#MESG0
XPOATA
#MESGI
XPOATA
XINCHN
#$30
#10

B
XINCHN
#$30
,S+
BYTECT
BYTECT
#MESG2
XPOATA
#MESSGE
XINCHN
,X+

OUTPUT TRANSFER # REQUEST
INPUT BYTECT NUMBER (HIGH)
ASCII TO BCO
CONVERT BCO TO BINARY

INPUT BYTECT NUMBER (LOW)
ASCII TO BCO
AOO HIGH ANO LOW ANO RESTORE STACK
CONVERSION COMPLETE SAVE VALUE
COUNTER FOR CHARACTER INPUT
PRINT CHARACTER INPUT PROMPT

INPUT TRANSMIT CHARACTERS
SAVE IN "MESSGE" BUFFER
B CONTAINS BYTE TRANSFER COUNT

* INITIALIZATION ROUTINE FOR THE MC68652. *
* ********************************************
*
*

LOY
STY
CLR

UNPUT
INPTPR
CNTR

INITIALIZE INPUT BUFFER
SAVE IN TEMP STORAGE
INIT. TXMIT LOOP COUNT



0011 7A 704F 7F
00118A 7052 86
00119A 7054 B7
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133A 7057 7C
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143A 705A 86
00144A 705C B7
00145A 705F 86
00146A 7061 B7
00147
00148A 7064 3C
00149A 7066 20
00150
00151
00152
00153
00154
00155
00156
00157
00158A 7068 1A
00159A 706A B6

" 00160A 706D B1
00161A 7070 27
00162A 7072 8E
00163A 7075 E6
00164A 7077 F7
00165A 707A 7F
00166A 707D 7C
00167A 7080 3B
00168
00169
00170
00171
00172
00173
00174

C007
07
C005

PCRH
#$07
PCSARH

8-BIT WORDS
NO CRC
SET MODE

CLR
LDA
STA

• THE NEXT INSTRUCTION CAUSES THE
• TXMITTER TO SEND ONE FILL
• CHARACTER AT THE END OF THE
• MESSAGE. THE RECEIVER WILL NOT
• PICK UP THIS CHARACTER. THIS
• IS DONE TO INSURE SYNCHRONIZATION
• OF THE TWO ROUTINES RUNNING FROM
• ONE PROCESSOR. IN A REAL COMM
• SYSTEM RUNNING WITH MORE THAN"ONE
• PROCESSOR THIS FILL WILL NOT
• BE NEEDED.
******

A INC BYTECT
*********************************************
• MAIN PROGRAM •
• TSOM IS SET TO SEND INITIAL FLAG. •
• TX AND RX ARE TURNED ON. TSOM CAUSES •
• THE FIRST IRQ. SUCCESSIVE IRQ'S AND FIRQ'S·
• ARE TAKEN BY THE CWAI INSTRUCTION. CWAI •
• COULD BE REPLACED BY A USER PROGRAM AS •
• LONG AS INTERRUPT MASKS ARE NOT SET. •
*********************************************

01
C003
03
C008

LDA #$01
STA TXSTAT
LDA #$03
STA STATFG
PROGRAM COULD
CWAI #$AF
BRA OVER

SET TSOM TO SEND FLAGS
TO START TRANSMISSION
TURN ON RECEIVER
AND TRANSMITTER

GO HERE• USER
A OVER

7064

• TRANSMITTER IRQ HANDLER •
• CHECKS FOR NUMBER OF BYTES TRANSMITTED •
• AND THEN OUTPUTS A CHARACTER FROM THE •
• MESSAGE BUFFER. IF ALL SENT THIS ROUTINE·
• SETS TEOM FOR FINAL FLAG TRANSMISSION •
********************************************

50
6D34
6D35
0F
6D02
86
C002
C003
6D34

#$50
CNTR
BYTECT
TXEND
#MESSGE
A,X
TXREG
TXSTAT
CNTR

GET CHARACTER TO OUTPUT
OUTPUT IT
CLEAR TSOM
INDICATE NUMBER SENT
RETURN TO MAIN PROGRAM

A TNSMIT
A
A

7081
A
A
A
A
A

ORCC
LDA
CMPA
BEQ
LDX
LDB
STB
CLR
INC
RTI

• NOW SET TEOM FOR FINAL FLAG
• TRANSMISSION. WHEN FLAG IS
• ALL SENT TXBE IRQ WILL CAUSE
• THE PROGRAM TO CONTINUE FROM
• THE SYNC INSTRUCTION.
****



l!ll!l175A
l!ll!l176A
l!ll!ll77A
l!ll!l178A
l!ll!l179A
l!ll!l18l!lA
l!ll!l181A
l!ll!l182
l!ll!l183
l!ll!l184
l!ll!l185
l!ll!l186
l!ll!l187
l!ll!l188
l!ll!l189A
l!ll!l19l!lA
l!ll!l191A
l!ll!l192A
l!ll!l193A
l!ll!l194A
l!ll!l195A
l!ll!l196A
l!ll!l197A
l!ll!l198A
l!ll!l199A
l!ll!l2l!ll!lA
l!ll!l2l!llA
l!ll!l2l!l2A
l!ll!l2l!l3A
l!ll!l2l!l4A
l!ll!l2l!l5A
l!ll!l2l!l6
l!ll!l2l!l7
l!ll!l2l!l8
l!ll!l2l!l9
l!ll!l21l!l
l!ll!l211
l!ll!l212
l!ll!l213
l!ll!l214
l!ll!l215A
l!ll!l216A
l!ll!l217A
l!ll!l218A
l!ll!l219A
l!ll!l22l!lA
l!ll!l221A
l!ll!l222A
l!ll!l223A
l!ll!l224
l!ll!l225
l!ll!l226
l!ll!l227
l!ll!l228
l!ll!l229
l!ll!l23l!l
l!ll!l231A
l!ll!l232A

7l!lB1 C6
7l!l83 F7
7l!lB6 13
7l!l87 7F
7l!l8A B6
7l!l8C B7
7l!l8F 3B

7l!l9l!l1A
7l!l92 34
7l!l94 B6
7l!l97 85
7l!l99 27
7l!l9B B6
7l!l9E 85
7l!lAl!l27
7l!lA2 85
7l!lA4 26
73A6 2l!l
7l!lA8 B6
7l!lAB ll!lBE
7l!lAF A7
7l!lB1 ll!lBF
7l!lB5 35
7l!lB7 3B

7l!lB8 7F
7l!lBB ll!lBE
7l!lBF 86
7l!lC1 A7
7l!lC3 8E
7l!lC6 BD
7l!lC9 BE
7l!lCC BD
7l!lCF 16

Cl!ll!l3
l!l2
Cl!ll!l8

A TXEND LDB
A STB

SYNC
A CLR
A LDA
A STA

RTI

ORCC
PSHS
LDA
BITA
BEQ
LDA
BITA
BEQ
BITA
BNE
BRA
LDA
LDY
STA
STY
PULS
RTI

TXSTAT
#$l!l2
STATFG

t$5l!l
A,B,Y
STATFG
t$l!l8
STATOK
RXSTAT
#$l!lA
STATOK
#$l!l8
ERROR
RXEND
RXREG
INPTPR
l!l,Y+
INPTPR
A,B,Y

WAIT FOR TXBE IRQ
THEN CLEAR TXBE
TURN OFF TXMITTER

****************.*.***********************
* RECEIVER FIRQ HANDLER *
* STORES RECEIVED CHARACTERS IN THE *
* "INPUT" BUFFER. IF AN END FLAG IS RE- *
* CEIVED THIS ROUTINE DETERMINES IF THE *
* MESSAGE WAS VALID. *
******************************************

, MASK FIRQ AND IRQ
SAVE REGISTERS FOR RETURN
CHANGE IN STATUS?

NO CHANGE, CONTINU~
DETERMINE CAUSE OF STATUS CHANGE
OVERRUN OR EOM?
IF NEITHER CONTINUE

OVERRUN OCCURED
EOM SET ROUTINE FINISHED.
INPUT CHARACTER
FIND NEXT LOC. IN INPUT BUFFER
SAVE CHARCTER THERE

RECEIVER END ROUTINE
INDICATES GOOD TRANSMISSION OF DATA.
NORMAL EXIT BY RTI. FOR SIMPLICITY EXIT
LBRA.

**********************************************
*
*Cl!ll!l8

6Dl!ll!l
l!l4
A4
6El!lC
Fl!l24
6D36
Fl!l27
FF2E

A
A
A
A
A
A
A
A

7l!ll!ll!l

RXEND CLR STATFG TURN OFF RECIEVER
LDY INPTPR
LDA #$l!l4 STORE AN EOT AT END OF BUFFER
STA ,Y SO THAT STRING MAY BE PRINTED OUT
LDX #MESG3
JSR XPDATA OUTPUT "RECEIVED CHARACTERS: "
LDX #INPUT
JSR XPDAT1 OUTPUT CHARACTERS
LBRA START RUN PROGRAM AGAIN

***********************************************
* ** ERROR HANDLER *
* THIS ROUTINE REPORTS RECIEVER ERRORS ONLY *
* NO ACTION IS TAKEN TO CORRECT THE ERROR. *
* NORMAL EXIT SHOULD BE BY RTI. *
**************************************.********

5l!l
26
CI2Il!l8
08
I2ID
Cl!ll!ll
l!lA
l!l6
1218
2C
1l!l
Cl!ll!ll!l
6Dl!ll!l
Al!l
6DI2II2I
26

A RCVE
A
A
A

7121A8
A
A

7l!lA8
A

7l!lD2
7l!lB8

A STATOK
A
A
A
A



PAGE 005 BOPREV5 .SA:1 MC68652 BOP TEST PROGRAM
00233A 70D8 7F C008 A CLR STATFG TURN OFF RCVER
00234A 70DB 16 FF22 7000 LBRA START RUN PROGRAM AGAIN
00235A 70DE 52 A EMSG FCC /RECEIVER OVERRUN ERROR OCCURED./
00236A 70FD 0A A FCB $0A,$0D,$04
00237 END
TOTAL ERRORS 00000--00000
TOTAL WARNINGS 00000--00000

BYTECT 6D35 CNTR 6D34 EMSG 70DE ERROR 70D2 IN 7030 INPTPR 6D00
INPUT 6D36 MESG0 6D69 MESG1 6DB3 MESG2 6DES MESG3 6E0C MESSGE 6D02
OVER 7064 PCRH C007 PCSARH C005 PCSARL C0el4 RCVE 709el RXEND 70B8
RXREG C0el0 RXSTAT C0el1 START 7000 STATFG Cel08 STATOK 7elA8 TNSMIT 7

FIGURE 5 - MC68652 BOP Test Program
. (Concluded)



Initialize MPCC
Byte Count

and
Word Length

No CRC
Operating Mode

Set
Transmitter

Start of
Message

Turn On
Transmitter

and
Receiver

Wait for
Transmitter

IRQ or
Receiver

FIRQ

Get
Received
Character

and
Store It

Restore
Registers

and
Return

Print
Transfer

Complete

Print
Error

Message

Get Next
Byte and
Transmit

It

Clear
TSOM Bit

and Increment
Count

Mask
IRQ and

FIRQ

Set TEOM Bit
and Wait for

IRQ to
Indicate

Sent

Clear TEOM
Bit and

Turn Off
Transmitter



AN-8S0

MULTI-PROCESSOR CONTROLLER
USING THE MC6809E AND

THE MC68120
Prepared by

David L. Ruhberg
and

Michael C. Wood
Microprocessor Applications Engineering

As the demand for system performance increases, the
design engineer is faced with the task of providing additional
throughput. To obtain the increased performance, system
flexibility should provide for additional expansion without
the need for total redesign of the existing system. Two alter-
natives are available to the designer in developing any
microprocessor system: single processor and multi-processor.
This application note investigates both alternatives and
describes a basic multi-processor system using Motorola's
MC6809E and MC68120.

The single processor system is the more common approach
in use, since one micro processing unit (MPU) typically has
been able to handle the system performance requirements.
Hardware and software are both simpler with only one MPU
on the bus; however, as system performance requirements
continue to increase, the design engineer is faced with the job
of either upgrading the system or redesigning a complete
system. The characteristics of a single processor system
should be reviewed before jumping into another single pro-
cessor system redesign. Basically, the total growth of the
single processor system is limited to the throughput rate of
the MPU, so all future tasks and expansions must be taken
into account at design time to avoid another complete system
redesign. An MPU capable of handling all of the anticipated
expansion must be selected. Thus, the MPU will not perform
anywhere near its rated peak efficiency until the system is ex-
panded. In any area where rapid system expansion is an-
ticipated, the single processor system is a temporary solution
at best.

The multi-processor configuration can eliminate the ex-
pansion problems which are present in a single MPU design.
An interface containing a bus arbitrator and data transfer
area common to both MPU buses could keep the buses
separate and also allow the two systems to communicate.
Thus, the simplicity of single bus systems can be maintained

while obtaining the expansion capabilities of the multi-
processor system. By adding more of these interfaces, the
system expansion occurs by simply adding peripherals to an
MPU bus. Two features utilized by the Motorola MC68120
Intelligent Peripheral Controller (IPC) provide the bus ar-
bitrator and data transfer area for a multiple MPU system
just described. These features are six semaphore registers and
128 bytes of dual-ported RAM. With the MC6809E MPU
operating the system bus (master) and the MC68120 contain-
ing the system bus interface, as well as the CPU controlling
the local bus (slave), the system now has the best features of
both the single and multi-processor approaches.

TRADITIONAL MPU MULTI-PROCESSING
One of the most common multi-processor schemes has

been a bi-phase technique in which both processors operate
from opposite phases of a system clock (see Figure I). The
memory and peripherals are accessed during each MPU clock
high time. This scheme has the benefit of lower costs due to
the presence of only one bus; however, some of the cost sav-
ings may be consumed in circuitry required to synchronize
the clocks and in buffers required to prevent bus contention.
In order to debug the bi-phase system, most of the hardware
and software in both of the MPU systems must be working.
Also, care must be taken when all resources are available to
both processors, as in this bi-phase configuration, to avoid
inadvertently clearing status flags or making changes in
RAM. The major drawback to this system is that the system
is limited to two MPUs.

The multiple bus configuration can simplify or eliminate
most of the constraints and limitations of the bi-phase ap-
proach (see Figure 2) provided a simple bus arbitration
scheme is available. The debugging of this type of system is

, simplified since one bus can operate independent of the
other, except when the buses need to communicate with each



Memory
and

Peripherals

MPUl MPU2
Address and Address and

MPUl Data Bus Data Bus MPU2

MPUl I--- r-- - ~ MPU2
Clock Bus Arbitrator Clock

or Interface
Circuitry

"

MPUl MPU2
Memory Memory

and and
Peripherals Peripherals



other. This configuration also physically eliminates any
chance of one processor accidently clearing any flags in the
nonshared resources of the other system. There is no need to
determine if the other processor is using the bus for more
than one cycle (read-modify-write) since each processor has
its own bus, thus eliminating any chance of bus contention.
The bi-phase approach is limited to two processors, whereas
this system is limited only by the throughput of the system
(master) processor.

DESCRIPTION OF THE BASIC SYSTEM
Using the multiple bus scheme, the MC6809E-MC68120

multi-processor pair can be used in many different applica-
tions. One particular application could be a system in which
the multi-processor pair is responsible for holding the
pressure and temperature in a given system within certain
limits (see Figure 3). To simplify matters, the application
discussed here concentrates only on the MC6809E and
MC68120 interface.

HARDWARE
The MC6809E MPU is one of the most advanced 8-bit

microprocessor units on the market today. The M6809E (see
Figure 4) contains two l6-bit index registers, two 16-bit in-
dexable stack pointers, two 8-bit accumulators (which can be
concatenated to form one 16-bit accumulator), and a direct

page register that allows the direct addressing mode to be
used throughout memory.

The basic instructions of any computer are greatly en-
hanced by the presence of powerful addressing modes. The
M6809E has one of the most complete sets of addressing
modes available on any microprocessor today. For example,
the M6809E contains 59 basic instructions; however, due to
these addressing modes, the M6809E will recognize 1464 dif-
ferent variations of the basic instructions. It features an ex-
ternal clock input wllich facilitates synchronizing the pro-
cessor to an overall multi-processor system. Other hardware
features include three-state control (TSC) inputs for control
of internal bus buffers and the advanced valid memory ad-
dress (AVMA) allows efficient use of common resources in a
multi-processor system. Two outputs which facilitate multi-
processor configurations are the last instruction cycle (LIC)
output and the BUSY output. The LIC output indicates
when an opcode fetch will occur. The BUSY output is a
status line that indicates the need to hold off the bus transfer
for the next bus cycle. The M6809E also contains three
prioritized interrupts' (NMI, IRQ, FIRQ) and a SYNC
acknowledge output which allows synchronization to an ex-
ternal event. These features make the MC6809E an easy
MPU to incorporate into a multi-processor system.

The MC68120 Intelligent Peripheral Controller (lPC) is a
general purpose mask-programmable peripheral c,?ntroller



Instruction
Register

FIRG

l""i'm
L1C
AVMA
R/IN
TSC

designed to simplify the interface between two MPU buses.
The MC68120 IPC is a single chip microcomputer containing
the hardware elements necessary to interface multiple pra-
cessors into one system. These hardware elements consist of
dual-ported RAM and semaphore registers. The dual-ported
RAM provides a means for the IPC, and other devices inter-
connected on a system bus, to exchange data without affec-
ting devices on a local bus. Six semaphore registers are used
as a software tool in arbitrating between the system and the
local bus. The IPC also contains 2K of mask-programmable
ROM which allows the user to provide customized firmware
for his application. A full-duplex, asynchronous, serial com-
munications interface (SCI) with two data formats are
available at a variety of baud rates. A I6-bit programmable
timer consisting of a free-running counter which is in-
cremented by the MPU E-clock is also incorporated in the
IPC. The IPC also has up to 21 110 lines available, depen-
ding on which of the on-chip resources are being used. A
block diagram of the MC68120 IPC is shown in Figure 5.

In the application discussed here, the MC6809E-MC68 120
multi-processor pair is responsible for monitoring a
temperature and pressure sensitive system and holding it
within safe operating limits. The MC68120 is responsible for
monitoring the analog-ta-digital (AID) converters (such as
Motorola's MCI4443) which reflect the temperature and

pressure at various points within the system. The MC68120
checks the data and, if it is not within a desired range, signals
the MC6809E and passes the data. The MC6809E will then
take the appropriate action. The implementation, as shown
in Figure 6, consists of only one MC6809E and MC68120 in-
terface although many more can be added in a similar man-
ner. The system bus (MC6809E), as implemented, has IK of
RAM, 2K of EPROM, and the MC68120 on it. The
MC68 120 is operated in an expanded multiplexed mode with
2K of RAM, 2K of EPROM, and the demultiplexing latch
(SN74LS373) on the bus. The MC68120 also has an RS-232
interface connected to the transmit and receive pins on the
SCI to utilize the resident monitor in the ROM on the
MC68120. The detailed schematic of the implemented hard-
ware is shown in Figure 7. The resident monitor allows the
user to examine internal registers and the dual-ported RAM
from the local bus with a terminal, as well as to develop and
modify small programs. This ability greatly enhances the
testability of the system.

SOFTWARE
The software needed for transfer of information in the

multi-processor system is made much easier with the use of
the semaphore registers and dual-ported RAM, located in the



O •....NM'<;f CSNNNNNa.. a.. a.. a.. a..
SR/W

Z~~~~
rmcr:J<

i=Ou«« <OO}rU)~~ SOl
S02

~ ~~~ S02 ::
S03 "
S04 0- ~
S05

0
<Il

S06 E
SOl ~

</)

HALT/BAINMI
IRQl

RESET

{
'" I.OLD q MN •....ol3:l<JlExpanded Non-MultIplexed 0 0 0 0 0 0 0 0 a:. Q

{

"'l.OlDVMN..-O
Expanded Multiplexed e e e e e e e e 1~ ~

~~~~~~~~a:

'2 '2 '2 '2 '2 '2 '2 '2}

::<~~:l:~~:;::~ ~
LDVMN •....OcnOO~~:;(:i~:;:««

IPC. The dual-ported RAM provides a vehicle for transfer-
ring data between a system and local bus while keeping each
bus isolated. Semaphore registers are provided as a software
tool to arbitrate between shared resources such as the dual-
ported RAM or peripheral devices. The semaphore registers
may also be used to indicate that a task is in process or has
been completed.
Each semaphore register (as shown below) consists of a
semaphore bit (SEM, bit 7) and an ownership bit (OWN, bit
6). The remaining six bits (bO-b5) are not used and when
read, will read zeroes. The semaphore bits are test and set
bits with hardware arbitration during simultaneous accesses.
Basically, the semaphore bit is cleared when written and set
when read during a single processor access.

A single processor semaphore bit truth table is shown
below. During a write to a semaphore register, the data is
disregarded and the semaphore bit is cleared. However, dur-
ing a read, the data read from the semaphore bit can be inter-
preted as: 0 - resources are available, 1 - resources are not

available. Thus a write to any semaphore register clears the
semaphore bit and makes the associated resources
t, available. "

Org. Sem R/W Data Resulting
Bit Read Sem Bit

0 R 0 1
1 R 1 1
0 W - 0
1 W - 0

In passing data from the IPC to a system processor
through the dual-ported RAM, the semaphore registers can
be used to indicate to the system processor that data is ready.
The system processor can poll, for example, on semaphore I
and when data is ready, the IPC CPU will write to
semaphore I, thus clearing the semaphore bit. A simple poll-
ing routine for the system processor is shown below.
The system processor will always read a I in the semaphore
bit of semaphore register I until semaphore register I is writ-
ten to by the IPC CPU. This will clear the semaphore bit and

Chip
Select
Circuit

cause the system processor to jump to a program and get
data.

LOA
ANOA
BNE
BSR

Polling Routine

It may now be necessary for the IPC CPU to determine if
the system processor reads the data from the dual-ported
RAM in case more data needs to be sent. Another semaphore
register could be dedicated for this purpose or the same
semaphore register could be used again. Timing complica-
tions could arise when reads and writes of the same
semaphore register are occurring from both buses.- For exam-
ple, if the IPC CPU wrote to semaphore I to clear the
semaphore bit and then polls on semaphore I, the IPC could
set the semaphore bit before the system processor detected it
as clear. Therefore, to avoid an inadvertent set, a delay must
be incorporated in the program between the read and write of
the semaphore to guarantee that the semaphore bit was
detected clear by the system processor.

In token-passing applications, the ownership bits can be
used to simplify the procedure. The ownership bit is a read-
?nly bit that indicates which processor set the semaphore bit.

SEMPHl
1$80
LOOP
GETOATA

When the semaphore bit is set, the ownership bit indicates
which processor set it. When the semaphore bit is not set, the
ownership bit indicates which processor last set the
semaphore bit: OWN =0, the othe·r processor set it;
OWN = I, this processor set SEM. After reset, all
semaphores are set and the IPC owns all of them except
semaphore 2 which the system processor owns.

As mentioned earlier in the hardware section, this
MC6809E-MC68120 system monitors the temperature and
pressure in a typical system. Basically, the MC68120 ac-
cumulates and monitors the data. The data is transfeved to
the MC6809E either when the MC6809E requests it, at the
end of 12 hours, or if the data is out of the desired range. The
CPU on the local bus is responsible for reading the data from
the AID converters every 15 seconds. In this software, it is
assumed that the data is formatted in such a way that both
the temperature and pressure are available in one byte of
data as shown below.

MSB

TEMP
LSB

PRES

One Byte of Data from AID Converter
The 15 seconds are measured by using the internal timer of

the MC68120. The timer sets a flag every 50 ms and after the

flag has been set 300 times, the data is read. After the data is
read, it is stored in RAM and checked to determine if it is
within the desired range. If not within the desired range, an
error condition is realized. The MC68120 then pulls the IRQ
line to the MC6809E low and begins dumping all the data (15

Initialize:
1) Counters
2) Pointers

31 Timer

Service Timer
and Increment

15 Second
Counter

second increments) to the MC6809E through the dual-poned
RAM (SBD-EB). The MC68120 can hold up to 8 hours of
data in 15,second increments. The MC68120 1Ilillalso dump
its 15 second data upon request from the MC6809E. Every. 15
minutes, the MC68120 stores the value into dual-poned

Calculate Amount
of Data to
Transfer

Initialize
Dual Ported RAM

Pointer

Move Data and
Increment
Pointers

Decrement Blocks
to TxFR Counter
and Modify Pass

Data Flag Semaphore

Transfer
Remainder

of Data

Increment 15 Minute
Counter and Clear
15 Second Counter

Reset
Pointer to

Start of RAM

Set Error
Semaphore

and Pull
MC6809E IRQ

Low

Make MC6809E
IRQ High. Reset
Error Semaphore

Set Normal
RAM Dump
Semaphore

Pull MC6809E
IRQ Line

Low

Wait for
Request
to Clear

Make MC6809E
IRQ Line

High. Request
to Clear
IRQ CLR

Semaphore

Reset RAM
Pointer

and Clear
Counters

RAM ($80-AF)and if after 12 hours no error has occurred, it
will dump its 15 minute data to the MC6809E via the dual-
ported RAM. See Figures 8 and 9 for the MC68120
flowchart and software. When the MC6809E receives data, it
does two things: first it writes the data out to a printer via
another MC68120 (perhaps an MC68122 - Cluster Terminal
Controller; for more information, see the Motorola
MC68122 Data Sheet); and second, if the transfer is a result
of an error condition, the MC6809E stores the data in RAM.
After the MC6809E stores the data into RAM, the last bytes
of data are used to determine which way to modify the
temperature and pressure and then modifies them according-
ly (one increment up or down). These bytes are also used to
calculate the temperature and pressure differential. If the dif-
ferential exceeds a designated amount, the temperature and
pressure are modified again (turned up or down) to compen-
sate. (In this application, temper;ture and pressure are
assumed to be directly related - increasing one automatical-
ly increases the other.) The MC6809E then provides a signal
via a semllphore register which causes the MC68120 to clear
the IRQ line. The MC6809E also monitors an input from a
display panel in which the operator could ask for a listing of
15 second data. See Figures 10 and II for the MC6809E
flowchart and software. The implemented portion of the

MC6809E-MC68120 system is intended to show what is need-
ed in the basic system and demonstrate the modularity of the
software for expansion purposes. When the system requires
expansion, more MC68120s can easily be added to the.
MC6809E bus. The added MC68120s will use the same soft-
ware as the existing MC68120, and the MC6809E software
will only require slight modification to poll devices and
discern which MC68120 generated the low IRQ. The same
service routines may be used that are now in service.

EXPANDING THE BASIC SYSTEM
Specific computational tasking is one of the many func-

tions the MC68120 may perform. When time consuming
functions need to be implemented, parallel processing
becomes a viable alternative. This is easily accomplished by
putting several MC68l20s on the system bus. Simple data en-
cryption is one example of the tasks the M!=68120 can per-
form. Others could include calculating trigonometric func-
tions, fourier transforms, or other data processing needs.

Expansion of the basic system by using additional
MC68l20s requires a method of interrupt distinction. The
problem that arises when multiple interrupts are needed is
that most microprocessors have only one nonmaskable and
one (sometimes two) maskable interrupt inputs. Therefore,
in larger systems, a large polling routine must be used to
determine which device caused the actual interrupt.

An ideal situation would be to have a separate input pin on
the microprocessors for each interrupt required. However, it
is not feasible to devote pins on the processor exclusively for
this purpose when it can be done more economically with ex-
ternal devices.

By using the MC6828 Priority Interrupt Controller (PIC),
each interrupt input to the processor could be easily expand-
ed to have eight maskable interrupt inputs. The primary pur-
pose of the PIC is to generate a modified address to ROM in
response to prioritized inputs. The PIC assigns each interrup-
ting device a unique ROM location which contains the start-
ing address of the appropriate. service routine. After the
MPU detects and responds to an interrupt, the PIC directs
the MPU to the proper memory location. The PIC simplifies
multiple interrupt handling and interfacing it to the
MC6809E is easily done. They can also be cascaded to allow
more than eight interrupts.

When servicing slow peripherals such as low baud rate ter-
minals and printers, the MC68120 can relieve the host of
these time consuming chores, formulate the data into bigger
blocks, and allow the host to obtain the data all at once. The
MC68122 (Cluster Terminal Controller) is a prime example.

OVERCOMING SYSTEM PROCESSOR LIMITATIONS
When expanding the multi-processor system, the limiting

factor becomes the throughput of the system processor. The
system processor must be able to service all the MC68l20s in
a system and still have time to process the information it has
received. As this occurs, the tendency would be to shift more
and more of the processing responsibility from the system
processor towards the local processor. These MC68l20s
would then provide the system bus another level of
MC68120s leaving the system processor free as communica-
tions arbitrators for the lower level of MC68120s.

CONCLUSION
The MC6809E and the MC68120 utilize the semaphore

registers and dual-ported RAM to provide an efficient multi-
processor system that is easily expandable. This 'feature
allows the engineer to design a system that has the capability
of simple expansion and increases its time of usefulness.

00001
00002
00003

I 00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058

** THIS PROGRAM IS USED ON THE MC68120 IN A MC6809E
* MULTIPROCESSOR CONFIGURATION

0003
0001
0008
0009
OOOB

A P2DR EQU
A P2DDR EQU
A TCSR EQU
A TIMERR EQU
A TIMROC EQU

*******************************.*************************
* The 1ST 2 Semaphore Registers are cleared by the *
* MC68120 and set by the MC6809E *
* The next 2 Semaphore registers are cleared by the *
* MC6809E and cleared the by MC68120 *
* The last two are used as flags, to pass data between *
* the two MPUs *••**.*********
*

0017
0018
0019
001A
001B
001C
OOFO

A SEMPH1 EQU
A SEMPH2 EQU
A SEMPH3 EQU
A SEMPH4 EQU
A SEMPH5 EQU
A SEMPH6 EQU
A WHNO EQU

*

$17
$18
$19
$lA
$lB
$lC
$FO
$F1

$1780

$1782

$EBOO
$1783

$1787
$1789

$178B
$11

$CC

$00

$01

$178D
$EB80

PORT 2 DATA REGISTER
PORT 2 DATA DIR. REG.
TIMER CONTROL & STAT. REG.
READ TIMER COUNTER REGISTER
TIMER OUTPUT COMPARE REG.

REG 1 (ERROR SITUATION)
REG 2 (NORMAL RAM DUMP)
REG 3 (REQUEST FOR DATA)
REG 4 (IRQ CLR)
REG 5 (PASS DATA
REG 6 (PASS DATA
NUMBER OF BLOCKS

(1 byte wide)
REMAINDER OF BYTES TO BE

rRANSFERRED (1 byte wide)
15 SECOND COUNTER REGISTER

(2 bytes)
15 MINUTE COUNTER REGISTER

(1 bytes) I

TRANSDUCER INPUT LOCATION
START DATA POINTER

(2 bytes-for RAM)
END DATA POINTER

(2 bytes-for RAM)
TRANSMIT RAM SIZE (2 BYTES)
TEMPORARY ADDRESS STORAGE

(2 bytes)
NORM. RAM DUMP POINTER (2 BYTES)
TXDUCER DATA SHOULD BE ABOVE

THIS VALUE
TXDUCER DATA SHOULD BE BELOW

THIS VALUE
VALUE FOR PORT 2 TO PULL '09

IRQ LOW
VALUE FOR PORT 2 TO PULL '09

IRQ HIGH
TEMP RAM FOR DATA ADDRESS(2 bytes)
END OF DATA

SEMPH
SEMPH
SEMPH
SEMPH
SEMPH
SEMPH
WHOLE

FLAG)
FLAG)
60 BYTES

00F1

1780

A TXDCR EQU
A SDPTR EQU

*

1787
1789

A TXRMSZ EQU
A TEMP EQU

*A NRMPTR EQU
A LOW EQU

*

0000

0001

178D
EB80

A FROM EQU
A TO EQU

PAGE 002 MLTPRCA .SA:l

00059 *00060A E800 ORG $E800
00061 *
00062 * INITIALIZATION ROUTINE
00063 *
00064A E800 8E 17FF A LDS #$17FF INIT. STACK
00065A E803 CE 0000 A LDX #0 CLEAR COUNTER REGS.
00066A E806 FF 1780 A STX SECCTR 15 SECOND COUNTER REG.
00067A E809 FF 1782 A STX MINCTR 15 MINUTE COUNTER REG.
00068A E80C CE 1000 A LDX #$1000 INIT. START DATA POINTER
00069A E80F FF 1783 A STX SDPTR
00070A E812 FF 1785 A STX EDPTR AND END DATA POINTER
00071 * TIMER COMES UP INIT. IN DESIRED MODE
00072A E815 96 01 A LDAA IRQHG CONFIGURE AND INIT.
00073A E817 97 03 A STAA P2DR IRQ TO MC6809
00074A E819 86 01 A LDAA #$01
00075A E81B 97 01 A STAA P2DDR
00076A E81D DC 09 A LDD TIMERR INIT. TIMER FOR 50 MSEC.
00077A E~lF C3 EFBF A ADDD #$EFBF
00078A E822 DD 0B A STD TIMROC
00079A E824 CE EB00 'A LDX #$EB00 START ADDRESS FOR DATA
00080A E827 FF 178D A STX FROM
00081A E82A CE 0080 A LDX #$0080 INIT. NORMAL RAM POINTER
00082A E82D FF 178B A STX NRMPTR TO BEG. OF DUAL PORTED RAM
00083A E830 86 00 A LDAA #$00
00084A E832 97 F0 A STAA WHNO
00085 *
00086 * CHECKING ON UPDATE DATA SEMAPHORE (#3)
00087 * (NO DATA PASSED IN REGISTERS)
00088A E834 99 19 A POLLI LDAA SEMPH3 CHECK REQUEST
00089A E836 84 80 A ANDA #$80 FOR MORE
00090A E838 26 02 E83C BNE CONTI DATA
00091A E83A 8D IE E85A BSR DMPRAM GO DUMP IT
00092A E83C 96 08 A CONTI LDAA TCSR CHECK FOR
00093A E83E 84 40 A ANDA #$40 TIMER FLAG SET
00094A E840 27 F2 E834 BEQ POLLI BRA I-F NOT SET
00095 *00096 * ENTERING THE 50 MSEC TIMEOUT SERVICE LOOP
00097 *00098A E842 96 08 A LDAA TCSR DUMMY READ TO CLEAR OCF
00099A E844 DC 09 A LDD TIMERR READ TIMER
00100A E846 C3 EF9C A ADDD #$EF9C REINIT. TIMER - ADJUSTED TO COR-
00101A E849 DD 0B A STD TIMROC RECT FOR ADDED CYCLES OF ROUTINE
00102A E84B FE 1780 A LDX SECCTR INCREMENT 15 SEC. CTR.
00103A E84E 08 INX
00104A E84F FF 1780 A STX SECCTR
00105A E852 8C 012C A CPX #300 CHECK IF 15 SECS. UP?
00106A E855 26 DD E834 BNE POLLI BRANCH IF NOT (300 TIMES)
00107A E857 7E E8C9 A JMP TMRSRV GO TO TIMER SERVICE ROUTINE
00108 *
00109 * THIS ROUTINE DUMPS THE RAM (15 SEC. DATA SAMPLES)
00110A E85A FC 1785 A DMPRAM LDD EDPTR CALC. SIZE OF DATA
00111A E85D B3 1783 A SUBD SDPTR TO BE TRANSFERRED
00112A E860 FD 1787 A STD TXRMSZ
00113A E863 05 LSLD CLEAR SIGN BIT
00114A E864 04 LSRD
00115 * CONFIGURE SIZE IN FORMAT FOR DPR STORAGE
00116A E865 7C 00F0 A COUNT INC WHNO DIVIDING BY 60

PAGE 003 MLTPRCA .SA:l

00117A E868 83 003C A SUBD i60
00118A E86B 2A F8 E865 BPL COUNT
00119A E86D 7A OOFO A DEC WHNO
00120A E870 C3 003C A ADDD #60 DONE
00121A E873 D7 Fl A STAB RMDR SAVE REMAINDER
00122 *CHECK IF WHOLE NUMBER EQUAL ZERO
00123A E875 96 FO A LDAA WHNO
00124A E877 81 00 A CMPA #00
00125A E879 27 2B E8A6 BEQ LAST
00126 * LOADING 60 BYTES OF DATA TO DPR
00127A E87B CC OOBO A LOOP LDD #$OOBO INIT. DPR PTR.
00128A E87E FD 1789 A STD TEMP
00129A E881 FE 1783 A TLOOP LDX SDPTR GET MEMORY LOC & DATA
00l30A E884 E6 00 A LDAB O,X
00131A E886 08 INX SET SDPTR UP FOR NEXT
00132A E887 FF 1783 A STX SDPTR TIME
00l33A E88A FE 1789 A LDX TEMP GET DESTINATION
00134A E88D E7 00 A STAB O,X STORE DATA
00l35A E88F 08 INX SET TEMP UP FOR NEXT
00l36A E890 FF 1789 A STX TEMP TIME
00l37A E893 8C OOEC A CPX #$OOEC
00l38A E896 26 E9 E881 BNE TLOOP CHECK IF 60 BYTES TX
00l39A E898 07 IB A STAB SEMPH5 SET TX'FER SEMPH.- GIVES '09 "00"
00140A E89A 96 lC A WAITI LDAA SEMPH6 CHECK IF OK TO PROCEED
00141A E89C 84 80 A ANDA #$80
00142A E89E 26 FA E89A BNE WAITI BRANCH IF NOT OK
00143A E8AO 86 00 A LDAA #00 CHECK IF ALL 60 BYTE
00144A E8A2 91 FO A CMPA WHNO BLOCKS ARE TX'FERRED
00145A E8A4 26 D5 E87B BNE LOOP BRANCH IF NOT
00146 * TRANSFER REMAINDER OF DATA
00147A E8A6 CC OOBO A LAST LDD #$OOBO BEGINNING OF TX'FER
00148A E8A9 FD 1789 A STD TEMP AREA
00149A E8AC FE 1783 A ELOOP LDX SDPTR GET START ADDRESS
00150A E8AF E6 00 A LDAB O,X GET DATA
00151A E8Bl 08 INX PREPARE FOR NEXT FETCH
00152A E8B2 FF 1783 A STX SDPTR AND SAVE
00153A E8B5 FE 1789 A LOX TEMP GET DESTIN. ADDRESS
00154A E8B8 E7 00 A STAB O,X STORE IN DPR
00155A E8BA 08 INX PREPARE FOR NEXT STORE
00156A E8BB FF 1789 A STX TEMP AND SAVE
00157A E8BE FE 1785 A LDX EDPTR CHECK IF DONE
00158A E8Cl BC 1783 A CPX SDPTR CHECK IF DONE
00159A E8C4 26 E6 E8AC BNE ELOOP BRANCH IF NOT TO END LOOP
00160A E8C6 D7 IB A STAB SEMPH5 SET TX'FER SEMPH.- GIVES ·09 "00"
00161A E8C8 39 RTS GOIN HOME

,00162 *
00163 * TIMER SERVICE ROUTINE - ACCESSED EVERY 15 SECON
00164 *
O.o165A E8C9 7C 1782 A TMRSRV INC MINCTR INCREMENT 15 MIN. CTR.
00166A E8CC CE 0000 A LDX #00 CLEAR 15 SEC. CTR.
00167A E8CF FF 1780 A STX SECCTR
00168A E8D2 FE 178D A LDX FROM READ DATA
00169A E8D5 8C EB80 A CPX #TO DUMMY ROUTINE FOR DATA
00170A E8D8 26 06 E8EO BNE AROUND AQUISITION
0017lA E8DA CE EBOO A LDX #$EBOO
00172A E8DD FF 178D A STX FROM
00173A E8EO A6 00 A AROUND LDAA O,X
00174A E8E2 08 INX

PAGE 004 MLTPRCA .SA:l

00175A E8E3 FF 178D A STX FROM
00176A E8E6 FE 1785 A LDX EDPTR GET NEXT OPEN LOCATION
00177A E8E9 A7 00 A STAA O,X STORE DATA THERE
00178A E8EB 08 INX INCREMENT AND CHECK
00179A E8EC BC 1780 A CPX #$17BO DATA POINTER FOR
00180A EBEF 26 03 E8F4 BNE DOVRN END OF RAM
00181A E8Fl CE 1000 A LDX #$1000
00182A E8F4 FF 1785 A DOVRN STX EDPTR SAVE END DATA POINTER
00183A EBF7 BC 1783 A CPX SDPTR CHECK FOR DATA OVERRUN
00184A E8FA 26 07 E903 BNE OK
00185A E8FC CE 1000 A LDX #$1000 DATA OVERRUN
00186A E8FF 08 INX INCREMENT START
00187A E900 FF 1783 A STX SDPTR ADDRESS POINTER
00188A E903 81 11 A OK CMPA #LOW CHECK IF DATA IN
00189A E905 25 21 E928 BLO ERROR RANGE
00190A E907 81 CC A CMPA #HIGH
00191A E909 22 ID E928 BHI ERROR
00192A E90B F6 1782 A LDAB MINCTR DATA GOOD- CHECK IF 15 MIN.
00193A E90E Cl 3C A CMPB #60 COUNTER TIMED OUT YET?
00194A E910 26 11 E923 BNE GONE BRANCH IF NOT
00195A E912 FE 178B A LDX NRMPTR IF SO STORE IT IN UPPER
00196A E915 A7 00 A STAA O,X
00197A E917 8C OOAF A CPX #$AF CHECK IF DUAL PORTED RAM
00198A E91A 27 29 E945 BEQ DPRST OVERRUN-IF SO DMP & RESET
00199A E91C 08 INX
00200A E91D FF 178B A STX NRMPTR UPDATE DATA PTR. FOR NEXT TIME
00201A :E920 7F 1782 A CLR MINCTR REINIT. 15 MIN COUNTER TO 0
00202A E923 96 17 A GONE LDAA SEMPHI REGAIN OWNERSHIP OF SEMPHI
002·03A E925 7E E834 A JMP POLLI GET OUT OF ROUTINE
00204 *
00205 * ERROR ROUTINE
00206 *00207A E928 D7 17 A ERROR STAB SEMPHI SET ERROR SEMAPHORE(l)
00208A E92A C6 00 A LDAB #IRQLW PULL '09 IRQ LOW
00209A E92C D7 03 A STAB P2DR
00210A E92E 9'6 lA A KPLKNG LDAA SEMPH4 CHECK FOR IRQ CLEAR SIGNAL
00211A E930 84 80 A ANDA #$80
00212A E932 26 06 E93A BNE DMPCHK BRA IF ISN'T CLEAR
00213A E934 C6 01 A LDAB #IRQHG CLEAR
00214A E936 D7 03 A STAB P2DR '09 IRQ
00215A E938 20 E9 E923 BRA GONE GET OUT OF ROUTINE
00216A E93A D6 19 A DMPCHK LDAB SEMPH3 CHECK FOR REQUEST
00217A E93C 84 80 A ANDA #$80 TO DUMP DATA IN RAM
00218A E93E 26 EE E92E BNE KPLKNG KEEP LOOKING
00219A E940 BD E85A A JSR DMPRAM DUMP THE RAM
00220A E943 20 E9 E92E BRA KPLKNG WAIT FOR IRQ CLEAR
00221A E945 97 18 A DPRST STAA SEMPH2 SET NORMAL DUMP SEMPH.
00222A E947 C6 00 A LDAB #IRQLW PULL '09 IRQ LOW
00223A E949 D7 03 A STAB P2DR
00224A E94B 96 lA A WAIT LDAA SEMPH4 CHECK REQUEST TO CLR IRQ
00225A E94D 84 80 A ANDA #$80 WAITING ON '09
00226A E94F 26 FA E94B BNE WAIT
00227A E951 C6 01 A LDAB #IRQHG CLEAR
00228A E953 D7 03 A STAB P2DR '09 IRQ AND
00229A E955 7F 178B A CLR 'NRMPTR RESET NORMAL RAM POINTER
00230A E958 7F 1782 A CLR MINCTR RESET 15 MIN. COUNTER TO 0
00231A E95B 20 C6 E923 BRA GONE
00232 END

PAGE 005 MLTPRCA .SA: 1

TOTAL ERRORS 00000--00000

E8EO AROUND 00170 00173*
E83C CONTI 00090 00092*
E865 COUNT 00116*00118
E93A DMPCHK 00212 00216*
E85A DMPRAM 00091 00110*00219
E8F4 OOVRN 00180 00182*
E945 DPRST 00198 00221*
1785 EDPTR 00042*00070 00110 00157 00176 00182
E8AC ELOOP 00149*00159
E928 ERROR 00189 00191 00207*
178D FROM 00056*00080 00168 00172 00175
E923 GONE 00194 00202*00215 00231
OOCC HIGH 00050*00190
0001 IRQHG 00054*00072 00213 00227
0000 IRQLW 00052*00208 00222
E92E KPLKNG 00210*00218 00220
E8A6 LAST 00125 00147*
E87B LOOP 00127*00145
0011 LOW 00048*00188
1782 MINCTR 00037*00067 00165 00192 00201 00230
178B NRMPTR 00047*00082 00195 00200 00229
E903 OK 00184 00188*
0001 P2DDR 00011*00075
0003 P2DR 00010*00073 00209 00214 00223 00228
E834 POLLI 00088*00094 00106 00203
OOFI RMDR 00033*00121
1783 SDPTR 00040*00069 00111 00129 00132 00149 00152 00158 00183 00187
1780 SECCTR 00035*00066 00102 00104 00167
0017 SEMPHI 00025*00202 00207
0018 SEMPH2 00026*00221
0019 SEMPH3 00027*00088 00216
001A SEMPH4 00028*00210 00224
001B SEMPH5 00029*00139 00160
001C SEMPH6 00030*00140
0008 TCSR 00012*00092 00098
1789 TEMP 00045*00128 00133 00136 00148 00153 00156
0009 TIMERR 00013*00076 00099
OOOB TIMROC 00014*00078 00101
E881 TLOOP 00129*00138
E8C9 TMRSRV 00107 00165*
EB80 TO 00057*00169
EBOO TXDCR 00039*
1787 TXRMSZ 00044*00112
E94B WAIT 00224*00226
E89A WAITI 00140*00142
OOFO WHNO 00031*00084 00116 00119 00123 00144

Read In Data,
Store'ln RAM,

and
Send to Printer

y Branch to
Get Data

Subroutine

High

Clear
Interrupt

Mask
Turn Down
Heat One
Increment

Set
Interrupt

Mask

Read In
Data and
Store to

PRINTEC

Pos,

Clear
IRQ CLR

Semaphore

Calculate Calculate
Negative PositIve

Slope Slope

Turn Up
Heat
One

More
Increment

Turn Down
Heat One

More
Increment

PAGE 001 MLTPR09A.SA:l

/00001 *
00002 *
00003 OPT ABS,LLE=85,S,CRE
00004 *00005 *
00006 * THIS IS THE CODE THAT ALLOWS THE MC6809E TO
00007 * INTERFACE WITH THE MC68120 IN A \00008 * MULTIPROCESSOR CONFIGURATION
00009 *
00010 *00011 *
00012 0017 A SEMPHl EQU $17 ERROR SITUATION
00013 0018 A SEMPH2 EQU $18 NORMAL RAM DUMP
00014 0019 A SEMPH3 EQU $19 RQST FOR DATA (15 SEC INCR.)
00015 OOlA A SEMPH4 EQU $lA IRQ CLEAR
00016 OOlB A SEMPH5 EQU $lB 60 BYTE BLOCK OF DATA FLAG
00017 OOlC A SEMPH6 EQU $lC 60 BYTE BLOCK OF DATA FLAG
00018 OOFO A WHNO EQU $FO WHOLE NUMBER OF 60 BYTE BLOCKS
00019 * TO BE MOVED
00020 OOFl A RMDR EQU $Fl REMAINDER OF THE 60 BYTE BLOCK
00021 * TO BE MOVED
00022 0100 A LOWER EQU $100 WHEN THIS ADDRESS IS WRITTEN
00023 * TO, THE SYSTEM T&P IS LOWERED
00024 0101 A RAISE EQU $101 WHEN THIS ADDRESS IS WRITTEN
00025 * TO, THE SYSTEM T&P IS RAISED
00026 12FO A CMPTMP EQU $12FO TEMP. STORAGE FOR COMPARE
00027 * (2 bytes)
00028 12F2 A LASTl EQU $12F2 SLOPE POINT VALUES (1 byte)
00029 12F3 A DTAREQ EQU $12F3 BUTTIN REQUEST FOR DATA
00030 * (l-request;O-no request)
00031 *00032 *00033 *00034A F800 ORG $F800
00035 *00036 *
00037 * INITIALIZATION ROUTINE
00038A F800 10CE 13FF A START LDS #$13FF INIT. STACK
00039A F804 86 00 A LDA #$00 INIT. BUTTON REQ. FOR
00040A F806 B7 12F3 A STA DTAREQ DATA (SET UP FOR NO REQ.)
00041 *
00042 * START POLLING ON DUM RAM REQUEST AND WAIT
00043 * FOR INTERRUPT REQUEST
00044 *
00045A F809 B6 12F3 A MAIN LDA DTAREQ CHECK IF OPERATOR
00046A F80C 81 80 A CMPA #$80 REQUESTING DATA
00047A F80E 26 02 F812 BNE OPEN
00048A F810 8D 07 F819 BSR GETDTA GO GET DATA
00049 * LET IN IRQ INPUT
00050A F812 lC EF A OPEN ANDCC #$EF CLEAR I BIT
00051A F814 12 NOP
00052A F815 lA 10 A ORCC #$YO SET I BIT
00053A F817 20 FO F809 BRA MAIN BACK
00054 *
00055 * GET DATA SUBROUTINE
00056 *
00057A F819 97 19 A GETDTA STA SEMPH3 ASK FOR DATA
00058A F81B 96 lB A WAITl LDA SEMPH5 WAIT FOR READY

PAGE 002 MLTPR09A.SA:l

00059A F81D 84 80 A ANDA #$80 SEMAPHORE
00060A F81F 26 FA F81B BNE WAITl BRANCH IF NOT READY
00061A F82l 96 FO A FCHDTA LOA WHNO READY, READ HOW MUCH DATA
00062A F823 81 00 A CMPA #00 TO TRANSFER
00063A F825 27 lC F843 BEQ LAST TX'FER REMAINDER IF WHNO =0
00064A F827 8E OOBO A LOX #$OOBO PREPARE TO TX'FER (READ)
00065A F82A 108E 1000 A LDY #$1000 60 BYTE BLOCK
00066 * LOADS DATA TO IPC PRINTER CONTROLLER AT $EOOO
00067 * THE CONTROLLER IS WAITING FOR THE DATA
00068A F82E EC 84 A MOVED LDD O,X GET 2 BYTES
00069A F830 ED 89 EOOO A STD >$EOOO,X STORE TO PRINTER IPC
00070A F834 30 02 A LEAX 2,X
00071A F836 ED Al A STD O,Y++ STORE 2 BYTES
00072A F838 8C OOEC A CMPX #$EC CHECK IF DONE (60 BYTES)
00073A F83B 26 Fl F82E BNE MOVED GO AGAIN
00074A F83D 97 lC A STA SEMPH6 CLEAR SEMPH6
00075A F83F OA FO A DEC WHNO
00076A F84l 20 08 F81B BRA WAITl WAIT FOR NEXT BLOCK
00077A F843 8E OOBO A LAST LOX #$OOBO INITIALIZE POINTERS FOR LAST
00078A F846 108E 103C A LDY #$103C TRANSFER ($1000+60=$103C)
00079A F84A IF 10 A TFR X,D CHECK HOW MUCH TO MOVE
00080A F84C 03 FO A ADDD WHNO
00081A F84E 1083 00'30 A CMPD #$OOBO CHECK IF RMDR =0
00082A F852 27 15 F869 BEQ OUT AND GET OUT IF SO
00083A F854 FD 12FO A STD CMPTMP IF NOT GO MOVE BLOCK
00084A F857 7C 12Fl A INC CMPTMP+l ADD 1 TI CMPTMP+l(00F1)
00085A F85A A6 84 A NXTBYT LOA O,X GET NEXT BYTE OF DATA
00086A F85C A7 89 EOOO A STA $EOOO,X STORE TO PRINTER
00087A F860 30 01 A LEAX 1,X
00088A F862 A7 AD A STA O,Y+ STORE IN RAM
00089A F864 BC 12FO A CMPX CMPTMP CHECK IF DONE
00090A F867 26 Fl F85A BNE NXTBYT IF NOT GO AGAIN
00091A F869 97 lC A OUT STA SEMPH6 CLEAR SEMPH6
00092A F86B 39 RTS
00093
00094 *
00095 * IRQ ROUTINE
00096 *00097 * AH-HA! THE MC68120 WANTS TO TELL ME SOMETHING! !
00098A F86C 96 17 A IRQ LOA SEMPHl CHECK IF ERROR SITUATION
00099A F86E 84 80 A ANDA #$80
OOlOOA F870 27 09 F87B BEQ ERROR BRANtH IF SO
OOlOlA F872 96 18 A LOA SEMPH2 CHECK FOR NORMAL DATA
00102A F874 84 80 A ANDA #$80 DOWNLOAD
00103A F876 27 3B F8B3 BEQ NORMAL BRANCH IF SO
00104A F878 97 lA A CLRIRQ STA SEMPH4 WRITE CLEAR IRQ SEMPH
00105A F87A 3B RTI BACK TO MAIN
00106 *
00107 *RECEIVE ERROR DATA ROUTINE
00108 *
00109A F87B 80 9C F819 ERROR BSR GETDTA GET DATA INTO RAM
OOllOA F87D BE 12FO A LOX CMPTMP GET ADDRESS OF LATEST DATA
OOlllA F880 A6 84 A LOA O,X GET DATA AND CHECK
001l2A F882 81 CB A CMPA #$CB IF DATA
001l3A F884 25 07 F88D BLO CONT TOO HIGH
001l4A F886 86 CC A LOA #$CC IF SO - TURN DOWN TEMP.
001l5A F888 B7 0100 A STA LOWER
001l6A F88B 20 06 F893 BRA SLOPE GO TO SLOPE CHECK

PAGE 003 MLTPR09A.SA:1

00117A F88D 12 CONT NOP
00118A F88E 86 11 A LDA #$11
00119A F890 B7 0101 A STA RAISE INCREASE TEMP.
00120 *
00121 * IF SLOPE NEG. - GETTING HOTTER
00122 * IF SLOPE POS. - GETTING COLDER
00123 *
00124A F893 A6 82 A SLOPE LDA O,-X GET LAST
00125A F895 B7 12F2 A STA LAST1 DATA AND NEXT
00126A F898 A6 84 A LDA O,X TO LAST DATA
00127A F89A BO 12F2 A SUBA LAST1
00128A F89D 2A OB F8AA BPL MAGNC BRANCH IF COLDER
00129 * NEG. SLOPE- HOTTER
00130A F89F 84. 7F 'A ANDA #$7F DELETE NEG SIGN
00131A F8A1 81 10 A MAGNH CMPA #$10 COMPARE MAG OF SLOPE
00132A F8A3 25 D3 F878 BLO CLRIRQ TO CRIT. SLOPE VALUE
00133A F8A5 B7 0100 A STA LOWER LOWER TEMP. 1 INCR.
00134A F8A8 20 CE F878 . BRA CLRIRQ
00135A F8AA 81 10 A MAGNC CMPA #$10 COMPARE MAG OF SLOPE TO
00136A F8AC 25 CA F878 BLO CLRIRQ CRIT SLOPE VALUE
00137A F8AE B7 0101 A STA RAISE RAISE TEMP.. 1 INCR.
00138A F8B1 20 C5 F878 BRA CLRIRQ
00139A F8B3 8E 0080 A NORMAL LDX #$0080 PREPARE TO GET DATA
00140A F8B6 EC 84 A LDD O,X GET DATA
00141A F8B8 ED 89 EOOO A MOVIT STD $EOOO,X MOVE TO PRINTER
00142A F8BC 30 02 A LEAX 2,X
00143A' F8BE 8C OOBO A CMPX #$BO CHECK IF DONE
00144A F8C1 26 F5 F8B8 BNE MOVIT KEEPING GOING
00145A F8C3 20 B3 F878 BRA CLRIRQ CLEAR IRQ AND OUT
00146 *
00147A FFFO ORG $FFFO
00148A FFFO F800 A FDB START
00149A FFF2 F800 A FDB START
00150A FFF4 F800 A FDB START
00151A FFF6 F800 A FDB START
00152A FFF8 F86C A FDB IRQ
00153A FFFA F800 A FDB START
00154A FFFC F800 A FDB START
00155A FFFE F800 A FDB START
00156 END
TOTAL ERRORS 00000--00000
-TOTAL WARNINGS 00000--00000

F878 CLRIRQ 00104*00132 00134 F85A NXTBYT 00085*00090
00136 00138 00145 F812 OPEN 00047 00050*

12FO CMPTMP 00026*00083 00084 F869 OUT 00082 00091*
00089 00110 0101 RAISE 00024*00119 00137

F88D CONT 00113 00117* 00F1 RMDR 00020*
12F3 DTAREQ 00029*00040 00045 0017 SEMPH1 00012*00098
F87B ERROR 00100 00109* 0018 SEMPH2 00013*00101
F821 FCHDTA 00061* 0019 SEMPH3 00014*00057
F819 GETDTA 00048 00057*00109 001A SEMPH4 00015*00104F86C IRQ 00098*00152 001B SEMPH5 00016*00058F843 LAST 00063 00077* 001C SEMPH6 00017*00074 00091
12F2 LAST1 00028*00125 00127 F893 SLOPE 00116 00124*
0100 LOWER 00022*00115 00133 F800 START 00038*00148 00149
F8AA MAGNC 00128 00135* 00150 00151 00153
F8A1 MAGNH 00131* 00154 00155
F809 MAIN 00045*00053 F81B WAIT1 00058*00060 00076
F82E MOVED 00068*00073 OOFO WHNO 00018*00061 00075
F8B8 MOVIT 00141*00144 00080
F8B3 NORMAL 00103 00139*

FIGURE 11 - MC6809E Software (Concluded)

461

AN·8S1

MOTOROLA MC684S CRTC SIMPL FIES
VIDEO DISPLAY CONTROLLERS

Prepared by
Charles Melear and Jack Browne

Microprocessor Applications Engineering

The need for displaying visual information by the general
business community has found widespread applications.
Banks, airports, department stores, and other businesses
need rapid display of visual information at points of sale and
points of use. Much of this information is generated by peo-
ple who have only a limited knowledge of the electronics in-
volved. Therefore, they must rely on the equipment used to
automatically receive data, digest it, and display it on a video

monitor. Systems could range in complexity from those
which display only a few lines of data to complicated word
processors. Historically, character printers gave way to line
printers. However, obtaining hard copy is cumbersome and
slow, and a considerable amount of paper is used. Much of
this information is used only momentarily and then discard-
ed, such as inventory checks or airport flight schedules. The
efficiency of low cost, high performance video monitors have

8A

14
Logic A15

R/W

made the transition from hard copy to visual display even
more advantageous. As video monitors have come into
general use, the requirement for cost savings in the controller
has intensified. LSI circuits have been appearing which meet
that need.

The Motorola MC6845 CRT controller (CRTC) can
economically solve many of the problems encountered with
video monitor displays. This is acomplished by using an in-
novative design aimed at complete control of the monitor
with intervention by the MPU only when new information is
put into the display memory. The problems to be solved by
the MC6845 in a raster scan video display controller are:
cost, number of required components, amount of interven-
tion by MPU, timing and synchronization of signals, and
software, among others.

Today, CRT controllers can be built using an MC6845
which require approximately 25 ICs plus the extra chips re-
quired for memory. This number represents only a fraction
of the parts required just a few years ago when SSI and MSI
logic devices were used. CRT controllers were built using SSI
and MSI logic devices which required well over one hundred
ICs. With the MC6845 approach, the number of ICs can be
reduced to approximately 25 plus those required for
memory.

To illustrate the capabilities of an MC6845 based terminal,
the software and "rough" hardware considerations used in
its design are discussed. The terminal, as shown in Figure I,
has the following features:

Blinking Cursor
Carriage Return
Backspace
Line Feed
Automatic Scrolling
The CRTC has an address register that can point to any

one of eighteen buried registers as shown in Figure 2. These
can be programmed for up to 256 characters per row and 128
rows per screen with the only limitation being the bandwidth
of the monitor. For this terminal, an 80 by 24 format of 7 by
9 dot matrix characters is used. Horizontal and vertical sync
positions are programmable allowing the CRTC to generate
the horizontal and vertical retrace pulses. A blanking signal
(display enable) is generated during both horizontal and ver-
tical retrace. Two sets of address lines are used. The first set
of fourteen lines cycles in a binary fashion through the
display memory and is incremented with each CRTC clock'
pulse. The second set of four lines can be used to address the
row address select lines of a character generator. These also
cycle in a binary fashion and are incremented with each
horizontal sync pulse. A cursor, which may be programmed
to blink, is also generated by the CRTC. It will be displayed
at the address held in the CRTC cursor address register.

Move Cursor Up One Line
Paging
Home Cursor
Clear Screen

SYSTEM IMPLEMENTATION
Figure 3 represents a complete MC6808-MC6845 based

system capable of receiving a digital input, processing it, and
displaying alphanumeric data on a video monitor. The tim-
ing for the system is derived from a dot clock oscillator. Its
frequency determines the rate at which information is shifted
to the monitor. The dot clock oscillator output is divided by
a counter to obtain the character rate clock. For a 9 column
by 12 row character block which accommodates a 7 by 9
character, binary 8 is detected at Q3 on the counter and the
resulting inverted output is fed into the synchronous clear in-
put of the counter. For a 7 by 9 block, a logic gate could
detect binary 6 on QO, QI, and Q2. It is important to use a
counter with a synchronous clear so the clear pulse will be
one dot clock period wide. The character clock (generated by

the rising edge of Q3) serves as a shift/load signal for the out-
put shift register and a clock to latch data from the display
memory. The CRTC clock (generated by the trailing edge of
Q2) is used to clock the MC6845 CRTC. Each character rate
clock increments the address lines (MAO-MAI3) of the
MC6845. The display memory must be capable of being con-
trolled by either the MPU or the CRTC. Therefore, the ad-
dress lines for both devices (AO-A13 and MAO-MA13) are
routed through multiplexers such as the SN74LS157. The
MPU takes control of the display memory only whe'n a new
character is to be written. The output of the multiplexer ad-
dresses the memory.

As shown in Figure 3, the 8K X 8 static display memory re-
quires 10 address lines for the address bus of the memory
elements and 3 address lines for the 3-to-8line decoder which
drives the chip selects of the memory elements. The output of
the display memory is fed into an 8-bit latch (74LS374) and is
clocked into the latch on the next character clock. This latch
helps to prevent address line jitter which could present
spurious data to the character generator ROM. The character
clock is used to latch data into the SN74LS374. This creates a
one character clock delay from the time that an address
becomes valid to the memory until data is presented to the
character generator ROM. The character clock is also used to
load the parallel word from the character generator ROM in-
to the shift register, producing a second character clock
delay. Once the shift register is loaded the dot clock is used to
serially shift data from the shift register to the video driver.

In order to synchronize both the display enable and cursor
output with the shift register output, a two CRTC clock
delay must be imposed. Both signals are synchronous with
the CRTC address lines. To implement this delay, the two
signals (cursor and display enable) are clocked through two
latches by the noninverted character clock and fed into the
video driver. The video signal is the combination of the
shifted data ORed with cursor and then ANDed with Display
Enable. This is fed into a "D" flip-flop and clocked out by
the dot clock.

The CRTC generates row addresses for the character
generator ROM. Cycling is synchronized within the CRTC
by the horizontal sync pulse (HSYNC) so that the address
lines are incremented by each HSYNC.

When the MPU is required to read or write to the display
memory, the address line multiplexer must be switched to the
MPU address lines. Since the display memory is located from
ooסס$ to $3FFF, address lines AI5 and AI4 will both be logic
"0" if and only if the display memory is being addressed.
Therefore, only "00" needs to be decoded on these two lines
as an MPU address select line. In normal operation where the
CRT controller is controlling the display memory, the secon-
dary data bus is being driven by the display memory. Also,
the MPU data bus is being driven by the MPU or some other
peripheral. This requires that the two data buses be isolated
from each other except during an MPU read or write of the
display memory. This requires bus transceivers that can be
set to the high-impedance state in both directions. These are
shown in Figure 2 as three MC6885 Hex Buffer-Inverters. (If
octal buffers are used, only two are required.)

To complete the entire system, RAM, ROM, and I/O in-
terface circuitry is placed on the data buses. The RAM is
used primarily for a scratch pad memory and the locations
accessed by the stack pointer register. The ROM contains the
operating program to service the I/O interface. The I/O in-
terface can be a keyboard outputting parallel ASCII code or
row/column information. As long as some method can be
programmed to receive digital data and transfer it onto the
data bus, the CRT controller, using an MC6845, can display
that information on a video display.

CE Horizontal
Sync Width
CTR 1+ 161

MC

Character
Row

CTR (+ 1281
M

Linear
Address

Generator

10

1PR
12 20
112CLK

"2eeR
209

",'

DEVICE IMPLEMENTATION
The MC6845 CRTC has 18 programmable registers

(RQ..RI7 in Figure 2) that control: the horizontal and vertical
sync, number of characters per row, number of scan lines per
row, number of rows per screen, the portion of memory to be
displayed, cursor format and position, and the choice of one
of three interlace modes.

The first four registers, ROthrough R3, are concerned with
the horizontal format. These registers determine the number
of characters to be displayed, their width, and horizontal
position. Programming considerations are based on the
period of the monitor, i.e., the sweep plus retrace time. Also,
the horizontal sync pulse should occur slightly after the beam
is driven past the right-ham! side of the screen. It is impor-
tant to note that the beam is overdriven on the left side of the
screen as well as the right. This means that a certain time
elapses between the horizontal sync pulse and when the beam
sweeps onto the screen from the left and is at the position for
it to start displaying data.

ro
".'"ro CD

" >.'"i;; J.,>..L.

L
Horizontal
Retrace
Period

The period of the monitor should be divided into character
times (see Figure 4). This will define the width of a character
block and this value will be stored in the Horizontal Total
Register (RO). A video monitor will require about 20010 of the
period to be reserved for retrace (see Figure 5), as opposed to
about 35% for a TV. This means that the Horizontal
Displayed Register (Rl), which contains the number of
characters to be displayed per row, will not usually exceed
about 80% of the value in RO. If RO contains a very small
number, each character will be very wide. Likewise, if RO
contains a large number, the Characters will be very narrow.
The Horizontal Sync Position Register (R2) is programmed
in character times and should be positioned such that it will
occur slightly after the beam is driven past the right margin
of the screen. The Horizontal Sync Width Register (R3), pro-
grammed in character times, should provide sufficient width
to allow the discharge of the circuitry driving the horizontal
sweep. It should be noted that the value in ROusually exceeds
the sum of the values in R2 and R3. This is to allow for the
time required for the beam to sweep onto the screen from the
left margin since it could be overdriven to the left.

I I

: •• Horizontal Total RD • :
lit
'-- Horizontal Display Rl__ I
I I I
I 1 1

~
iSPlay I I
Enable ~----

: Horizontal Sync Width R3_: ~

~ Horizontal Sync Position R2_~
HorizontalI

Sync 1
MAD- 1~~~rrrrrJ-

I

Four registers, R4-R7, are used to set up the vertical for-
mat (see Figure 6). The frequency of the horizontal oscillator
and the vertical refresh rate must be known. Generally, the
vertical refresh rate is 60 Hz. The horizontal frequency,
usually 15,750 Hz, divided by the frame refresh rate is equal
to the total number of scan lines per frame. The vertical sync
pulse requires 16 scan lines. This means that the programmer
cannot use the total number of scan lines for information
display. A character block which contains the character to be
displayed, plus spacing columns to the right and additional
scan lines on the bottom, is chosen by the programmer.
Typically, a character generator ROM with a 7 x 9 matrix ele-
ment will be placed in a 9 x 12 character block. The Vertical
Total Register (R4) contains the number of character rows
per screen which is equal to the total number of scan lines
divided by the height of the character block. This height is
programmed in scan lines and placed in the Max Scan Line
Address Register (R9). The number of scan lines left over is
written into the Vertical Adjust Register (R5). All scan lines
must be accounted for so the CRT controller will exactly
match the vertical refresh rate; otherwise, the display will
"swim" or have a wavy motion. The Vertical Displayed
Register (R6) contains the number of character rows that the
programmer wishes to be displayed. The Vertical Sync Posi-
tion Register (R7) contains the position of the vertical sync
pulse. This number, programmed in character times, must be

I II
I. Vertical Total R4 .: 1
1 I I II Vmti~1 ,I
~ Vertical Displayed R6 _: Adjust __ I :.-
1 .1 R5 I 1

~~~~~~: 1: I
I I1_ Vertical Sync Position R7-~

I
: Vertical Sync
1



greater than or equal to the Vertical Displayed Register (R6),
but not so much greater that it shifts the last rows of the
displayed text off the bottom of the screen. Once these
registers are set up, the raster is completely defined.

Three operating modes are available with the MC6845
which have to do with which field (odd or even) that infor-
mation is written into. The first mode, Normal Sync, writes
information into one field only (see Figure 7). Remember,
one frame requires two vertical sweeps of the screen. The
first sweep (even field) starts at the upper left corner of the
screen and the second sweep (odd field) starts at the top
center. When writing into one field, each dot will be updated
60 times per second.

Raster
Add.
0-----
1 e
2 e
3 e
4 8
5 e
6 e
7 e

e
e
e

e e e e
8

8

e

The second mode, Interlace Sync, writes in both fields.
The odd field is an exact duplicate of the even field. Essen-
tially, the same information is written twice. This has the ad-
vantage of making the letters appear to have solid vertical
lines thus improving resolution. However, each dot is now
refreshed only 30 times per second which may cause an ob-
jectionable flicker on the screen. This flicker cannot be
perceived by aU people due to variances in eye sight. Also,
the persistance of the phosphor will moderate the effect of
the flicker.

The third mode, Interlace Sync and Video, also writes in
both fields. However, one half the character is written in
each field. This means an eight row character block in this
mode will have four scan lines in the even field and four in
the odd field making a character only half the height of the
other two modes. This aUows the highest screen density for
the MC6845. These modes are programmed in the Interlace
Mode Register (R8).

The MC6845 also controls the cursor format and blink rate
(see Figure 8). Each character row has a certain number of
scan lines as defined by the Max Scan Line Address Register
(R9). The Cursor Start Register (RIO) specifies on which scan
line the cursor begins. Also, this register contains a bit that
specifies whether the cursor will blink or not blink. Another
bit specifies the blink rate which is either one sixteenth or one
thirty second of the field rate.

The Cursor End Register (RII) specifies the scan line at the
bottom of the cursor. If the same number is specified for
both the starting and ending scan line, the cursor will be one
line taU.

There are six remaining registers. The Start Address
Registers High (RI2) and Low (RI3), contain the address of
the first byte of memory to be displayed after vertical retrace.
The Cursor Registers High (R 14) and Low (R 15) contain the
address where the cursor will appear. The Light Pen
Registers High (R 16) and Low (R 17) will receive the current
address appearing on the CRT control address lines foUow-
ing the recognition of the low-to-high transition of the light
pen strobe (LPSTB) input. Once the LPSTB low-to-high

o -++-+-+-+-t-t-
1 -++-H-++-t-
2 -t-+-+-+-+-++-
3 -+-++-t-t-++-
4 -++-+-+-+-t-t-
5 -++-+-+-+-t-t-
6 -+-++-t-t-++-
7-+-+-+-+-H-+-

19jt~~~E
11-+-+-+-+-H-+-

FIGURE 8 - Cursor Start and End Register

transition is recognized, the next low-to-high CRTC clock
transition latches the address information and loads it into
the Light Pen Register. These registers are used primarily by
the programmer who writes the software for the terminal.
The method in which they are used is discussed in the soft-
ware considerations portion of this application note.

In order to complete the hardware discussion, the dot
clock and character clocks must be defined. The character
clock rate will be the product of the horizontal oscillator fre-
quency and the total horizontal character times described in
calculating the value for RO. The dot clock will be the pro-
duct of the character rate clock and the width of the
character block in columns. This requires a different dot
clock for each screen format.
SOFfW ARE IMPLEMENT AnON

Once the system has been defined, software development
may begin. The firmware residing in ROM will initialize and
support the terminal. When power is applied to the system,
the MPU automaticaUy jumps to the reset address stored in
location $FFFE and $FFFF. This address is the beginning of
the initialization sequence.

After a power-on-reset, the display memory is initialized
(to avoid a flash of false data), the eighteen buried registers
of the CRT controUer are initialized, and characters are ac-
cepted from the keyboard. Some control characters will be
decoded to implement the foUowing features:

Carriage Return Move Cursor Up One Line
Backspace Paging
Line Feed Home Cursor

Clear Screen
Scrolling up or down will be done automaticaUy as required.

The software was developed using the concepts of struc-
tured programming. The first two routines which were writ-
ten support the hardware development and debugging. The
first routine is named CHARON and its flowchart is shown
in Figure 9. This routine initializes the display memory with
successive ASCII character codes which help identify ad-
dressing problems. The second routine is named CRTINT
and initializes the CRT controUer (see flowchart in Figure
10). The register values to implement an 80 by 24 display are
.read from the ROM and stored into the buried registers of
the CRT controUer. Again, it is important to initialize the
display memory prior to initializing the MC6845, to avoid a
flash of false data. After the system has been initialized by
running this program (as listed in Figure II), waveforms,
timing, and data may be checked, thus speeding the design
phase.



FIGURE 9 - CHARGN Subroutine Flowchart
Loads ASCII character codes into display memory.

FIGURE 10 - CRTINT Subroutine Flowchart
Initializes the CRTC registers with the previously

calculated values stored in the ROM.

PAGE 001 BOOT •SA:l

00001 4000 A CRTCAD EQU $4000
00002 4001 A CRTCRG EQU $4001
00003A E3FE ORG $E3FE
00004A E3FE EO A FCB $EO,O
00005A EOOO ORG $EOOO
00006A EOOO 4F CHARGN CLRA FILL SCREEN WITH CHARACTER
00007A EOOl CE 0000 A LDX #$0000
00008A E004 A7 00 A CHAR STAA O,X STORE CHARACTER
00009A E006 4C INCA GET NEXT CHARACTER
00010A E007 08 INX MOVE TO NEXT LOCATION
OOOllA E008 8C 1000 A CPX #$1000 FINISHED
00012A EOOB 26 F7 E004 BNE CHAR FINISHED?
OOOl3A EOOD 5F CRTINT CLRB INITIALIZE CRTC
OOOl4A EOOE CE E022 A LDX #TABLE
00015A EOll F7 4000 A CRTINl STAB CRTCAD SELECT CRTC REGISTER
00016A E014 A6 00 A LDAA O,X
00017A E016 B7 40ql A STAA CRTCRG
00018A E019 08 INX
00019A E01A 5C INCB
00020A E01B Cl 10 A CMPB #$10
00021A E01D 26 F2 EOll BNE CRTINl
00022A E01F 01 LOOPER NOP
00023A E020 20 FD E01F BRA LOOPER
00024A E022 30 A TABLE FCB $30,$26,$2B,$02,$14,$01
00025A E028 12 A FCB $12,$13,$00,$OB,$40,$08,$00,$00,$00
00026 END
TOTAL ERRORS 00000--00000

FIGURE 11 - CRT OEM Listing
This program, resident in PROM, will initialize the display memory
with successive ASCII characters. This will allow initial checkout of
the hardware.



These routines must be modified and additional routines
written to implement all of the features of the terminal. A
MONITOR program (see flowchart in Figure 12) is called by
the reset vector stored in the ROM. Under control of the
monitor program, t,he stack pointer is initialized at the end of
the RAM (address $A07F) , the self-modifying sections of
code are dumped to the RAM, and all variables are initializ-
ed.

The BLANKR subroutine is then called. It is a revision of
the CHARGN subroutine (see flowchart in Figure 9 and
listing in Figure 11). Instead of stepping through the entire
ASCII character code, the ASCII blank code ($20) is stored
in the display memory. After the display memory has been
filled with blanks, the CRTINT subroutine, discussed
previously, is called.

The monitor program calls CHARRC, a subroutine which
accepts and processes a character. Control is returned to the
monitor program which in turn loops on the CHARRC
subroutine call. The result is that the terminal continuously
accepts characters. A flowchart of CHARRC appears in
Figure 13. The CHARRC subroutine calls the input
character subroutine INCH (see flowchart in Figure 14),
which receives one keyboard entry,

FIGURE 12 - MONITOR Program Flowchart
Calls all routines required to implement the terminal.

FIGURE 13 - CHARRC Subroutine
Accepts characters from keyboard, moves cursor, and decodes all special characters.



The special functions are implemented using control
characters which are not normally utilized by CRT terminals.
Table I lists the feature and its control character and in-
dicates which routine processes the command. Each time one
of the special characters is received, a jump to the ap-
propriate routine occurs. All characters received from the
keyboard, except for the special control characters, are writ- .
ten to the current cursor location, the cursor is moved one
space, and a blank is written under the cursor.

To facilitate carriage returns, a space counter (SPACES) is
used. It keeps track of the cursor displacement from the
beginning of the current line. The counter (SPACES) is used
whenever a carriage return key is pressed. The cursor is
moved back to the beginning of the line by subtracting the
number of spaces from the Cursor Registers (R14 and RI5).
A line feed is then generated by adding the number of
characters per line to the Cursor Register.

The CRT controller treats the screen memory as a linear
array such that the last space of a line and the first space of
the next line are located at adjacent memory locations. When
the cursor is at the end of a line and another character is in-
put, the cursor moves to the first of the next line. The space
counter (SPACES) must be reset.

Yes

Get Input
Character

Code
From PIAAD

FIGURE 14 - INCH Subroutine Flowchart
Polls PIA A Control Register until IRQA 1 is set, then the data IS

retrieved from the PIA A Data Register.

Feature Keyboard Subroutine Flowcharted Result
Entry Name in Figure

Scroll Up None SCROLU 15b Called whenever a line feed IS generated. Will add a hne to bottom of
screen when necessary.

Carriage Return CR Key CR 16 Generates carnage return, calls LF.
Line Feed LF Key LF 17 Generates hne feed, calls SCROLU.
Back Space © H 6S 16 Generates back space and blanks under cursor, calls SCROLD when

cursor moves back to prevIous line.

Move Cursor Up © $ UPLINE 19 Moves cursor up one hne, calls SCROLD.One Line
Move to Next Page © D PAGE 20 Moves to same place on next page.
Home Cursor © A HOME 21 Moves cursor.

Clear Screen © G CLEAR 22 Clears page starting at cursor.
Scroll Down None SCROLD 23 Called whenever cursor moves back one line. Adds a new line to top

of screen when necessary.



Start Address {O

1st Line

79

2nd Line { 80

160

1919

{

1920

Remainder

2047

-1840 }

_ 23rd Line

1919

_ } 24th Line
1999

2047 } Remainder

FIGURE 15a - Scrolling
Performed by changing the Start Address in R12 and R13 in the CRTC. This example shows how an 80 x 24 display is scrolled up one line.

Clear the
Portion of
the Line

at Beginning
of Display

Memory

Calculate
Remaining
Number of
Spaces to

Be Blanked

Increment
Start Address
by Number of

Characters
per Line

Blank Rest
of Line at

End of Display
Memory

FIGURE 15b - SCROLU Subroutine Flowchart
The 14-bit cursor address is checked to see if cursor has moved off the
screen. If so, the 14-bit start address is incremented to add a new line
(with the cursor! at the bottom.

FIGURE 16 - CR Subroutine Flowchart
Generates a cursor return by subtracting SPACES Ithe space counter)
from the current cursor position in R14 and R15 of the CRT. Jumps to
LF to generate a line feed.

FIGURE 17 - LF Subroutine Flowchart
Generates a line feed by adding the number of characters per line to
the current cursor position stored in R14 and R15 of the CRTC. Jumps
to SCROLU to see if a new line should be scrolled on the page.



Whenever SPACES is reset, the scroll up routine
(SCROLU) is called to determine if the cursor is still on the
CRT screep. If the cursor has moved off the bottom of the
CRT screen, then the Start Address Registers (R12 and R13)
are adjusted to scroll a new line in at the bottom of the
screen. The SCROLU routine is illustrated in Figure 15a and
flowcharted in Figure 15b.

Flowcharts, describing implementations of the special
features listed in Table I, are presented in Figures 15-23.
Notes at the bottom of each figure explain the algorithms
employed.

When the routine to generate a line feed LF (flowcharted
in Figure 17) is called, the cursor is moved down one line.
Because this may move the cursor off the screen, the

FIGURE 18 - 8S Subroutine Flowchart
Backspaces and blanks under cursor. Jumps to SCROlD and checks
if the· cursor has moved off the top of the screen.

FIGURE 19 - UPLINE Subroutine Flowchart
Moves the cursor up one line by subtracting the number of characters
per line from current cursor pOSition stored in R14 and R15 of the
CRTC. Jumps to SCROlD to check if the cursor has moved off the
top of the screen.

SCROLU routine, to scroll up one line, is called. Similarly,
whenever the backspace routine or the routine to move the
cursor up one line (UPLINE, see flowchart in Figure 19) is
called, the cursor may be moved back to the previous line.
This may also move the cursor off the top of the screen re-
quiring the routine which scrolls down one line (SCROLD,
see flowchart in Figure 23) to be called. The scrolling,
whether up or down, is implemented by modifying the start-
ing address stored in CRTC Registers RI2 and R13. Scrolling
up is implemented by adding or subtracting the number of
characters per line to the Start address. Note that the CRTC
Cursor Registers RI4 and RI5 are the only read/write
registers. This requires the use of a variable to retain the cur-
rent start address duplicated in RI2 and R13 (write only).

FIGURE 20 - PAGE Subroutine Flowchart
Moves to the same position on the next page by adding PAG ES to the
high order byte of the starting address IR121 and the high order byte
of the cursor position IR14l. PAGES multiplied by $100 equals the
number of characters. per page.

Reset Start
Address to the
First Line of the

Current Page

Reset Cursor
Position to the First
Line of the Current

Page

FIGURE 21 - HOME Subroutine Flowchart
Reset start address and cursor position to the beginning of the current
page. then clear SPACES and Jump to CLEAR to put blanks in each
display memory element of the current page.



FIGURE 22 - CLEAR Subroutine Flowchart
Stores ASCII blank, code $20, into all memory locations on the cur-
rent page starting at the cursor.

A complete listing of the software appears in Figure 24 and
will implement all the described features. A semi-structured
approach is utilized to simplify changes or additions. The
MC6845 CRTC supplies the video and sync pulses to the
CRT and may be programmed by the MC6808 MPU for dif-
ferent screen formats. In fact, formats can be changed "on-
the-fiy" provided that the appropriate dot clocks are
available.

Additional "bells and whistles," such as page editing,
block transmit, or receive could be added. Interface cir-
cuitry, not described herein, should be added for a parallel or

FIGURE 23 - SCROLD Subroutine Flowchart
Checks to see if the cursor is before the screen by seeing if the cursor
position registers IR14 and R151 are less than the Screen Start
Registers IR12 and R13I. If so, the start address of R12 and R13 is
decremented by CHRPLN, the number of characters per line.

serial interface. A programmable character generator would
allow the use of semigraphics. Full graphics could also be im-
plemented with each memory bit corresponding to a dot on
the CRT screen. A non-encoded keyboard could also be used
with the software expanded to decode the keyboard. Addi-
tional ICs could be added enabling the MPU and CRTC to
run on different phases so that the MPU has transpareilt ac-
cess to the display memory. The software, developed in this
article, may be used as is or used as a building block to imple-
ment additional features.



PAGE 001 CRTC .SA:1 CRTC

00001 NAM CRTC
00002 *************************************************
00003 * HARDWARE CONFIGURATION
00004 * ACIA $FCF4
00005 * ROM $EOOO
00006 * RAM $AGOO
00007 * CRTC $4000
00008 * SCREEN MEMORY $0000
00009 *************************************************
00010 *00011 * SET UP PERIPHERAL ADDRESSES
00012 FCF4 A ACIACS EQU $FCF4 ACIA CONTROL/STATUS REG
00013 FCF5 A ACIADA EQU ACIACS+1 ACIA DATA REGISTER
00014 3000 A CRTCAD EQU $3000 CRTC ADDRESS REGISTER
00015 3001 A CRTCRG EQU CRTCAD+1 CRTC DATA REGISTER
00016 *00017 * SET CONSTANTS
00018 4000 A SCRNST EQU $4000 SCREEN STARTING ADDRESS
00019 4700 A SCRNND EQU SCRNST+2000 SCREEN END ADDRESS
00020 0040 A MOVE EQU $40 SCREEN OFFSET
00021 0004 A PAGESZ EQU $04 CHARACTERS PER PAGE
00022 OOFC A PGMASK EQU $FC MASK TO GET CURRENT PAGE
00023 0002 A SCRNH EQU $02 CHARACTERS ON SCREEN
00024 OOAB A SCRNL EQU $AB
00025 *00026 * DEFINE VARIABLE LACATIONS
00027 *00028 AOOO A RAM EQU $AGOO RAM STARTING ADDRESS
00029 A001 A CHARH EQU RAM+1
00030 A002 A CHARL EQU RAM+2 CHARACTER POINTER L
00031 A006 A BLANKH EQU RAM+6
00032 A007 A BLANKL EQU RAM+7 BLANK POINTER L
00033 A006 A BSPOSH EQU BLANKH BACK SPACE POSITION H
00034 A007 A BSPOSL EQU BLANKL. BACK SPACE POSITION L
00035 AOOA A INDEX EQU RAM+10 HOME UP POINTER
00036 AOOE A COMPR EQU RAM+14 HOME END POINTER
00037 A011 A SPACES EQU RAM+17 SPACE COUNTER
00038 A012 A STARTH EQU RAM+18 DISPLAY START ADDRESS H
00039 A013 A STARTL EQU RAM+19 DISPLAY START ADDRESS L
00040 A014 A ENDH EQU RAM+20 END OF SCREEN
00041 A015 A ENOL EQU RAM+21 END OF SCREEN
00042 A016 A CHARLN EQU RAM+22 CHARACTERS PER LINE
00043A EOOO ORG $EOOO STARTING ROM ADDRESS
00044 *************************************************
00045 * MONITOR PROGRAM
00046 * INITIALIZES THE STACK POINTER
00047 * INITIALIZES THE SELF-MODIFYING CODE
00048 * INITIALIZES THE DISPLAY MEMORY
00049 * INITIALIZES THE CRTC
00050 * ACCEPTS INPUT CHARACTERS

'{)0051 *************************************************
00052A EOOO 8E A07F A LOS #$A07F INITIALIZE STACK POINTER
00053 *00054 * INITIALIZE THE SELF-MODIFYING CODE IN RAM
00055 *00056A E003 4F CLRA ZERO A ACCUMULATOR
00057A E004 B7 A001 A STAA CHARH
00058A E007 B7 AG02 A STAA CHARL

FIGURE 24 - Complete Listing of CRTC Software



PAGE 002 CRTC .SA:l CRTC
000S9A EOOA B7 A006 A STAA BLANKH ZERO BLANKH/BSPOSH POINTER
00060A EOOD B7 AD07 A STAA BLANKL ZERO BLANKL/BSPOSL POINTER
00061A EOIO B7 AOOA A STAA INDEX
00062A EOl3 B7 ADOB A STAA INDEX+l
00063A E016 B7 AOOE A STAA COMPR
00064A E019 B7 AOOF A STAA COMPR+l
0006SA EOIC B7 AOll A STAA SPACES
00066A EOIF B7 A012 A STAA STARTH
00067A E022 B7 AOl3 A STAA STARTL
00068A E02S B7 A014 A STAA ENDH
00069A E028 B7 AOlS A STAA ENDL
00070A E02B 86 B7 A LDAA *$B7 STORE "STA A" OP CODE
0007lA E02D B7 ADOO A STAA RAM
00072A E030 B7 AOOS A STAA RAM+S
00073A E033 86 86 A LDAA *$86 STORE "LDA A" OP CODE
00074A E03S B7 AD03 A STAA RAM+3
0007SA E038 86 20 A LDAA *$20 STORE ASCII "BLANK"
00076A E03A B7 AD04 A STAA RAM+4
d0077A E03D 86 39 A LDAA *$39 STORE "RTS" OP CODE
00078A E03F B7 AD08 A STAA RAM+8
00079A E042 B7 ADOC A STAA RAM+12
00080A E04S B7 AOIO A STAA RAM+16
00081A E048 86 CE A LDAA *$CE STORE "LDX" OP CODE
00082A E04A B7 A009 A STAA RAM+9
00083A E04D 86 8C A LDAA *$8C STORE IICPXII OP CODE
00084A E04F B7 ADOD A STAA RAM+l3
0008SA EOS2 86 26 A LDAA *$26 SET NO. CHAR PER LINE
00086A EOS4 B7 A016 A STAA RAM+22
00087A EOS7 8D 06 EOSF BSR BLANKR FILL SCREEN WITH BLANKS
00088A EOS9 8D 12 E06D BSR CRTINT INITIALIZE CRTC
00089A EOSB 8D 32 E08F RUN BSR CHARRC RUN PROGRAM
00090A EOSD 20 FC EOSB BRA RUN
00091 *************************************************
00092 * BLANKR SUBROUTINE FILLS DISPLAY MEMORY WITH
00093 * BLANK CODE ($20) •
00094 *************************************************
0009SA EOSF 86 20 A BLANKR LDAA *$20 INITIALIZE SCREEN MEMORY
00096A E061 CE 4000 A LDX *SCRNST DISPLAY START ADDRESS
00097A E064 A7 00 A BLANKI STAA O,X STORE CHARACTER
00098A E066 08 INX NEXT SCREEN LOCATION
00099A E067 8C 4700 A CPX *SCRNND FINISHED?
OOlOOA E06A 26 F8 E064 BNE BLANKI
OOlOlA E06C 39 RTS
00102 *************************************************
00103 * CRINT SUBROUTINE INITIALIZES CRTC BY LOADING
00104 * THE BURRIED RIGISTERS.
00105 ************************************************~
00106A E06D SF CRTINT CLRB INITIALIZE CRTC
00107A E06E CE E07F A LOX #TABLE
00108A E07l F7 3000 A CRT STAB CRTCAD SELECT CRTC REGISTER
00109A E074 A6 00 A LDAA O,X GET TABLE VALUE
OOllOA E076 B7 3001 A STAA CRTCRG STORE CRTC PARAMETER
OOlllA E079 08 INX GET NEXT TABLE VALUE
001l2A E07A SC INCB SELECT NEXT CRTC REGISTER
001l3A E07B Cl 10 A CMPB #$10 LAST CRTC REGISTER
001l4A E07D 26 F2 E071 BNE CRT
00115 *00116 * TABLE OF VAU



PAGE 003 CRTC .SA:l CRTC

00117 *001l8A E07F 30 A TABLE FCB $30 RO HORIZONTAL TOTLA
001l9A E080 26 A FCB $26 Rl HORIZONTAL DISPLAYED
00120A E081 2B A FCB $2B R2 HORIZONTAL SYNC POS.
00121A E082 02 A FCB $02 R3 HORIZONTAL SYNC WIDTH
00122A E083 14 A FCB $14 R4 VERTICAL TOTAL
00123A E084 01 A FCB $01 R5 VERTICAL TOTAL ADJUST
00124A E085 12 A FCB $12 R6 VERTICAL DISPLAYED
00125A E086 13 A FCB $13 R7 VERTICAL SYNC POSITION
00126A E087 00 A FCB $00 R8 INTERLACE MODE
00127A E088 OB A FCB SOB R9 MAX SCAN LINE ADDRESS
00128A E089 40 A FCB $40 Rl0 CURSOR START ADDRESS
00129A E08A 08 A FCB $08 Rll CURSOR END ADDRESS
00130A E08B 00 A FCB $00 R12 START ADDRESS H
00131A E08C 00 A FCB $00 R13 START ADDRESS L
00132A E08D 00 A FCB $00 R14 START ADDRESS H
00133A E08E 00 A FCB $00 R15 START ADDRESS L
00134 *************************************************
00135 * CHARRC SUBROUTINE ACCEPTS KEYBOARD INPUT,DECO
00136 * SPECIAL FEATURES AND CONTROLS THE CURSOR.
00137 *************************************************
00138A E08F 80 7F EllO CHARRC BSR INCH· GET INPUT
00139A E091 81 13 A CMPA #$13 DECODE SPECIAL CHARACTERS
00140A E093 23 02 E097 BLS DECODE
00141A E095 20 31 EOC8 BRA CURSE NOT A SPECIAL CHARACTER
00142A E097 81 00 A DECODE CMPA #$00
00143A E099 26 03 E09E BNE DECl
00144A E09B 7E E177 A JMP CR CARRIAGE RETURN?
00145A E09E 81 08 A DECl CMPA #$08
00146A EOAO 26 03 EOA5 BNE DEC2
00147A EOA2 7E E1AF A JMP BS BACKSPACE?
00148A EOA5 81 OA A DEC2 CMPA #$OA
00149A EOA7 26 03 EOACo. BNE DEC3
00150A EOA9 7E E191 A JMP LF LINEFED?
00151A EOAC 81 13 A DEC3 CMPA #$13
00152A EOAE 26 03 EOB3 BNE DEC4
00153A EOBO 7E E1EF A JMP UPLINE MOVE CURSOR UP ONE LINE?
00154A EOB3 81 04 A DEC4 CMPA #$04
00155A EOB5 26 03 EOBA BNE DEC5
00156A EOB7 7E E20C A JMP PAGE NEXT PAGE?
00157A EOBA 81 01 A DEC5 CMPA #01
00158A EOBC 26 03 EOCl BNE DEC6
00159A EOBE 7E E22A A JMP HOME HOME CURSOR
00160A EOCl 81 07 A DEC6 CMPA #07
00161A EOC3 26 03 EOC8 BNE CURSE
00162A EOC5 7E E258 A JMP CLEAR CLEAR SCREEN?
00163A EOC8 C6 OF A CURSE LDAB #$OF GET CURSOR ADDRESS L
00164A EOCA F7 3000 A STAB CRTCAD
00165A EOCD F6 3001 A LDAB CRTCRG
00166A EODO F7 A002 A STAB CHARL SAVE CHARACTER ADDRESS
00167A EOD3 5C INCB
00168A EOD4 F7 3001 A STAB CRTCRG
00169A EOD7 F7 A007 A STAB BLANKL SAVE CURSOR ADDRESS FOR BL
00170A EODA C6 OE A LDAB #$OE GET CURSOR ADDRESS H
00171A EODC F7 3000 A STAB CRTCAD
00172A EODF F6 3001 A LDAB CRTCRG
00173A EOE2 CA 40 A ORAB #MOVE MOVE CURSOR TO DISPLAY ADD
00174A EOE4 F7 AOOl A STAB CHARH SAVE CHARACTER ADDRESS



PAGE 004 CRTC .SA:l CRTC
0017sA EOE7 F6 M07 A LDAB BLANKL BLANKL=O?
00176A EOEA 26 06 EOF2 BNE NOCARY
OOl77A EOEC F6 MOl A LDAB CHARH INCREMENT IF CARRY REQUIRE
00178A EOEF SC INCB
00179A EOFO 20 03 EOFs BRA CARRYD
00180A EOF2 F6 MOl A NOCARY LDAB CHARH INCREMENT IF CARRY REQUIRE
00181A EOFs F7 3001 A CARRYD STAB CRTCRG UPDATE CURSOR
00182A EOF8 F7 A006 A STAB BLANKH BLNAK UNDER CURSOR
00183 *00184 * RAM IS A SECTION OF SELF~MODIFYING CODE WHI
00185 * STORES THE CHARACTER, IN THE A REGISTER, AT
00186 * THE PRESENT CURSOR LOCATION.
00187 *************************************************
00188A EOFB BD AOOO A JSR RAM SAVE CHARACTER
00189A EOFE 7C A011 A INC SPACES INCREMENT SPACE COUNTER
00190A E10l F6 A016 A LDAB CHARLN AUTOMATIC CR?
00191A E104 Fl M11 A CMPB SPACES
00192A E107 2E 06 E10F BGT NOSCRL
00193A E109 7F A011 A CLR SPACES
00194A E10C 7E E120 A SCRLOL JMP SCROLU CHECH FOR SCROLL UP
0019sA E10F 39 NOSCRL RTS
00196 *************************************************
00197 * INCH SUBROUTINE POLLS THE ACIA UNTIL A CHARA
00198 * IS RECEIVED THEN MASKS THE PARITY BIT AND
00199 * IGNORS RUBOUTS.
00200 *************************************************
00201A E110 B6 FCF4 A INCH LDAA ACIACS
00202A El13 47 ASRA READY?
00203A E114 24 FA E110 BCC INCH RECEIVED NOT READY
00204A E116 B6 FCFs A LDAA ACIADA INPUT CHARACTER
0020sA E119 84 7F A ANDA #$7F RESET PARITY BIT
00206A E11B 81 7F A CMPA #$7F
00207A E11D 27 Fl E110 BEQ INCH RUBOUT IGNOR
00208A E11F 39 RTS
00209 *************************************************
00210 * SCROLU SUBROUTINE CHECKS TO SEE IT THE CURSO
00211 * MOVED OFF THE BOTTOM OF THE SCREEN. IF SO A
00212 * NEW LINE IS SCROLLED ONTO THE SCREEN.
00213 *************************************************
00214A E120 B6 A013 A SCROLU LDAA STARTL SET UP END OF SCREEN ADDRE
0021sA E123 9B AB A ADDA SCRNL
00216A E12s B7 AOls A STAA ENDL
00217A E128 24 04 E12E BCC FIND
00218A E12A 86 01 A LDAA #01
00219A E12C 20 01 E12F BRA FINDl
00220A E12E 4F FIND CLRA
00221A E12F BB A012 A FINDl ADDA STARTH
00222A E132 9B 02 A ADDA SCRNH
00223A E134 B7 A014 A STAA ENDH
00224A E137 C6 OE A LDAB #$OE GET CURSOR ADDRESS H
0022sA E139 F7 3000 A STAB CRTCAD
00226A E13C F6 3001 A LDAB CRTCRG
00227A E13F 11 CBA
00228A E140 22 10 Els2 BHI EQUALl
00229A E142 B6 AOls A LDAA ENDL CHECK LOW ADDRESS
00230A E14s C6 OF A LDAB #$OF GET CURSOR ADDRESS L
00231A E147 F7 3000 Ii. STAB CRTCAD
00232A E14A F6 3001 A LDAB CRTCRG

FIGURE 24 - Complete Listing of CRTC Software
(Continued)

477



00233A
00234A
00235A
00236A
00237A
00238A
00239A
00240A
00241A
00242A
00243A
00244A
00245A
00246A
00247A
00248A
00249A
00250A
00251A
00252
00253
00254
00255
00256
00257A
00258A
00259A
00260A
00261A
00262A
00263A
00264A
00265A
00266A
00267
00268
00269
00270
00271
00272A
00273A
00274A
00275A
00276A
00277A
00278A
00279A
00280A
00281A
00282A
00283A
00284
00285
00286
00287
00288
00289
00290A

E14D 11
E14E 27
E150 23
E152 39
E153 86
E155 B7
E158 F6
E15B FB
ElSE F7
E161 F7
E164 25
E166 39
E167 C6
E169 F7
E16C F6
E16F 5C
E170 F7
E173 F7
E176 39

El77 86
E179 B7
E17C F6
E17F FO
E182 F7
E185 24
E187 4A
E188 B7
E18B 7A
E18E 7F

02 E152
01 E153

CBA
BEQ
BLS

EQUAL 1 RTS
CHANGE LDAA

STAA
LDAB
ADDB
STAB
STAB
BCS
RTS
LDAB
STAB
LDAB
INCB
STAB CRTCRG
STAB STARTH
RTS CHECK TO SEE IF TI IS OK

*************************************************
* CR SUBROUTINB SUBTRACTS SPACE COUNTER FROM
* CURSOR POSITION TO GENERATE A CARRIAGE RETU
* AND THEN CALLS LINEFD.
*************************************************

EQUAL1
CHANGE

OD A
3000 A
AOl3 A
A016 A
3001 A
AOl3 A
01 E167

#$OD
CRTCAD
STARTL
CHARLN
CRTCRG
STARTL
CARRY

OC
3000
A012

#$OC
CRTCAD
STARTH

A CARRY
A
A

3001
A012

OF A CR
3000 A
3001 A
A011 A
3001 A
07 E18E

#$OF
CRTCAD
CRTCRG
SPACES
CRTCRG
YES NO CARRY?

ELSE DECREMENT CURSOR H
3000
3001
A011

LDM
STAA
LDAB
SUBB
STAB
BCC
DECA

A STAA CRTCAD
A DEC CRTCRG
A YES CLR SPACES INITIALIZE SPACE COUNTER

*************************************************
* LINEFD SUBRFOUTINE MOVES THE CURSOR DOWN ONE L
* BY ADDING THE NUMBER OF CHARACTERS.LINE,CHRPLN
* CURRENT CURSOR LOCATION. SCROLU IS THEN CALLE
*************************************************

E191 86 OF A LF tDM #$OF GET CURSOR ADDRESS L
E193 B7 3000 A STAA CRTCAD
E196 F6 3001 A LDAB CRTCRG
E199 FB A016 A ADDB CHARLN GENERATE LINE FEED
E19C 24 OB EIA9 BCC NCARRY CARRY?
E19E F7 3001 A STAB CRTCRG
EIAI 4A DECA
EIA2 B7 3000 A STAA CRTCAD
EIA5 F6 3001 A LDAB CRTCRG
EIA8 5C INCB
EIA9 F7 3001 A NCARRY STAB CRTCRG
EIAC 7E E120 A JMP SCROLU

*************************************************
* BS SUBROUTINE MOVES CURSOR BACK ONE LINE IF TH
* CURSOR MOVES TO THE PREVIOUS LINE THEN SCROLD
* IS CALLED TO SEE IF A NEW LINE SHOULD BE ADDED
* AT THE TOP OF THE SCREEN.
*************************************************



PAGE 0.06 CRTC .SA:1 CRTC

00291A E1B1 B7 3000 A STAA CRTCAD
00292A E1B4 F6 3001 A LDAB CRTCRG
00293A E1B7 SA DECB BACK UP CURSOR
00'294A E1B8 F7 3001 A STAB CRTCRG
0029SA E1BB 4A DECA SELECT CURSOR H
00296A E1BC B7 3000 A STAA CRTCAD
00297A E1BF F7 A007 A STAB BSPOSL SAVE BACK SPACE POSITION L
00298A E1C2 C1 FF A CMPB #$FF CARRY?
00299A E1C4 27 05 E1CB BEQ DECR
00300A E1C6 F6 3001 A LDAB CRTCRG
00301A E1C9 20 07 E1D2 BRA NODECR
00302A E1CB F6 3001 A DECR LDAB CRTCRG IF SO DECREMENT CURSOR H
00303A E1CE SA DECB
00304A E1CF F7 3001 A STAB CRTCRG
0030SA E1D2 CA 40 A NODECR ORAB #MOVE MOVE TO SCREEN MEMORY
00306A E1D4 F7 A006 A STAB BSPOSH SAVE BACK SPACE POSITION H
00307A E1D7 BD A003 A JSR RAM+3 BLANK UNDER CURSOR
00308A E1DA 7A AOll A DEC SPACES DECREMENT SPACE COUNTER
00309A E1DD B6 AOll A LDAA SPACES BACK TO PREVIOUS LINE?
00310A E1EO 81 FF A CMPA #$FF
00311A E1E2 27 01 E1ES BEQ CALLER
00312A E1E4 39 RTS
00313A E1ES B6 A016 A CALLER LDAA CHARLN RESET SPACE COUNTER
00314A E1E8 4A DECA
0031SA E1E9 B7 AOll A STAA SPACES
00316A E1EC 7E E284 A JMP SCROLD
00317 *************************************************
00318 * UPLINE SUBROUTINE MOVES THE CURSOR UP ONE
00319 * LINE THEN CALLS SCROLD.
00320 *************************************************
00321A E1EF 86 OF A UPLINE LDAA #$OF GET CURSOR ADDRESS L
00322A E1F1 B7 3000 A STAA CRTCAD
00323A E1F4 F6 3001 A LDAB CRTCRG
00324A E1F7 FO A016 A SUBB CHARLN GENERATE UPLINE
0032SA E1FA 24 OB E207 BCC NOOCRY CARRY?
00326A E1FC F7 3001 A STAB CRTCRG
00327A E1FF 4A DECA GET CURSOR H
00328A E200 B7 3000 A STAA CRTCAD
00329A E203 F6 3001 A LDAB CRTCRG SUBTRACT CARRY
00330A E206 SA DECB
00331A E207 F7 3001 A NOOCRY STAB CRTCRG
00332A E20A 20 78 E284 BRA SCROLD
00333 *************************************************
00334 * PAGE SINE MOVE THE CURSOR TO THE NEXT PAGE.
00335 *************************************************
00336A E20C 86 OC A PAGE LDAA #$OC GET SCREEN START ADDRESS H
00337A E20E B7 3000 A STAA CRTCAD
00338A E211 F6 A012 A LDAB STARTH
00339A E214 DB 04 A ADDB PAGESZ MOVE TO NEXT PAGE
00340A E216 F7 3001 A STAB CRTCRG
00341A E219 F7 A012 A STAB STARTH
00342A E21C 86 OE A LDAA #$OE GET CURSOR ADDRESS H
00343A E21E B7 3000 A STAA CRTCAD
00344A E221 F6 3001 A LDAB CRTCRG
0034SA E224 DB 04 A ADDB PAGESZ MOVE CURSOR TO NEXT PAGE
00346A E226 F7 3001 A STAB CRTCRG
00347A E229 39 RTS
00348 *************************************************



PAGE 007 CRTC .SA:1 CRTC
00349 * HOME SUBROUTINE MOVES THE CURSOR TO THE BEGIN
00350 * OF THE PRESENT PAGE AND CALLS CLEAR.
00351 **~**********************************************
00352A E22A 86 OE A HOME LDAA #$OE GET CURSOR ADDRESS H
00353A E22C B7 3000 A STAA CRTCAD
00354A E22F F6 3001 A LDAB CRTCRG
00355A E232 D4 FC A ANDB PGMASK GET PAGE ADDRESS
00356A E234 F7 3001 A STAB CRTCRG MOVE CURSOR
00357A E237 F7 A012 A STAB STARTH START AT FIRST OF PAGE
00358A E23A 86 OC A LDAA #$OC
00359A E23C B7 3000 A STAA CRTCAD
00360A E23F F7 3001 A STAB CRTCRG
00361A E242 4C INCA SELECT CURSOR L
00362A E243 B7 3000 A STAA CRTCAD
00363A E246 4F CLRA
00364A E247 B7 3001 A STAA CRTCRG
00365A E24A B7 A013 A STAA STARTL START AT FIRST OF PAGE
00366A E24D C6 OF A LDAB #$OF
00367A E24F F7 3000 A STAB CRTCAD
00368A E252 B7 3001 A STAA CRTCRG
00369A E255 B7 A011 A STAA SPACES ZERO SPACE COUNTER
00370 *************************************************
00371 * CLEAR SUBROUTINE CLEARS PRESENT PAGE PAST TH
00372 * CURSOR BY STORING ASCII BLANDS ($20) INTO
00373 * SCREEN MEMORY.
00374 *************************************************
00375A E258 86 OE A CLEAR LDAA #$OE GET CURSOR ADDRESS H
00376A E25A B7 3000 'A STAA CRTCAD
00377A E25D F6 3001 A LDAB CRTCRG
00378A E260 D4 FC A ANDB PGMASK LOCATE CURSOR PAGE ADDRESS
00379A E262 CB 40 A ADDB #MOVE ADD OFFSET
00380A E264 F7 ADOA A STAB INDEX SAVE START ADDRESS
00381A E267 DB 04 A ADDB PAGESZ SAVE END ADDRESS
00382A E269 F7 AOOE A STAB COMPR
00383A E26C 4C INCA SET UP LOW ADDRESS
00384A E26D B7 3000 A STAA CRTCAD
00385A E270 F6 3001 A LDAB CRTCRG
00386A E273 F7 ADOB A STAB INDEX+1
00387A E276 BD A009 A JSR RAM+9 INDEX REGISTER PAGE ADORES
00388A E279 86 20 A BLANK LDAA #$20 ASCII BLANK
00389A E27B A7 00 A STAA O,X STORE BLANK
00390A E27D 08 INX NEXT SCREEN CHARACTER
00391A E27E BD AOOD A JSR RAM+13 CHECK INDEX REGISTER
00392A E281 26 F6 E279 BNE BLANK
00393A E283 39 RTS
00394 *************************************************
00395 * SCROLD SUBROUTINE CHECKS TO SEE IF THE CURSOR
00396 * MOVED OFF THE TOP OF THE SCREEN. IF SO A NEW
00397 * IS SCROLLED DOWN ONTO THE SCREEN.
00398 *************************************************
00399A E284 B6 AD12 A SCROLD LDAA STARTH CURSOR BEFORE SCREEN?
00400A E287 C6 OE A LDAB #$OE GET CURSOR ADDRESS H
00401A E289 F7 3000 A STAB CRTCAD
00402A E28C F6 3001 A LDAB CRTCRG
00403A E28F 11 CBA
00404A E290 22 12 E2A4 BHI BEFORE
00405A E292 27 01 E295 BEQ EQUAL2
00406A E294 39 RTS HIGH ADDRESS DOESN'T MATCH



PAGE 008 CRTC .SA:l CRTC
00407A E295 B6 A013 A EQUAL2 LDAA STARTL IS CURSOR BEFORE THE SCREE
00408A E298 C6 OF A LDAB #$OF GET CURSOR ADDRESS LOW
00409A E29A F7 3000 A STAB CRTCAD
00410A E29D F6 3001 A LDAB CRTCRG
00411A E2AO 11 CBA
00412A E2Al 22 01 E2A4 BHI BEFORE
00413A E2A3 39 EXIT RTS
00414A E2A4 86 OD A BEFORE LDAA #$OD MOVE BACK ONE LINE
00415A E2A6 B7 3000 A STAA CRTCAD
00416A E2A9 F6 A013 A LDAB STARTL
00417A E2Ac FO A016 A SUBB CHARLN
00418A E2AF F7 3001 A STAB CRTCRG
00419A E2B2 F7 A013 A STAB STARTL
00420A E2B5 25 01 E2B8 BCS CRYSET CARRY SET?
00421A E2B7 39 RTS
00422A E2B8 4A CRYSET DECA IF SO DECREMENT STARTH
00423A E2B9 B7 3000 A STAA CRTCAD
00424A E2BC F6 A012 A LDAB STARTH
00425A E2BF 5A DECB
00426A E2CO F7 3001 A STAB CRTCRG
00427A E2C3 F7 A012 A STAB STARTH
00428A E2C6 39 RTS
00429 END
TOTAL ERRORS 00000--00000

FCF4 ACIACS.00012*00013 00201
FCF5 ACIADA 00013*00204
E2A4 BEFORE 00404 00412 00414*
E279 BLANK 00388*00392
E064 BLANKI 00097*00100
A006 BLANKH 00031*00033 00059 00182
A007 BLANKL 00032*00034 00060 00169 00175
E05F BLANKR 00087 00095*
EIAF BS 00147 00290*
A006 BSPOSH 00033*00306
A007 BSPOSL 00034*00297
EIE5 CALLER 00311 00313*
E167 CARRY 00243 00245*
EOF5 CARRYD 00179 00181*
E153 CHANGE 00235 00237*
AOOI CHARH 00029*00057 00174 00177 00180
A002 CHARL 00030*00058 00166
A016 CHARLN 00042*00190 00240 00275 00313 00324 00417
E08F CHARRC 00089 00138*
E258 CLEAR 00162 00375*
AOOE COMPR 00036*00063 00064 00382
El77 CR 00144 00257*
E07l CRT 00108*00114
3000 CRTCAD 00014*00015 00108 00164 00171 00225 00231 00238 00246

00258 00264 00273 00279 00291 00296 00322 00328 00337
00343 00353 00359 00362 00367 00376 00384 00401 00409
00415 00423

3001 CRTCRG 00015*00110 00165 00168 00172 00181 00226 00232 00241
00249 00259 00261 00265 00274 00277 00280 00282 00292
00294 00300 00302 00304 00323 00326 00329 00331 00340
00344 00346 00354 00356 00360 00364 00368 00377 00385



UVVU ••.•...n.1...Ll'f.1-VVVOO VV..L.VU
E2B8 CRYSET 00420 00422*
EOC8 CURSE 00141 00161 0016.1*
E09E DECl 00143 00145*
EOA5 DEC2 00146 00148*
EOAC DEC3 00149 00151*
EOB3 DEC4 00152 00154*
EOBA DEC5 00155 00157*
EOCl DEC6 00158 00160*
E097 DECODE 00140 00142*
E1CB DECR 00299 00302*
A014 ENDH 00040*00068 00223
A015 ENDL· 00041*00069 00216 00229
E152 EQUALl 00228 00234 00236*
E295 EQUAL2 00405 00407*
E2A3 EXIT 00413*
E12E FIND 00217 00220*
E12F FINDl 00219 00221*
E22A HOME 00159 00352*
EllO INCH 00138 00201*00203 00207
AOOA INDEX 00035*00061 00062 00380 00386
E191 LF 00150 00272*
0040 MOVE· 00020*00173 00305 00379
E1A9 NCARRY 00276 00282*
EOF2 NOCARY 00176 00180*
E1D2 NODECR 00301 00305*
E207 NOOCRY 00325 00331*
El0F NOSCRL 00192 00195*
E20C PAGE 00156 00336*
0004 PAGESZ 00021*00339 00345 00381
OOFC PGMASK 00022*00355 00378
AOOO RAM 00028*00029 00030 00031 00032 00035 00036 00037 00038

00039 00040 00041 00042 00071 00072 00074 00076 00078
00079 00080 00082 00084 00086 00188 00307 00387 00391

E05B RUN 00089*00090
El0C SCRLOL 00194*
0002 SCRNH 00023*00222
OOAB SCRNL 00024*00215
47DO SCRNND 00019*00099
4000 SCRNST 00018*00019 00096
E284 SCROLD 00316 00332 00399*
E120 SCROLU 00194 00214*00283
AOll SPACES 00037*00065 00189 00191 00193 00260 00266 00308 00309

00315 00369
A012 STARTH 00038*00066 00221 00247 00250 00338 00341 00357 00399

00424 00427
A013 STARTL 00039*00067 00214 00239 00242 00365 00407 00416 00419
E07F TABLE 00107 00118*
E1EF UPLINE 00153 00321*
E18E YES 00262 00266*



MONITOR FOR THE
MC14680SG2Ll MICROCOMPUTER

Prepared by
David Bush

Microprocessor Product Engineer
and

Ed Rupp
Microprocessor System Design Engineer

INTRODUCTION
The MCI46805G2 is a fully static single-chip CMOS

Microcomputer. It has 112bytes of RAM. 2106 bytes of user
ROM, four 8-bit input/output ports. a timer, and an on-chip
oscillator. The MC146805G2L1 ROM contains a monitor
routine which provides the user with the ability to evaluate
the MCI46805G2 using a standard RS232 terminal. The user
can enter short programs into the on-chip RAM and execute
them via the monitor. A description of the monitor operation
follows along with an assembled listing of the actual pro-
gram.

MONITOR MODE
In this mode the MCI46805G2L1 Microcomputer is con-

nected to a terminal capable of running at 300, 1200,4800, or
9600 baud. Figure I contains a schematic diagram of the
monitor mode connections and a table showing CO and CI
switch settings to obtain a baud rate that matches the ter-
minal. Be sure the oscillator frequency is 3.579545 MHz. Any
area of RAM from location $18 to $7A may be used for pro-
gram storage; however, upper locations may be needed for
user stack.

When the microcomputer is reset, a power-up message is
printed. Following the message, the prompt character" ." is
printed and the monitor waits for a response. The response
may consist of single letter commands with some commands
requiring additional input. Unrecognized commands respond
by printing "?". Valid commands are:

R - Display the Register
A - Display/Change the Accumulator
X - Display/Change the Index Register
M - Display/Change Memory
C - Continue Program Execution
E - Execute Program at Address
S - Display State of I/O and Timer

R - Display the Register
The processor registers are displayed as they appear on the

stack. The format of the register print is:
HINZC AA XX PP

The first field shows the state of the condition code register
bits. Each bit in the register has a single letter corresponding
to the bit name. If the letter is present, the bit is 1. If a ".'~ is
printed in place of the letter, that bit is 0; For example.
"H ..ZC" means that the H, Z, and C bits are I and that the I
and N bits are O.The remainder of the line shows the status
of the accumulator, index register. and program counter,
respectively. The stack pointer is always at a fixed address (in
this case $7A). The values shown are the values loaded into
the CPU when a "C" or "E" command is executed. All
register values except the condition code register can be
changed with other commands. To change the condition
code register, it is necessary to use the memory change com-
mand and modify location $7B.

A - Examine/Change the Accumulator
This command begins by printing the current value of the

accumulator and then waits for more input. In order to
change the current value, type in a new value (two hex digits).
To leave the accumulator unchanged, type any non-hex digit
(a space is a good choice).

x - Examine/Change the Index Register
This procedure is the same as the "A" command, but af-

fects the index register instead.

M - Examine/Change Memory
Any memory location may be examined or changed with

this command (except of course, ROM). To begin, type "M"
followed by a hexadecimal address in the range
$OOOO-$IFFF.The monitor responds by beginning a new line



+5V
Baud Rate Switch

10 k ..r-l
C1 CO Rate

20 pF
0 0 300

0 1 1200

Reset 1 0 4800

-i 1 1 9600

0= Closed

1 = Open

::r: 20 pF

To Terminal

2 5

3 6

B

-12 V

3 Serial Out

10

7

and printing the memory address followed by the current
contents of that location. At this point you may type:

1. "." and re-examine the same byte. (Try this with loca-
tion $0008.)

2. "N' and go to the previous byte. Typing '~' at loca-
tion $()()()()causes the monitor to go to $IFFF.

3. "CR" and go to the next byte. "CR" is the carriage
return character. The byle after $1FFF is $()()()().

4. "DO", where "DO" is a valid 2-digit hexadecimal
number. The new data is stored at the current address
and the monitor then goes to the next location. This
means that to enter a program it is only necessary to go
to the starting address of the program and start typing
in the byles. To see if the byle was really inputted, you
can use the "N' character to return to the last byte
typed in.

5. Finally, any character other than those described
above causes the memory command to return to the
prompt level of the monitor and prints".".

C - Continue Program Execution
The "c" command merely executes an RTl instruction.

This means that all the registers are reloaded exactly as they
are shown in the register display. Execution continues until
the reset switch is depressed or the processor executes an
SWI. Upon executing an SWl, the monitor regains control
and prints the prompt character. This feature can be used for
an elementary form of breakpoints. Since there is really no
way to know where the stack pointer is after an SWI, the
monitor assumes that it is at $7A. This will not be the case if
an SWI is part of a subroutine. In this case, the monitor will
be re-entered but the stack pointer will point to $78. This is
perfectly valid and typing "c" will pick up the program
from where it left off. However, the A, X, R, and E com-
mands all assume the stack starts at $7A and will not func-
tion properly. If the stack location is known, it is still possi-
ble to examine the registers by using the M command.

E - Start Execution at Address
The "E" command waits for a valid memory address



($OOOO-$IFFF)and places the address typed on the stack at
locations $7£ and $7F. The command then executes an RTi
just like the "C" command. If the address typed is not a
valid memory address, the command exits to the monitor
without changing the current program counter value.

The data displayed is simply memory (RAM) locations
OO-$0003סס$ with $0008 and $0009. Ports A, B, and 0 may
be written to by first making them all outputs; i.e., for port
A, change location $0004 (port A DDR) to $FF. Port C and
the timer registers cannot be changed as they are used by the
monitor.

S - Display I/O States and Timer
The "S" command displays ports A, B, C, and 0 data

along with the timer data and control register contents. The
format of the display is:

ABC 0 TIM TCR

MONITOR PROGRAM
A flowchart for the monitor mode program is provided in

Figure 2. A listing for the ROM monitor program is attached
to the end of this application note.



0000 00 00
0000 00 01
0000 00 02
0000 00 03
0000 00 04
0000 00 08
0000 00 09
0000 00 10
0000 00 80
0000 01 00
0000 20 00

0000 00 Od
0000 00 Oa
0000 00 20
0000 00 00

""
"
"
"""
*
"
""
"*
*
*
""
"
*
*
"
"
"*----------------------------------------------------------------------

CR
LF
BL
EOS
*
************************************************************************
*

*
"
"porta
portb
porte
p or t d
ddr
timer
tcr
RAM
ZROM
ROM
t1EMSIZ
*
*
"

The MC6805G2 single-chip microcomputer is a 40-pin CMOS
device with 2096 bytes of ROM, 112 bytes of RAM. four
8-bit I/O ports, a timer and an external interrupt
input The ROM contains two separate programs. Either
of these programs may be selected on reset by wiring port
C as follows:

C7 C1 CO function
--------

1 a a monitor (300 baud)
1 0 1 monitor (1200 baud)
1 1 0 monitor (4800 baud)
1 1 1 monitor (9600 baud)
0 X X bicycle odometer

The monitor i. substantially the same as all previous
monitors for the 6805. The monitor uses serial I/O for
its communication with the operator. Serial input is C2
and serial output is C3.

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

$000
$001
$002
$003

4
$008
$009
$010
$080
$100

$2000

I/O port a
I/O port 1
I/O port 2
I/O port 3
data direction register offset (e. g. porta+ddr)
8-bit timer register
timer control register
start of on-chip ram
start of page zero rom
start of main rom
memory address space size

carriage return
line feed
blank
end of string



..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•

..•
0602 00 2e PROMPT
0602 00 Od FWD
0602 00 5e BACK
0602 00 2e SAt1E..•

..•

..•
0602 00 7f initsp
0602 00 7a stack..•

..•

..•
0602 00 10 get
0602 00 14 atemp
0602 00 15 xtemp
0602 00 16 char
0602 00 17 count..•

..•

..•

..•

..•

A -- Print/change A accumulator .
Prints the register value, then
waits for new v~lue. Type
any non-hex character to exit .

x -- Print/change X accumulator .
Works the same as 'A',. except modifies X instead .

M -- Memory examine/change .
Type M AAA to begin,

then type. to re-examine current
to examine previous

CR to examine next
DD new data

Anything else exits memory command .

C -- Continue program. Execution starts at
the location specified in the program
counter, and
continues until an swi is executed
or until reset .

E -~ Execute from address. Format is
E AAAA. AAAA is any valid memory address .

S -- Display Machine State .
displayed .

prompt character
go to next byte
go to previous byte
re-examine same byte

equ $7F initial stack pointer value
equ initsp-5 top of stack

. equ
equ
equ
equ
equ

RAM+O
RAM+4
RAM+5
RAM+6
RAM+7

4-byte no-mans land, see pick and drop subroutines
acca temp for getc,putc
x reg. temp 'or getc,putc
current input/output character
number of bits left to get/send

ABC D TIM TCR
dd dd dd dd dd dd



Sep 8 15: 10 1981 146805G2 ROM Monitor Listing Page 3

*
* header string for I/O register display
*

ObO;" O·j Oa iomsg fcb CR,LF
()'~J04 :;;O() 41 20 20 42 20 fee I A II C D TIM TCRI

20 43 20 20 44 20
=<1 4-7 4d 20 54 43
52

<)61. / Od Oa 00 fcb CR,LF,EOS
*

'.:/~1.~ 5f state c 1r)'
061b ';6 (~6 02 state2 Ida iomsgl x get ne,t char
061e <11 00 cmp #E,OS qu it·"
0620 27 Ob be« st<lte3 yesl now print values
0622 cd 08 01 Jsr putc no, print char
0t.25 5c incx bump pointer
0626 20 f3 bra -state2 do it again
0628 state3..•

* now print values underneath the header
*0628 Sf clrx

0629 f6 pio Ida , , start with I/O ports
062a cd 07 5e Jsr putbyt
062d cd 07 8b Jsr puts
0630 5c incx
0631 <13 04 cp' #4 end of I/O'"
0633 26 f4 bne pic no, do more

*0635 cd 07 8b Jsr puts
0638 b6 08 Id<l timer now print the value in the timer
063a cd 07 5e Jsr putbyt
063d cd 07 8b Jsr puts
0640 cd 07 8b Jsr puts
0643 b6 09 Ida tcr the control T'egister too
0645 cd 07 5e Jsr putbyt
0648 20 48 bra manit all done

*
* pee print condition codes
*
* string for pee subroutine
*064a 48 49 4e Sa 43 ccstr fee IHINZCI
*064f b6 7b pee Ida stack+l condition codes in acca

0651 48 asIa move h bit to bit 7
0652 48 asIa
0653 48 asIa
0654 b7 10 sta get save it
0656 Sf clr,
0657 a6 2e pcc2 Ida lI'.
0659 38 10 asl get put bit in c
065b 24 03 bee pcc3 bit off means print
065d d6 06 4a Ida ccstr, x pickup appropriate character
0660 cd 08 01 pcc3 Jsr putc print or character
0663 5c incI point to ne,t in string



1)~t:.4 a3 0S
06Se. 25 ef
06.:,[3 81

*
*
*s ••ta

*
*
*s••tx
*
*
*sE'tany066f f6

,)670 cd 07 5••
0673 cd 07 8b
0676 cd 07 94
0679 25 17
067b f7
067< 20 1~

067 •• ad cf
0680 cd 07 8b
0683 3f 11
0685 a6 7c
0687 b7 12
0689 cd 07 4b
068c cd 07 4b
068f cd 07 43

*
*
*regs

0692 cd 07 7d
0695 a6 2••
0697 cd 08 01
069a cd 07 c3
069d a4 7f
069f cd 07 8b
06a2 a1 41
06a4 27 c3
06a6 a1 58
06a8 27 c3
06aa a1 52
06ac 27 dO
06a •• a1 45
06bO 27 16
06b2 a1 43
06b4 27 21
06b6 a1 4d
06b8 27 1••

*
*
*
*
*monit

#5
pcc2

#stack+2 poiht to A
s••tany

putbyt
puts
g••tbyt
monit

s••••1f it should b•• chang ••d
error, no change

else replace with new value
now return

pcc print cc
puts separate
g••t+1 p01nt to
#stack+2
get+2
out2r.s
out2hs
out4hs

register
from next stuff
page zero,

contInue print with A
X and finally the
Program Counter

crlf go to n••xt lin ••
#PROMPT
putc print th •• prompt
getc get the command character
#X1111111 mask parity
puts print spac •• (won't destroy A)
# 'A c h a n"g.. A
seta
#'X chang ••
s ••tx
*'R registers

exec
#'C
cont
#'M
memory



S"p 8 15: 10 1981 146805G2 ROM Monitor Listing Pag" 5

06b. al 53 cmp II'S display machine stat"
06be 26 03 bn" monit2
06be ce 06 la Jmp stat" commands ar" g"tting too far away

••
06cl 06 cl monit2 "qu ••
06cl a6 3f Ida II,-? none of th" above
06c3 cd 08 01 Jsr putc
06c6 20 ca bra monit loop around

••
•• exec --- execute from given addr"ss
••

06c8 cd 07 94 exec Jsr g"tbyt g"t high nybbl"
Oocb 25 e5 bcs monit bad digit
06cd 97 tax save for a second
06c" cd 07 94 Jsr g"tbyt now th" low byt"
06dl 25 bf bcs manit bad addr"ss
06d3 b7 7f sta stack+5 program counter low
06d5 bf 7" stx stack+4 program counter high

••
•• cont continue users program
••

06d7 80 cont rti simple enough
••
•• memory memory examine/change
••

06d8 cd 07 94 memory Jsr getbyt build address
06db 25 b5 bcs manIt bad hex character
06dd b7 II sta get.1
06df cd 07 94 Jsr getbyt
06e2 25 ae bcs manit bad hex character
06,,4 b7 12 sta get+2 address is now in get.l&2
06e6 cd 07 7d mem2 Jsr crlf begin new line
06,,9 b6 II Ida get+1 print current location
06eb a4 If and II$IF mask upper 3 bits (81'.. map)
06ed cd 07 5e Jsr putbyt
OMO b6 12 Ida get+2
06f2 cd 07 5e Jsr putbyt
06f5 cd 07 8b Jsr puts a blank, then
06f8 ad 2c bsr pick get that byte
06fa cd 07 5e Jsr putbyt and print it
06fd cd 07 8b Jsr puts another b 1an k,
0700 cd 07 94 Jsr getbyt try to g"t a byte
0703 25 06 bcs mem3 might be a sp"cial -character
0705 ad 25 bsr drop otherwi 5", put it and continue
0707 ad 33 m"m4 bsr bump go to next address
0709 20 db bra mem2 and r"peat
070b al 2e mem3 cmp IISAME re-examine same?
070d 27 d7 beq mem2 y"s, return without bumping
070f al Od cmp IIFt~D go to next?
0711 27 f4 b"q m"m4 yes, bump th"n loop
0713 al 5e cmp IIBACK go back on" byte-"
0715 26 Oc bn" xmonit no, exit memory command
0717 3a 12 d"c get+2 d"cr"ment low byte
0719 b6 12 Ida g"t+2 ch"ck for underflow
071b al ff cmp II$FF
071d 26 c7 bn" mem2 no und"rflow



0726 bf 15
0728 ae d6
072a 20 04

072c bf 15
072.e Ole d7

0730 bf 10
0732 Ole 81
0734 bf 13
0736 5f
0737 bd 10
0739 be 15
073b 81

073c 3c 12
073e 26 02
0740 3c 11
0742 81

..
xmonit Jmp monit..
.• utilities..
.• pick --- get byte from anywhere in memory
.• this is a horrible routine (not merely
.• self-modifying, but self-creating)

.• get+1&2 point to address to read,

.• byte is returned in A

.• X is unchanged at exit

..................
drop

xtemp
II$D6
common

save X
D6=lda 2-byte indexed

drop --- put byte to any memory location .
has the same undesirable properties
as pick

A has byte to store, and get+I&2 points
to location to store
A and X unchanged at exit

....
common stx

ldx
stx
clrx
Jsr
ldx
rts..........

bump

bump2..........
out4hs

get
11$81
get+3

get
xtemp

save X
d7=sta 2-byte indexed

put opcode in place
81=rts
now the return
we want Zero offset
execute this mess
res.tore X
and exit

get+2
bump2
get+1

increment low byte
non-zero means no carry
increment high nybble

out4hs --- print. word pointed to as an address •
X is unchanged at exit

get high nybble
mask high bits



S~p 8 15' 10 1981 14680502 ROM Monitor LIsting Pag •• 7

c)7..:.ll ad I" bsr putbyt and print it
(17·1-9 ad f 1 bsr bump go to next addr ••ss

••
•• out2hs print byt •• pointed to. th ••n a space. bump pointer
•• X is unchanged at exit
••

1)74b ad d9 out2hs bsr pic k get the byt ••
0741.1 07 10 sta get save A
074f 44 Isra
0750 44 Isra
0751 44 Isra
0752 44 Isra shift high to Qow
0753 ad 16 bsr putnyb
0755 b6 10 Ida get
0757 ad .~ bsr putnyb<c

0759 ad el bsr bump go to ne,t
075b ad 2e bsr puts finish up with a blank
075d )31- rts

••
•• putbyt ~---print A in he,
•• A and X unchanged
••

075" b7 10 putb,~t sta g••t save A
0760 44 Isra
0761 44 lsra
076~ 44 Isra
0763 44 !sra shift high nybbl •• down
0764 ad 05 bsr putnyb print it
0766 b6 10 Ida g••t
0768 ad 01 bsr putnyb print low nybbl ••
076a 81 rts

••
•• putnyb ..._- print lower nybbl •• of A in he,
•• A and X unchanged! high nybble
•• of A is ignored.
••

076b b7 13 putnyb sta g••t+3 save A in yet anoth ••r t••mp
076d a4 Of and #$F mask off high nybbl ••
076f ab 30 add 11'0 add ascii zero
0771 al 39 cmp #'9 check for A-F
0773 23 02 bls putny2
0775 ab 07 add lI'A-'9-1 adjustment for h••, A-F
0777 cd 08 01 putny2 jsr putc
077a b6 13 Ida g••t+3 restore A
077c 81 rts

••
•• crlf print carriage return, line f••••d
•• A and X unchang ••d
••077d b7 10 crlf sta g••t save

077f a6 Od Ida lIeR
0781 cd 08 01 jsr putc
0784 a6 Oa Ida IILF
0786 ad 79 bsr putc
0788 b6 10 Ida g••t restore
078a 81 rts



G78b b7 10
078d a6 20
078f ad 70
0791 b6 10
(;793 8]

0794 ad Of
0790 25 Oc
0798 48
0799 48
079a 48
079b 48
079" b7 10
079" ad 05
07aO 2S 02
07a2 bb 10
07a4 81

07a5 ad Ie
07a7 a4 7f
07a9 b7 13
07ab aO 30
07ad 2b 10
07af al 09
07bl 23 Oa
o7b3 aO 07
o7b5 al Of
o7b7 22 06
07b9 al 09
07bb 23 02
07bd 98
07be 81
07bf b6 13
o7cl 99
07c2 81

*
*
*
*puts

*
*
*
*
*
*
*
*getbyt

nobyt
*
*
*
*
*
*
"'"
getnyb bsr

and
st'a
sub
bmi
cmp
bls
sub
cmp
bhi
cmp
bls

gotit clc
rts

nothex Ida
~ec
rts

puts --- print • bl~nk (sp~ce)
A and X unchanged

get
*BL
putc
get

A gets the byte typed if it was a v~lid hex number.
otherwise A gets the last character typed. The c-bit is
set on non-hex characters. cleared otherwise. X
unchanged in any case.

bsr
bcs
asia
asia
asIa
asia
sta
bsr
bcs
add
rts

getnyb
!1obyt

get'
getnyb
nobyt
get

build byte from 2 nybbles
bad character in input

shift nybble to high nybble
save it
get low nybble now
bad character
(-bit cleared

A gets the nybble typed if it was in the range
otherwise A gets the character typed. The c-bit is
on non-hex characters) cleared otherwise. X
unchanged

O-F.
set
is

getc get the character
*%1111111 mask p~rity
get+3 save it Just in case
#'0 subtract ascii zero
nothex was less than '0'
119
gotit
lI'A-'9-1 funny adjustment
II$F too big?
nothex was greater than 'F'
119 check between 9 and A
nothex



These subroutines are modifications of the original NMOS
version. Differences ar, due to the variation in cycle
time of CMOS instructions vs. NMOS .

••
••
••
••
••
••
••
••......
••
••
••..
put
in
out
••
••
••
••..
getc

Since the ·INT and TIMER interrupt vectors are used in the
bicycle odometer, the I-bit should always be set when
running the monitor. Hence, the code that fiddles with
the I-bit has been eliminated .

Note changing 'in' or 'out' will necessitate changing the
way 'put' is setup during reset .

serial I/O port
serial input line*
serial output line*

07c3 00 02
07c3 00 02
07c3 00 03

07c3 bf 1:5
07c5 a6 08
07c7 b7 17
07c9 04 02 fd

07cc b6 02
07ce a4 03
07dO 97
07dl de 08 4b
07d4 a6 04
07d6 9d
07d7 4a
07d8 26 fc
07da 5d
07db 14 02
07dd 14 02
07df Sa
07eO ·26 f2

07e2 04 02 e4
07eS 7d
07e6 7d
07e7 7d

07e8 ad 46
07ea OS 02 00
07ed 7d

stx
Ida
sta
brset

xtemp
*8
count
in,put,getc4g e t·c 4

••
••
••

Ida put
and *%11 get current baud rate
tax
Id x delays, x get loop constant

getc3 Ida *4
getc2 nop

deca
bne getc2
tstx loop padding
bset in,put ditto
bset in, put CMOS ditto
decx
bne getc3 major loop test

brset
tst
tst
tst

in,put,getc4 false start bit test
x more timing delays

, x
, x

••
••
••
getc7 delay (6) common delay routine

in, put, getc6 (5) test input and set c-bit
, x (4) timing e~ualizer

bsr
brclr
tst



Sep 8 15: 10 1981 146805G2 ROM Monltor Listing Page 10

07ee 9d nop (21 CMOS e'l.ualization
Olef 9d nop (2) CMOS e'l.ualization
07fO 9d nop (2) CMOS e'l.ualization
07f! 9d nop (2) CMOS e'l.ualization
07f2 9d nop (2) CMOS e'l.ualization
07f3 9d nop (2) CMOS e'l.ualization
07f4 36 16 ror char (5) add this bit to the byte
07f6 3a 17 dec count (5)
07f8 26 ee bne getc7 (3) st ill more bits to get(see?)

*07fa ad 34 bsr delay wait out the 9th bit
07fc b6 16 Ida char get assembled byte
07fe be 15 Id x xtemp restore x

*0800 81 rts and return
*
* putc --- print a on the terminal
*
* X and A unchanged
*0801 b7 16 putc sta char

0803 b7 14 sta atemp save it in both places
0805 bf 15 stx xtemp don't forget about X
0807 a6 09 Ida #9. going to put out
0809 b7 17 sta count 9 bits this time
080b 5f clrx for very obscure reasons
080c 98 clc this is the start bit
080d 20 02 bra putc2 Jump in the middle of things

*
* main loop for putc
*080f 36 16 putc5 ror char (5) get next bit From memory

0811 24 04 pute2 bee putc3 (3) now set or clear port bit
0813 16 02 bset out,put
0815 20 04 bra putc4
0817 17 02 pute3 belr out,put (5)
0819 20 00 bra pute4 (3) equalize timing again
081b dd 08 30 putc4 Jsr delay, x (7) must be 2-b y te indexed Jsr

* .this is why X must be iero
081e 43 coma (3) CMOS equalization
08lf 43 coma (3) CMOS equalization
0820 43 coma (3) CMOS equalization
0821 3a 17 dee count (5)
0823 26 ea bne pute5 (3) still more bits

*0825 14 02 bset in, put 7 cycle delay
0827 16 02 bset out,put send stop bit

*0829 ad 05 bsr delay delay for the stop bit
082b be 15 ldx xtemp rastore X and
082d b6 14 Ida atemp of course A
082f 81 rts

*
* delay --- preci~e delay for g"te/pute
*0830 b6 02 delay Ida put first, find out



Sep B 15 10 1981 14680502 ROM Monitor Listing Pag •• 11

0832 a4 03 and 111.11 what th •• baud rat •• is
0834 97 tax
0835 d•• 08 4b 1d x d••lays, x loop constant from tabl ••
0838 a6 f8 Ida II$F8 funny adJustm ••nt for subroutin •• overhead
083a ab 09 d••13 add 11$09
083e d.e12
083e 9d nop CMOS ••qualization
083d 4a d~ca
083 •• 26 fe bne d••12
0840 5d tst, loop padding
0841 14 02 bs ••t in, put ditto
0843 14 02 bs ••t in, put CMOS ditto
0845 Sa d••c,
0846 26 f2 bn •• d••13 main loop
0848 9d nop CMOS ••qualization
0849 9d nop CMOS ••qualization
084a 81 rts wi th X still ••qual to zero

'*
* d ••lays for baud rat •• calculation
*
* This tab J,., must not b•• put on pag •• zero since

* th •• accessing must tak •• 6 eye l••s,
*084b 20 d••lays feb 32 300 baud

084e 08 feb 8 1200 baud
084d 02 fcb 2 4800 baud
084e 01 feb 1 9600 baud

*
* res ••t power on reset routine
*
* Bas ••d on a port bit, run th •• bieyel •• odom ••t••r or the monitor.
*084f reset

084f 0 •• 02 03 brs ••t 7, porte, oth ••r
0852 ee 01 54 Jmp odo b•• a bieycl •• odom ••ter

*
* run th •• monitor
*0855 oth ••r

0855 a6 08 Ida 111.1000 s••tup port for s••rial io
0857 b7 02 sta put set output to mark lev ••l
0859 b7 06 sta put+ddr set ddr to hav •• one output

*
* print sign-on message
*085b 5f clrx

085e d6 08 6c babbl •• Ida msg, x g••t next character
085f al 00 cmp IIEOS last their?
0861 27 06 b••q mstart y••s, start monitor
0863 cd 08 01 Jsr putc and print it
0866 5e incx advance to n ••xt char
0867 20 f3 bra babbl. more message
0869 mstart
0869 83 swi push machine state and go to monitor routine086a 20 ••3 bra r.s ••t loop around

*



* msg power up message
*086e Od 0.0 msg feb CR,LF

086e 31 34 36 38 30 35 fee /14680502/
47 32

0876 00 feb EOS
*
********************************************************************
** interrupt vectors
*1H6 org MEMSIZ-10 start of v••etors
*1H6 01 eO fdb on••mil •••it wait state \

1H8 01 eO fdb onemil timer inteorrupt odom ••t••r vectors
iff••02 46 fdb whe ••l •••t••rnal interrupt /
iffc 06 92 fdb manit swi to main entry point
iffe 08 4f fdb reset power on vector




